MAT203 Spring 2010

Practice Midterm I

The actual midterm will contain six problems. You will not be allowed to use notes or calculators.

Problem 1 Which points are not collinear

1. $P(1,-1,3), Q(7,5,3), S(-11,-13,3), T(19,17,3)$.
2. $A(1,2,3), B(1,-2,1), C(2,2,3), D(3,4,2)$.

Problem 2 For vectors $v=(2,-2,0), u=(1,1,1), w=(1,-1,1)$ compute the quantities that make sense:

1. $v \cdot(u+w)$,
2. $v \cdot u+w$,
3. $v \times u+w$,
4. $(v \times u) \cdot w-u \cdot w$

Problem 3 Compute cosine of the angle between vectors. Determine which of the pairs are orthogonal, for which pairs the angle is acute, for which obtuse.

1. $v_{1}=(1,1,-3), u_{1}=(-2,-2,6)$.
2. $v_{2}=(2,1,-2), u_{2}=(-2,0,6)$.
3. $v_{3}=(3,3,-2), u_{3}=(-1,-1,-3)$.
4. $v_{4}=(1,-2,3), u_{4}=(3,2,1)$.

Problem 4 Find orthogonal projection of vector $v=(1,-1,1)$ onto vector $u=(1,5,2)$. Also find a component of v orthogonal to u.

Problem 5 Determine whether the set of four points belongs to a plane:

1. $P(0,1,2), Q(-3,2,1), R(2,-2,1), S(-1,-1,0)$
2. $A(1,0,2), B(-2,3,2), C(0,-1,1), D(-1,1,0)$

Problem 6 Find equation of a plane that contains points

1. $P(1,-1,1), Q(-2,0,1), R(1,1,-1)$.
2. $A(-2,3,2), B(0,-1,1), C(-1,1,0)$
3. Compute the cosine of angle between these two planes.
4. Denote the plane that contains $A(-2,3,2), B(0,-1,1), C(-1,1,0)$ by K. Find the distance between $Q(-2,0,1)$ and K.
5. Sketch K.

Problem 7 Find parametric and symmetric equations of the line that passes through two points $P(1,-1,0)$ and $Q(-1,2,-3)$. What is the distance from the point $S(4,4,4)$ to this line?

Problem 8 Determine which of the following equations define a cylinder and sketch its graph:

1. $x^{2}+y^{2}=1+z^{2}$.
2. $\ln (x)=y$.
3. $\cos (z)=y$.

Problem 9 Classify the surface defined by the following equations

1. $x^{2}-2 x-4-y^{2}-4 y-z=0$
2. $3 x^{2}-6 x+8+2 y^{2}+8 y-z^{2}+2 z=0$
3. $x^{2}+2 x+1-2 y^{2}+4 y-z^{2}+2 z=0$

Problem 10 Find equation of a surface of revolution obtained by rotation the curve given by equation $y=\ln (x)$ about

1. x-axis.
2. y-axis.

Problem 11 1. A surface in rectangular coordinates is defined by equation

$$
x^{2}-y^{2}=1
$$

Find its equation in cylindrical and spherical coordinates.
2. A surface in spherical coordinates is given by

$$
\rho \sin \phi \cos \theta+\rho \sin \phi \sin \theta-\rho \cos \phi=1
$$

Find its equation in rectangular and cylindrical coordinates.

