MAT203 Fall 2011 Practice Final

The actual Final exam will consist of twelve problems that cover sections

11.1-15.7 (inclusive)

Problem 1 Show that the line x = 3 + t, y = 1 + 2t, z = 1 - 2t is parallel to the plane 2x + 3y + 4z = 5.

- **Problem 2** 1. Write the equation of the tangent line to the curve with parametric equation $\mathbf{r}(t) = \sqrt{t}\mathbf{i} + \mathbf{j} + t^4\mathbf{k}$ at a point at the point $\mathbf{i} + \mathbf{j} + \mathbf{k}$.
 - 2. Find the distance from the tangent line to i + 2j + 3k

Problem 3 Which one of the following is the same as $\phi = \pi/6$ in spherical coordinates?

- 1. $z = \sqrt{x^2 + y^2}$ in Cartesian coordinates.
- 2. z = 3r in cylindrical coordinates.
- 3. $z = \sqrt{r}$ in cylindrical coordinates.
- 4. $z^2 = 3(x^2 + y^2)$ in Cartesian coordinates.
- 5. None of the above.

Problem 4 Consider the curve $\mathbf{r}(t) = \sqrt{2} \cos t \mathbf{i} + \sin t \mathbf{j} + \sin t \mathbf{k}$.

- 1. Find the unit tangent vector $\mathbf{T}(t)$ and the principal normal unit vector $\mathbf{N}(t)$.
- 2. Compute the curvature κ

Problem 5 Evaluate the integrals

1.

$$\int_0^1 \int_{\sqrt{y}}^1 e^{x^3} dx dy$$

2.

$$\int_0^1 \int_{\sin^{-1} y}^{\frac{\pi}{2}} \cos x \sqrt{1 + \cos x^2} dx dy.$$

Problem 6 A lamina occupies the region inside the circle $x^2 + y^2 = 2y$ and outside the circle $x^2 + y^2 = 1$. Find the mass if the density at any point is the inverse to its distance from the origin.

Recall that directional derivative of a function f(x, y) at a point x_0, y_0 along a unit vector $u = \cos \theta i + \sin \theta j$ is

$$D_u(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0 + t\cos\theta, y_0 + t\sin\theta) - f(x_0, y_0)}{t}$$

If *f* is a differentiable function then $D_u f(x, y) = f_x \cos \theta + f_y \sin \theta$. Note that $a \cos \theta + b \sin \theta$ has the greatest value (as a function of θ) when ai + bj and $\cos \theta i + \sin \theta j$ are pointing in the same direction.

- **Problem 7** 1. Find the directions in which the directional derivative of $f(x, y) = x^2 + \sin(xy)$ at the point (1, 0) has the value 1.
 - 2. Find all points at which the direction of fastest change of the function $f(x, y) = x^2 + y^2 2x 4y$ is i + j.
 - 3. Find the differential of $z = e^{x+y} \ln(y^2)$ and the linear approximation at (2, 2)

Problem 8 Show that the following limits do not exist:

1.

2.

$$\lim_{(x,y)\to(0,0)} \frac{x+\sin y}{2x+y}$$
$$\lim_{(x,y)\to(0,0)} \frac{7x^2y(x-y)}{x^4+y^4}$$

Problem 9 Show that the surfaces $z = 7x^2 - 12x - 5y^2$ and $xyz^2 = 2$ intersect orthogonally at the point (2, 1, -1).

Problem 10 Determine the global max and min of the function $f(x, y) = x^2 - 2x + 2y^2 - 2y + 2xy$ over the region $-1 \le x \le 1, 0 \le y \le 2$.

Problem 11 1. Let $f(x, y) = \sin(x^2 + y^2) + \arcsin(y^2)$. Calculate:

$$\frac{\partial^2 f}{\partial x \partial y}$$

2. If z = f(x, y), where $x = r \cos \theta$, $y = r \sin \theta$, show that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x^2} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2} + \frac{1}{r} \frac{\partial^2 z}{\partial r}$$

Problem 12 Let **F** be the plane vector field $xy^2i + yx^2j$.

1. Is **F** a conservative vector field? Why?

2. Calculate the divergence of **F**.

Problem 13 Determine the surface given by the parametric representation

$$r(u, v) = u\mathbf{i} + u\cos(v)\mathbf{j} + u\sin(v)\mathbf{k}$$

Problem 14 Find the equation of the tangent plane to the surface given by

$$r(u,v) = u\mathbf{i} + 2v^2\mathbf{j} + (u^2 + v)\mathbf{k}$$

at the point (2, 2, 3).

Problem 15 Find the arc length of the curve

 $\mathbf{r}(t) = t^2 \mathbf{i} + (\sin t - t \cos t)\mathbf{j} + (\cos t + t \sin t)\mathbf{k}, 0 \le t \le \pi.$

Problem 16 Let $\mathbf{F} = (y^2 + x)i - (x^2 - y)j + zk$.

- 1. Find curlF.
- 2. Find divF.
- **Problem 17** 1. Calculate the line integral $\int_C xyds$ if *C* is the portion of the unit circle in the first quadrant (i.e. $x^2 + y^2 = 1$ with $x \ge 0, y \ge 0$).
 - 2. Let *R* be the region in *xy*-plane defined by $x^2 + y^2 > 1$. Show that $\mathbf{F} = \frac{-yi+xj}{x^2+y^2}$ is a conservative vector field on *R*.
 - 3. Let *C* be the path (e^t, t) , $1 \le t \le 2$. Evaluate the integral $\int_C \frac{-ydx+xdy}{x^2+y^2}$
 - 4. Evaluate $\int_C \frac{-ydx+xdy}{x^2+y^2}$, where $C := \{(x, y) : x^2 + y^2 = 9\}$.
 - 5. Let *C* be boundary of a square *D*. Compute $\int_C xy^2 dx + (x^2y + 2x)dy$ as a function of Area(*D*).
 - 6. Let *L* be the boundary of the half-disk $\{(x, y)|x^2 + y^2 \le 1, x \ge 0\}$. Let $\mathbf{F}_1 = (x y)\mathbf{i} \mathbf{j}$. Find by evaluating a line integral the outward flux of \mathbf{F}_1 across *L*

- 7. Let $\mathbf{F}_2 = (x^2 + y^2)\mathbf{i} + (x^2 y^2)\mathbf{j}$. Use Greens theorem to find the outward flux of \mathbf{F}_2 across *L*.
- **Problem 18** 1. If $\mathbf{F} = 3x\mathbf{i} + 2xz\mathbf{j} + 3\mathbf{k}$, evaluate the flux of \mathbf{F} across the surface $S : z = 0, 0 \le x \le 1, 0 \le y \le 2$ (where the normal is to be in the positive z direction).
 - 2. Find the flux of the field $\mathbf{F} = z\mathbf{k}$ across the portion of the sphere $x^2 + y^2 + z^2 = a^2$ in the first octant (this is the 1/8-th of space in which *x*, *y* and *z* are all ≤ 0) with normal taken in the direction away from the origin.
- **Problem 19** 1. Compute the surface area of the graph $z = 1 + x^2 + y$ over the triangular region formed by the points (0, 0), (3, 0), and (3, 2).
 - 2. Find the integral $\iint_{S} \mathbf{A} \cdot dS$ for $\mathbf{A} = x\mathbf{i} + z\mathbf{j}$ and the surface S of a sphere of radius *a*.
- **Problem 20** 1. Evaluate $\int \int_{B} \int (x^2 + y^2 + z^2)^2 dx dy dz$, where *B* the ball with center the origin and radius 3.
 - 2.

$$\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2+y^2+z^2} dz dx dy$$

3. Give five other iterated integrals that are equal to

$$\int_{0}^{2} \int_{0}^{y^{3}} \int_{0}^{y^{2}} f(x, y, z) dz dx dy$$

4. Find the volume of the solid inside the sphere $x^2 + y^2 + z^2 = 9$ and outside the cylinder $x^2 + y^2 = 1$.

Problem 21 Find Jacobian of

$$x = u^2 - \sin(u + v), y = e^u \cos v$$