1.4.2

(a)
$$\begin{bmatrix} 2 & -2 & -3 & 0 & & -2 \\ 3 & -3 & -2 & 5 & & 7 \\ 1 & -1 & -2 & -1 & & -3 \end{bmatrix} \xrightarrow{Y_1 \Leftrightarrow Y_3} \begin{bmatrix} 1 & -1 & -2 & -1 & | & -3 \\ 3 & -3 & -2 & 5 & | & 7 \\ 2 & -2 & -3 & 0 & | & -2 \end{bmatrix}$$

(a.
$$\frac{x_1+2x_3}{1}$$
 = $\frac{x_1-x_2+3x_4=5}{1}$ | i.e. $\begin{cases} x_1-x_2+3x_4=5\\ x_3+2x_4=4 \end{cases}$

Put x2=S, x4=t, then we have

$$x_1 = 5 + s - 8t$$
, $x_2 = s$, $x_5 = 4 - 2t$, $x_4 = t$.

(b)
$$x_1 = -2$$
 , $x_2 = -4$, $x_3 = -3$

(c) No solution

(d) No solution
$$x_1 = -8t - 16$$
, $x_2 = 3t + 9$, $x_3 = t$, $x_4 = 2$

(e) Absolution
$$x_1 = 10r - 35 - 4$$
, $x_2 = -3r + 25 + 3$, $x_3 = r$, $x_4 = s$, $x_5 = s$.

1.4.4

(a)
$$x^3-3x+5 = a(x^3+2x^2-x+1) + b(x^3+3x^2-1)$$

$$\begin{cases}
1 = a + b \\
0 = 2a + 3b
\end{cases}$$

$$\begin{vmatrix}
-3 = -a \\
5 = a - b
\end{vmatrix}$$

$$\begin{cases}
a = 3 \\
b = -2
\end{cases}$$

(b)
$$N_0$$
 (c). $\begin{cases} a = 4 \\ b = -3 \end{cases}$ (d) $\begin{cases} a = -2 \\ b = 4 \end{cases}$ (e) N_0

(f) No.

1.4.5. (Similar argument to 1.4.4)

(a) Yes (b) No (c) No (d) Yes.

(e) Yes (f) No. (g) Yes (h) No

1.4.7. For any $x = (a_1, ..., a_n) \in F^n$ $x = a_1e_1 + ... + a_ne_n \in Span \{e_1, ..., e_n\}$ So $F^n \subseteq Span \{e_1, ..., e_n\}$ So $F^n = Span \{e_1, ..., e_n\}$

1.4.12 "if" powt: (a) $0 \in Span W = W$ (b) If $x, y \in W$, then $y \in Span W = W$ (c) If $c \in \mathbb{R}^{2}$, $x \in W$, $ex + hen cx \in Span W = W$ So, by Thm 1.2, W is a subspace.

"only if" point: clearly $W \subseteq Span W$.

Let $x \in Span W$, then x is of form $x = a_1 w_1 + \cdots + a_k w_k$ where $a_i \in F$ and $w_i \in W$.

But since W is a subspace, by exercise 1.3.20, $x \in W$.

So $Span W \subseteq W$

- 1.4.15.(1) $S_1 \cap S_2 \subseteq S_1$ implies $Span(S_1 \cap S_2) \subseteq Span(S_1)$ $Similarly Span(S_1 \cap S_2) \subseteq Span(S_2)$ $So Span(S_1 \cap S_2) \subseteq Span(S_1) \cap Span(S_2)$.
 - (2) $_{0}$ Let $v \neq w$ are two vectors in V.

 Put $S_{1} = \{v, v + w\}$ $S_{2} = \{-v + w, w\}$, \bullet Then Span $S_{1} = Span\{v, w\}$, $Span S_{2} = Span\{v, w\}$ But $S_{1} \cap S_{2} = \emptyset$.
 - @ Put S1 = {v, w}, S2 = {w}.

1.4.16. Suppose $x \in S$ has two different ways to write as a linear combination of vectors of S.

Say x = \$ a1 21+ 1 an 2n - b12, + + bm wm

= 0, vi+... + 0, vk + C, wi+... + Cm wm

where $v_1 - v_R \cdot u_1 - u_R \cdot u_1 - u_R$ are distinct vectors in S. and $a_i, b_i c_i$, $a_i' \in F$.

Then $(a_1-a_1') v_1 + \cdots + (a_k-a_k') v_k + b_1 v_1 + \cdots + b_k v_1 + (-c_1) v_1 + \cdots + (-c_m) v_m = 0$ By the condition, $a_1-a_1' = \cdots = a_k-a_k' = 0$ $b_1' = c_1' = 0$

MAT 310 HW 3

Section 1.5

Exercise 1

- a) False, possibly just one.
- b) True, since {0} is already linearly dependent.
- c) False, by definition.
- d) False. For example, $\{e_1, e_2\} \subset \{e_1, e_2, e_1 + e_2\} \subset \mathbb{R}^2$.
- e) True, by Corollary to Theorem 1.6.
- f) True, by definition.

Exercise 6

Consider a linear combination of the given matrices

$$\sum_{i=1,\dots,m} \sum_{j=1,\dots,n} a_{ij} E^{ij}$$

for some scalars $a_{ij} \in F$, and assume that it equals zero. Since, for fixed i and j, the (h,k)-entry of $a_{ij}E^{ij}$ is:

$$(a_{ij}E^{ij})_{hk} = \begin{cases} a_{ij} & \text{if } h = i, \ j = k \\ 0 & \text{otherwise} \end{cases}$$
 (1)

it is clear that the linear combination above equals a matrix whose (i, j)-entry is a_{ij} :

$$\sum_{i=1,\dots,m} \sum_{j=1,\dots,n} a_{ij} E^{ij} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}.$$

Since such matrix equals the zero matrix, necessarily $a_{ij} = 0$ for all i = 1, ..., m and j = 1, ..., n. Therefore the given set of matrices is linearly independent.

Exercise 15

If $u_1 = 0$ or $u_{k+1} \in \text{span}\{u_1, ..., u_k\}$ for some k = 1, ..., n-1, then 0 has a nontrivial representation as linear combination of vectors of S, i.e. S is linearly dependent.

Conversely, assume S is linearly dependent. If $u_i=0$ for some index i=1,..,n (which after renumbering can be assumed to be 1), then there is nothing to prove. Therefore we can assume that $u_i\neq 0$ for all i=1,...,n. By hypothesis, there is a linear combination $a_1u_1+...+a_nu_n=0$ for some $a_1,...,a_n\in F$ not all zero. Let k+1 be the biggest index such that $a_{k+1}\neq 0$. Then we have $a_1u_1+...+a_{k+1}u_{k+1}=0$ and we can rewrite it as

$$u_{k+1} = -\frac{1}{a_{k+1}}(a_1u_1 + \dots + a_ku_k).$$

I.e., $u_{k+1} \in \text{span}\{u_1, ..., u_k\}$.

Exercise 16

Assume that S is linearly independent, and that S_1 is a (finite) subset of S. Then, by Corollary to Theorem 1.6, S_1 is linearly independent.

Assume that **every finite** subset of S is linearly independent. Now consider any linear combination of vectors of S that equals zero, i.e. a **finite** sum

$$\sum_{i=1,\dots,n} a_i v_i$$

for some $v_i \in S$ and $a_i \in F$. Consider the (finite) subset $S_1 := \{v_1, ..., v_n\}$ of S. By hypothesis, S_1 is linearly independent. Therefore, since

$$\sum_{i=1,\dots,n} a_i v_i = 0,$$

necessarily $a_i = 0$ for all i = 1, ..., n. This proves that S is linearly independent.

Exercise 18

Assume by contradiction that S is linearly dependent. This means that we can find a nontrivial linear combination of polynomials in S that is equal to zero:

$$\sum_{k=1}^{n} a_k p_k(x) = 0,$$

with $a_k \in F$ and $p_k(x)$ polynomial of degree m_k . We can assume that the coefficients of such linear combination are all nonzero. Because of the hypothesis on S, the degrees $m_1, ..., m_n$ are all distinct. Thus we can also assume, up to renumbering, that $m_1 < m_2 < ... < m_n$. Therefore $\sum_{k=1}^n a_k p_k(x)$ is a polynomial of degree m_n , and the leading coefficient is $a_n x^n$.

If the linear combiation is zero, by the identity principle for polynomials we must have in particular that $a_n = 0$, a contradiction. Therefore S is linearly independent.