MAT203 Fall 2011

Practice Midterm II

The second midterm will contain 7 problems. You will not be allowed to use notes or calculators.

Sections covered: $11.6,11.7,12.1,12.2,12.3,12.4,12.5,13.1,13.2,13.3,13.4,13.5$, $13.6,13.7,13.7,13.8,14.1,14.2,14.3,14.5,14.6$

Problem 1 Determine which of the following equations define a cylinder and sketch its graph:

1. $x^{2}+y^{2}=1+z^{2}$.
2. $\ln (x)=y$.
3. $\cos (z)=y$.

Problem 2 Classify the surface defined by the following equations

1. $x^{2}-2 x-4-y^{2}-4 y-z=0$
2. $3 x^{2}-6 x+8+2 y^{2}+8 y-z^{2}+2 z=0$
3. $x^{2}+2 x+1-2 y^{2}+4 y-z^{2}+2 z=0$

Problem 3 Find equation of a surface of revolution obtained by rotation the curve given by equation $y=\ln (x)$ about

1. x-axis.
2. y-axis.

Problem 4 1. A surface in orthogonal coordinates is defined by equation

$$
x^{2}-y^{2}=1
$$

Find its equation in cylindrical and spherical coordinates.
2. A surface in spherical coordinates is given by

$$
\rho \sin \phi \cos \theta+\rho \sin \phi \sin \theta-\rho \cos \phi=1 .
$$

Find its equation in orthogonal system.

Problem 5 Sketch the curve represented by vector-valued function $r(t)=(2-t) i+$ $(\sqrt{t}+1) j$

Problem 6 An acceleration function of an object satisfies

$$
a(t)=\sin t i+\cos 2 t j+\cos (t+\pi / 4) k
$$

Find the position function $r(t)$ if the initial velocity at time $t=0$ is $i-2 j+\sqrt{2} k$ and the initial position is $2 i-2 j+3 k$.

Problem 7 Find the unit tangent vector and the principal normal vector to the curve $r(t)=t i-2 t^{2} j-t^{2} k$ at a point $r(1)$.

Problem 8 Find the arc length of the curve $x=t^{2}, y=t^{3}$ between $(1,1)$ and $(4,8)$.

Problem 9 Sketch the level curves of the function

$$
f(x, y)= \begin{cases}x+y^{2} & x>0 \text { and } y>0 \\ 0 \text { otherwise } & \end{cases}
$$

Problem 10 Identify limits that exist and evaluate them
1.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x+y}{x-y}
$$

2.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}
$$

3.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}
$$

Problem 11 Find the gradients of functions
1.

$$
f(x, y)=\sin (\ln (x+y) \cos (x y))
$$

2.

$$
g(x, y)=\frac{\sqrt{x+y+z}}{1+x^{2}+y^{2}+z^{2}}
$$

Problem 12 Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ for $z=e^{2 r} \sin (3 \theta), r=s t-t^{2}, \theta=\sqrt{s^{2}+t^{2}}$

Problem 13 A function $z=g(x, y)$ satisfies equation $F(x, y, g(x, y))=0$, where

$$
F(x, y, z)=x^{2}+z y+y^{2}+z x^{2}+z^{3}
$$

find partial derivatives g_{x}, g_{y} as functions of x, y, z.

Problem 14 1. Find formula for a normal vector to level curves of the function

$$
f(x, y)=x^{2}+3 x+y-y^{3} .
$$

2. Find critical (extreme) points of this function, determine their type.

Problem 15 Find the equation of the tangent plane to the surface $z=3+\cos (\pi x y)$ at the point $(1,1)$.

Problem 16 Find the absolute maximum of the function

$$
f(x, y)=x^{2}-3 x y+y^{2}
$$

in the region $x^{2}+y^{2} \leq 1$

Problem 17 Sketch the region of integration R and switch the order of integration in the following integrals
1.

$$
\int_{0}^{4} \int_{0}^{y^{2}} f(x, y) d x d y
$$

2.

$$
\int_{1}^{4} \int_{-\ln (x)}^{\ln (x)} f(x, y) d y d x
$$

3.

$$
\int_{2}^{3} \int_{2-y}^{\frac{1}{y}} f(x, y) d x d y
$$

Problem 18 1. Evaluate

$$
\iint_{R} e^{-x-y} d x d y
$$

where R is the region in the first quadrant in which $x+y \leq 1$
2. Evaluate

$$
\int_{0}^{8} \int_{x^{\frac{1}{3}}}^{2} \frac{d y d x}{1+y^{4}}
$$

(Hint:change the order of integration first.)

Problem 19 The integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x
$$

is given in orthogonal coordinates. Change it to polar coordinates.

Problem 20 1. Find the volume of the solid that is below the surface $z=3 x+2 y$ over the region R on the plane $z=0$ bounded by the lines $x=0, y=0$ and $x+2 y=4$ by evaluate a double integral.
2. Use polar coordinates to set up the integral for the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $x^{2}+y^{2}=4$.

Problem 21 Find the area of the part of hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

Problem 22 Evaluate $\iint_{V} \int 3 x y d x d y d z$, where V is the solid between the $x y$-plane and the hyperbolic paraboloid $z=x y$ for $0 \leq y \leq x, 0 \leq x \leq 1$.

