MAT126 Fall 2009 Practice Midterm II

The actual midterm will consist of six problems

Problem 1 If the function g(x) is given by

$$g(x) = \int_{2x}^{x^2} t \ln t dt,$$

compute the derivative g'(x)

a) by using the Fundamental Theorem of Calculus to differentiate the integral

b) by using the Evaluation Theorem to first evaluate g(x) explicitly, and then differentiating.

Problem 2 Evaluate the following definite integral:

1. $\int_{0}^{2} x^{2} \sqrt{4 - x^{2}} dx$ 2. $\int_{1}^{e^{\pi}} \frac{\cos(\ln x) \sin^{2}(\ln x)}{x} dx$ 3. $\int_{1/\pi}^{2/\pi} \frac{\sin(1/x)}{x^{2}} dx$ **Problem 3** Evaluate the following indefinite integral using integration by parts:

 $\int \arcsin(x) dx$ $\int \sqrt{x} \ln^2(x) dx$

1.

2.

Problem 4 Evaluate

Problem 5 Decompose a rational function into partial fractions

$$\frac{x^3 - 6x}{x^2 + 4x + 4}$$

Problem 6 Evaluate the integral

$$\int_0^1 \frac{x+1}{x^2+9} dx$$

Problem 7 Can the midpoint approximation to the integral

$$\int_{1}^{2} \frac{1}{x^2}$$

with n = 100 be equal to

• $\frac{1}{7}$. • $\frac{1}{5}$

To get a full credit you need to justify your answer