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ERGODICITY OF TRANSITIVE UNIMODAL TRANSFORMATIONS OF A SEGMENT 

A. M. Blokh and M. Yu. Lyubich UDC 517.1 

I. Introduction 

We consider a piecewise-monotonic transformation f of the segment I = [0~ i] with nega- 
tive Schwarzian. This means that the function f 6 C ~ has a finite number of critical points 
outside which Sf = f"'/f' - (3/2)(f"/f') 2 < 0. The transformation f is called unimodal if it 
has a unique critical point c while this point is nondegenerate. Despite the elementary 
nature of the situation, such a transformation generates a nontrivial and interesting dy- 
namical system [i, 2]. 

The transformation f is called (topologically) transitive if it has a dense orbit {f"x}2=0 
(where fn is the n-th iteration of f) and ergodic if there does not exist a partition of 
I = X I U X 2 into two measurable invariant subsets of positive measure (invariance means that 
fX i c Xi). Here the segment I is also called transitive (respectively, ergodic). The goal 
of the present paper is the proof of the following result. 

THEOREM. A transitive unimodal transformation f:l + I with negative Schwarzian is er- 
godic. 

We note two consequences of this theorem. The first has a well-known analog in the 
theory of rational endomorphisms of the Riemann sphere (Sullivan [3]). The set X is called 
strongly wandering if fnx n fmx = # for >m~>0. 

COROLLARY i. A unimodal transformation f with regative Schwarzian has no strongly 
wandering sets X of positive measure for which all the iterations fnlx are injective. 

COROLLARY 2. A unimodal transformation of a segment with negative Schwarzian can have 
at most one absolutely continuous invariant probability measure. If such a measure exists, 
then it is ergodic. 

The basic result of the present paper was announced in [4]. 

2. Distortion Theorem for Functions with Negative Schwarzian 

We denote by ~ the Lebesgue measure on the line. A basic analytic instrument in the 
proof of the theorem is the following property of functions with negative Schwarzian. 

Distortion Theorem [4~ 5]. Let the map 9: I-~J have no critical points inside I and 
S~<0. Let the interval $ be divided into intervals $~ and $~ by the point y; let E be a 
measurable subset of $, ~ 6 (0, l). Then there exists an interval K~=[y, z~].contained in some 
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g (x) dx 
0 

Sz, I= 1,2, for which ~( -I(E N K,))>~ %(Z N ~i) 

For completeness we give a proof of the distortion theorem (different from the one pro- 
posed in [5]). It uses the famous Minimum Principle [i]. Let the map ~: ]-~J have no crit- 

ical points inside I and $9<0. Then the functio n I~'I has no local minimum points inside I. 

Proof of the Distortion Theorem. Let x = @_ly, ii and 12 be the intervals into which 
the point x divides the segment I. By the minimum principle the fucntion l~'I is monotoni- 
cally decreasing on one of these intervals, say on 11 = ~-1~i. After an affine change of co- 
ordinates one can assume that 1, = ~, = [0, l],x = y = 0. Then ~-lKn =~, ~) and the inequality 
required assumesthe form 

I 

0 0 

where XF is the characteristic function of the set F=~-IE. The following lemma completes 
the proof. 

LEMMA I. Let g be a continuous nonincreasing nonnegative function on the segment [0, i], 

= I; ~ELI[0, I] �9 Then 

sup I ] ,dx ~ ' 

0 0 

1 
Proof. Setting g~=-~X[0.~], we rewrite the inequality in the form 

, ! 

,g=a  i> S*ee  
~E(o,t) o 

Now it has become obvious since any function g of the class considered can be approximated 
uniformly by convex combinations of functions g=. 

We need some information about the topological properties of the dynamics of transfor- 
mations of a segment [6]. A continuous transformation f :[a, b]-+[a, b] is called mixing if for 
any interval ff~[a, b] and any e > 0 there exists an N such that ~ f f ~ [ a §  b--el  for n ~ N .  
Clearly in this case for no n do there exist nontrivial fn-invariant intervals. 

LEMMA 216]. Let f:I + I be a continuous transitive transformation of a segment. Then 
either f is mixing or there exists a fixed point a which divides I into two intervals I~ and 
12 such that ~: 11--~12-+I I and the transformation ~:Iz--+[z is mixing. 

Further, we return to unimodal transformations. Let us assume, to be specific, that c 
is a maximum point of the function f. It follows easily from the transitivity of f that 
f:c~l~0. Consequently, there exists a point 76 ~, I], for which f(7) = f(0) and on the 
segment [0, 7] there is defined an involution T: x w~x', where f(x') = f(x). The smoothness 
of T follows from the nondegeneracy of the critical point c. 

In what follows we shall denote by (a~ b) the interval with ends a and b without as- 

sumin~ that a < b. We also introduce the following notation: U b = (b, b'), where bC[0, 7]; 
Hn(x) is the interval of monotonicity of the function fn containing the point x; Mn(~ = fn 

LEMMA 3. Let f be a mixing unimodal transformation. Let us assume that the orbit of 
the point x enters the neighborhood U b and n is the first time for which [nx6 Ub. Then 

Proof. Let the point x divide the interval Hn(x) into intervals H~ and H~ the point c 
divide the interval U b into intervals U; and Ub. Then for any ~ = • and suitable ?6{q-l}, 

l<n we have /H~ = [c, ffx]~U~. If ~n-lc EUb, then P'z[c, fx]~Ub and all the more f"--ZUb = [n-IU~r 
U b. But the last is impossible for mixing maps. Thus~ the ends of the segment Mn(x) are 
outside the limits of the neighborhood U b which is what was needed. 

We shall call a set s~mmetric , if it is T-invariant. 

Basic Lemma. Let f:I + I be a transitive unimodal transformation of a segment. Let the 
set X c I have positive measure, be f-invariant and symmetric in a neighborhood of the criti- 
cal point c. Then c is a point of condensation of the set X. 

842 



Proof. Let us assume that the transformation f is mixing (this does not restrict the 
generality by virtue of Lemma 2). By Guckenheimer's theorem [7], co (x)9 for a.a. x6 [* (cf. 
also [4, 5]). We fix a point of condensation x" 6 X of the set X for which ~ (x) 9 c. Let 
Y = I \X. For the interval $ = (a, b) we denote by p(a, b)= @(if) = %(}z n$)/%(,~) the density of 
the set Y in $. We consider two cases: 

i. The lower density of the set Y at the point c is positive; ]im p(c--b, c+b)>0. Then 
b-.c 

by virtue of the smoothness of �9 and the symmetry of the set X we have p(Ub)~ e >0 for all 
b ~ c. One can assume that the point x has a symmetric one. Let n o = 0, nk+ I be the first 
time the trajectory " " . Uh~-Urn~x; {f x},=nk+l lands in the neighborhood x k be the point of fnkx, 

�9 (fkx), which is located to the left of c. Since U4=U(Ui~Ui+I), for some sequence kj ~ 
i----& 

one has P(Uhf~ U4i+l) ~8>0. Again using the symmetry of X and the smoothness of T we get 
X --2 P( k:, xhf+t)~i @(U4f~Ukf+l)~el>0, where L is the Lipschitz constant of the involution ~, 

e I = L-ie . Moreover, for all k one has P (x~, x~+,) ~ sin (p (x~, c), 9 (c, x~,+,)) ~ e I > 0. Thus, in each 

of the intervals into which the point xkf+t divides the interval Ukj the density of the set 
Y is not less than e I. 

We set Vk-----f--"kUh ~ Hnk (x). By Lermna 3, f nk maps V k monotonically onto U k. Applying the 
distortion theorem we get that in some half-neighborhood of the point x contained in V k the 
density of the set Y is not less than ez/2. The transitivity of f implies the absence of 
homtervals%; consequently I(V k) + 0. Thus, the set y = I \ X has positive upper density at the 
point x, despite the fact that x is a point of condensation of the set X. 

2. The lower density of the set Y at the point c is equal to 0: iim p(c--b, 
b-* r 

Arguing by contradiction, let us assume that limg(c--b, r Then by virtue of the sym- 

metry of X and the smoothness of �9 one can find sequences {ak}, {b4}, such that 

b4 6 (a41 c), a4--,, c, (1) 

o(a4, c )>~ ,  p(a'~, c )>~>O,  (Z) 

9(b k, c )<6~ ,  p ( b ; , c ) < 6  4 , 6 4 ~ 0 ,  (3)  

9 (Ua) < p (Uak), d 6 Uak~Ubk. (4)  
f ;nX'l~ ~ .  [nkX. Let n k be the first time that the orbit t /  ~,=0 lands in the neighborhood Uak, xh Replac- 

ing the points a~, b k by a~, b~, if necessary, we shall assume that xkE(a4, c). We have 

~, (Y N (c, a;,)) 1 
9 (x4, a~) ~> [ak - -  a~] ~> 1 + L 2 p (U'~k) ~> 1 + L - - - ' - x "  > O. 

In order to estimate the density of the set Y in the interval (a4, x4), we consider two cases: 

a) x~E(a4, b~] . By virtue of (4), 9(Ux~)~<9 (U%) and consequently, @((x4, a~) ~ ~(x~, ah)) ----- 

p(U%~Ux)~p(U%)~. Again using the smoothness of �9 and the symmetry of X, we find 

p (x~, aD ~> L-~. 

b) x46(b~, c). ThenJ~(Yf](a~,c))=~,(Y r](a4, b~))+X(Y [] (b4, c)) --<...[b4--a4l+6~lc--b4l. Conse- 

quently, e.~<p(a~, c) ~ I b~' - -  a~ [ e la~--cl +6 4 and hence lb4--a~l>~ Ic--a41 for sufficiently large 

k. But then 

e k ( ( a k ,  b4) fq Y) e e = 1 
p (a~,, x~) 1> -~- [ a4 - -  bu [ = ~ 9 (a4, bk) ~> 2 L z 

[the last inequality follows from (4)]. 

Thus, in each of the cases a) and b), the densities @ (a~, x~) and P (x~, a~) are separated 
from zero. Now using Lemma 3 and the distortion theorem as in case I we get that the upper 
density of the set Y at the point x is positive. The contradiction proves the basic lemma. 

*~(x) denotes the limit set of the orbit {f"x,,=0. ~ 

+By a homterval we mean an interval ~,on which all the iterations t=l~ are injective. 
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Proof of Theorem. The assertion required follows immediately from the basic lemma since 
if I = X I U X 2 is a division of the segment into two f-invariant sets, then these sets are 
symmetric: ~X~UX k=f-'(fXk) =Xk. 

Proof of Corollary i. Let Y be a strongly wandering set of positive measure on which all 
the iterates fn are injective. Dividing Y into two subsets of positive measure YI and Y2 we 
construct a partition of the whole segment into two invariant subsets of positive measure 

XI 0 " = f Y1, X~ = f~X,. Contradiction. 

In order to prove Corollary 2, we use the topological picture of the dynamics of contin- 
uous transformations of a segment [6]. CQmbining it with Guckenheimer's theorem on the ab- 
sence of homtervals [7] and the results of [4, 5], we get the following assertion. 

THEOREM A. Let f:I + I be a unimodal transformation with negative Schwarzian; f:c + 
1 + 0. Then there exists a compact set A c I such that m(x) = A for a.a. x6 / .* In addition 
one of the following conditions holds: 

a) A is an attracting cycle or a neutral periodic point; 

b) A is contained in a cycle of a transitive segment; 

c) A is a solenoid (i.e., a Cantor set on which f is topologically conjugate to a tran- 
sitive translation with respect to a group). 

Proof of Corollary 2. It is clear that the support of any absolutely continuous in- 
variant measure is contained in A. Consequently, in case a) such a measure does not exist, 
in case c) if it exists then it necessarily coincides with the unique invariant measure of 
the transformation flA. Finely, in case b) what is required follows from the theorem proved. 
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