MAT203 Fall 2011
 Practice Final

The actual Final exam will consist of twelve problems that cover sections
11.1-15.7 (inclusive)

Problem 1 Show that the line $x=3+t, y=1+2 t, z=1-2 t$ is parallel to the plane $2 x+3 y+4 z=5$.

Problem 2 1. Write the equation of the tangent line to the curve with parametric equation $\mathbf{r}(t)=\sqrt{t} \boldsymbol{i}+\boldsymbol{j}+t^{4} \boldsymbol{k}$ at a point at the point $\boldsymbol{i}+\boldsymbol{j}+\boldsymbol{k}$.
2. Find the distance from the tangent line to $\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}$

Problem 3 Which one of the following is the same as $\phi=\pi / 6$ in spherical coordinates?

1. $z=\sqrt{x^{2}+y^{2}}$ in Cartesian coordinates.
2. $z=3 r$ in cylindrical coordinates.
3. $z=\sqrt{r}$ in cylindrical coordinates.
4. $z^{2}=3\left(x^{2}+y^{2}\right)$ in Cartesian coordinates.
5. None of the above.

Problem 4 Consider the curve $\mathbf{r}(t)=\sqrt{2} \cos t \boldsymbol{i}+\sin t \boldsymbol{j}+\sin t \boldsymbol{k}$.

1. Find the unit tangent vector $\mathbf{T}(t)$ and the principal normal unit vector $\mathbf{N}(t)$.
2. Compute the curvature κ

Problem 5 Evaluate the integrals
1.

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{x^{3}} d x d y
$$

2.

$$
\int_{0}^{1} \int_{\sin ^{-1} y}^{\frac{\pi}{2}} \cos x \sqrt{1+\cos x^{2}} d x d y
$$

Problem 6 A lamina occupies the region inside the circle $x^{2}+y^{2}=2 y$ and outside the circle $x^{2}+y^{2}=1$. Find the mass if the density at any point is the inverse to its distance from the origin.

Recall that directional derivative of a function $f(x, y)$ at a point x_{0}, y_{0} along a unit vector $\boldsymbol{u}=\cos \theta \boldsymbol{i}+\sin \theta \boldsymbol{j}$ is

$$
D_{u}\left(x_{0}, y_{0}\right)=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t \cos \theta, y_{0}+t \sin \theta\right)-f\left(x_{0}, y_{0}\right)}{t}
$$

If f is a differentiable function then $D_{u} f(x, y)=f_{x} \cos \theta+f_{y} \sin \theta$. Note that $a \cos \theta+$ $b \sin \theta$ has the greatest value (as a function of θ) when $a \boldsymbol{i}+b \boldsymbol{j}$ and $\cos \theta \boldsymbol{i}+\sin \theta \boldsymbol{j}$ are pointing in the same direction.

Problem 7 1. Find the directions in which the directional derivative of $f(x, y)=$ $x^{2}+\sin (x y)$ at the point $(1,0)$ has the value 1.
2. Find all points at which the direction of fastest change of the function $f(x, y)=$ $x^{2}+y^{2}-2 x-4 y$ is $i+j$.
3. Find the differential of $z=e^{x+y} \ln \left(y^{2}\right)$ and the linear approximation at $(2,2)$

Problem 8 Show that the following limits do not exist:
1.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x+\sin y}{2 x+y}
$$

2.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{7 x^{2} y(x-y)}{x^{4}+y^{4}}
$$

Problem 9 Show that the surfaces $z=7 x^{2}-12 x-5 y^{2}$ and $x y z^{2}=2$ intersect orthogonally at the point $(2,1,-1)$.

Problem 10 Determine the global max and min of the function $f(x, y)=x^{2}-2 x+$ $2 y^{2}-2 y+2 x y$ over the region $-1 \leq x \leq 1,0 \leq y \leq 2$.

Problem 11 1. Let $f(x, y)=\sin \left(x^{2}+y^{2}\right)+\arcsin \left(y^{2}\right)$. Calculate:

$$
\frac{\partial^{2} f}{\partial x \partial y}
$$

2. If $z=f(x, y)$, where $x=r \cos \theta, y=r \sin \theta$, show that

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial^{2} z}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} z}{\partial \theta^{2}}+\frac{1}{r} \frac{\partial^{2} z}{\partial r}
$$

Problem 12 Let \mathbf{F} be the plane vector field $x y^{2} \boldsymbol{i}+y x^{2} \boldsymbol{j}$.

1. Is \mathbf{F} a conservative vector field? Why?
2. Calculate the divergence of \mathbf{F}.

Problem 13 Determine the surface given by the parametric representation

$$
r(u, v)=u \boldsymbol{i}+u \cos (v) \boldsymbol{j}+u \sin (v) \boldsymbol{k}
$$

Problem 14 Find the equation of the tangent plane to the surface given by

$$
r(u, v)=u \boldsymbol{i}+2 v^{2} \boldsymbol{j}+\left(u^{2}+v\right) \boldsymbol{k}
$$

at the point $(2,2,3)$.

Problem 15 Find the arc length of the curve

$$
\mathbf{r}(t)=t^{2} \boldsymbol{i}+(\sin t-t \cos t) \boldsymbol{j}+(\cos t+t \sin t) \boldsymbol{k}, 0 \leq t \leq \pi .
$$

Problem 16 Let $\mathbf{F}=\left(y^{2}+x\right) \boldsymbol{i}-\left(x^{2}-y\right) \boldsymbol{j}+z \boldsymbol{k}$.

1. Find curlF.
2. Find divF.

Problem 17 1. Calculate the line integral $\int_{C} x y d s$ if C is the portion of the unit circle in the first quadrant (i.e. $x^{2}+y^{2}=1$ with $x \geq 0, y \geq 0$).
2. Let R be the region in $x y$-plane defined by $x^{2}+y^{2}>1$. Show that $\mathbf{F}=\frac{-y i+x j}{x^{2}+y^{2}}$ is a conservative vector field on R.
3. Let C be the path $\left(e^{t}, t\right), 1 \leq t \leq 2$. Evaluate the integral $\int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}$
4. Evaluate $\int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}$, where $C:=\left\{(x, y): x^{2}+y^{2}=9\right\}$.
5. Let C be boundary of a square D. Compute $\int_{C} x y^{2} d x+\left(x^{2} y+2 x\right) d y$ as a function of $\operatorname{Area}(D)$.
6. Let L be the boundary of the half-disk $\left\{(x, y) \mid x^{2}+y^{2} \leq 1, x \geq 0\right\}$. Let $\mathbf{F}_{1}=$ $(x-y) \boldsymbol{i}-\boldsymbol{j}$. Find by evaluating a line integral the outward flux of $\mathbf{F}_{1} \operatorname{across} L$
7. Let $\mathbf{F}_{2}=\left(x^{2}+y^{2}\right) \boldsymbol{i}+\left(x^{2}-y^{2}\right) \boldsymbol{j}$. Use Greens theorem to find the outward flux of \mathbf{F}_{2} across L.

Problem 18 1. If $\mathbf{F}=3 x i+2 x z \boldsymbol{j}+3 \boldsymbol{k}$, evaluate the flux of \mathbf{F} across the surface $S: z=0,0 \leq x \leq 1,0 \leq y \leq 2$ (where the normal is to be in the positive z direction).
2. Find the flux of the field $\mathbf{F}=z \boldsymbol{k}$ across the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ in the first octant (this is the $1 / 8$-th of space in which x, y and z are all ≤ 0) with normal taken in the direction away from the origin.

Problem 19 1. Compute the surface area of the graph $z=1+x^{2}+y$ over the triangular region formed by the points $(0,0),(3,0)$, and $(3,2)$.
2. Find the integral $\iint_{S} \mathbf{A} \cdot d S$ for $\mathbf{A}=x \boldsymbol{i}+z \boldsymbol{j}$ and the surface S of a sphere of radius a.

Problem 20 1. Evaluate $\iint_{B} \int\left(x^{2}+y^{2}+z^{2}\right)^{2} d x d y d z$, where B the ball with center the origin and radius 3 .
2.

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y
$$

3. Give five other iterated integrals that are equal to

$$
\int_{0}^{2} \int_{0}^{y^{3}} \int_{0}^{y^{2}} f(x, y, z) d z d x d y
$$

4. Find the volume of the solid inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the cylinder $x^{2}+y^{2}=1$.

Problem 21 Find Jacobian of

$$
x=u^{2}-\sin (u+v), y=e^{u} \cos v
$$

