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Section 1.2
Exercise 1

a) True, by definition.

b) False, by Corollary 1.

c) False. If z = 0, then ax = bz for all a,b € F.

d) False. If a = 0, then az = ay for all vectors x and y.
ay
a

e) True. Vectors in F™ can be written as column vectors ,2 which can be regarded as
n

matrices with n rows and 1 column.

f) False.

g) False.

h) False. For example, f = z? + x and g = —2? are polynomials of degree 2, but f + ¢ = z
is a polynomial of degree 1.

i) True. If f = a,z™+ lower order terms, a, # 0, and c is a nonzero scalar, then cf = ca,2"+
lower order terms, and ca, # 0. Therefore cf is a polynomial of degree n.

j) True.

k) True, by definition.

Exercise 4
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e) 2zt + 2% + 222 — 22+ 10
f) —23 + 722 + 4

g) 10z” — 30z* + 4022 — 15z
h) 32° — 62% + 122 4+ 6

Exercise 9

Proof of Corollary 1: Assume that there are two vectors 04 and 0p, with the property that
z+0sp=zandz+0g=zforallz€eV. Fixany z € V Then we have £ + 04 = = + 0p.
Therefore, by the Cancellation Law for vectors, 04 = 0p.

Proof of Corollary 2: Assume that, for some 2 € V fixed, there are two vectors y; and y»
with the property that 2 +y; = 0 and z + yo = 0. Then z + y, = = + y» and, by the
Cancellation Law for vectors, y; = 1.

Proof of Theorem 1.2c): Fix any a € F. Thena-0=a-(0+0)=a-0+a-0 (by VS 3 and
VS 7). Thus, by the Cancellation Law for vectors, 0 = a - 0.

Exercise 18

V is NOT a vector space. To show this, it is enough to check that one of the axioms VS
1,...,VS 8 fails. For example, + is not commutative. In fact:

(1,2) + (3,0) = (7,2) # (5,6) = (3,0) + (1, 2).

Exercise 21

We need to check the eight properties of addition and scalar multiplication. In what follows,
(v1,wy), (v2, w2), (v3, w3) are any elements of Z, and a, b are any elements of the field F.

VS 1: (vy,wr) + (v2, w2) = (v1 + va, w1 + wy) which e(iuals (by commutativity of addition in
V and W) (v2 + vy, wa + wy) = (v, wa) + (vy,wy).

V8 2: ((v1, wr) + (v2, wa)) + (vs, w3) = (vi +v2, w1 +w2) + (v, ws) = ((v1+v2)+vs, (w1 +wz)+
ws) which equals (by associativity of addition in V and W) (v; + (va + v3), w; + (wa +w3)) =
(v1, w1) + ((v2, w2) + (v3, w3)). '

VS 3: Let us denote by 0y and Oy the zero vectos of V and W respectively. Then (Ov, Ow)
is the zero vector for Z. Namely: (Ov,Ow) + (vi,w1) = (Oy + vy, 0w + wy) = (v1, wy).

VS 4: Since V and W are vector spaces, given v; € V,w; € W, there exist additive inverses
—v; € V,—w; € W. Then (—v;, —w;) is the additive inverse of (v, w;). Namely: (vi,w;) +
(v, —w1) = (v; — vy, wy — wi) = (0,0).

VS 5: 1 (vy,w1) = (1-v1,1-w;) = (v, w;) since 1 is the unit scalar for V and W.



VS 6: (ab)(v1,w1) = ((ab)vy, (ab)wy) = (a(bv), a(bwi)) = a(bvy, bw;) = a(b(vy, w;)).

VS 7: a((v1, w1) + (va, wo))

= a(v1+ v, w1 +w2) = (a(vi+v2), a(wi +wz)) = (av1 +avs, aw; +
aw?) = CL(’Ul, wl) + a('UQ, ’LUQ).

VS 8: (a+b)(vi,w1) = ((a+b)vy, (a+ b)w;) = (avy + bvy, aw; +bwy) = a(vy, wy) + b(vy, wy).
Section 1.3

Exercise 6

First note that the element in the i—th row and j—th column of aA + bB is (aA + bB);; =
aA;; + bB;j, just by definition of sum of matrices and scalar product. Therefore, we have
that

tr(aA+ bB) = (aA+bB)11 + (aA+bB)yg + ... + (aA + bB)p, =
= (G,All + bBu) + (CLA22 + bB'zz) + ...+ (aA,m + an") =
=a-(An+An+ ..+ Am) +b- (Bi1+ By + ...+ By,) = a-tr(A) + b - tr(B).

Exercise 9

W1 n W3 = {(al,ag,ag) € R3 Lap = 3a2, a3z = —ag, >2a1 - 70,2 + a3z = 0} =
= {(0,1,(12,(13) S R3 La = 3&2, asz = —ag, 2(30,2) - 761.2 + (—02) = 0} =
= {(al,ag,a3) € R : a1 = 3as, a3 = —ay, —2a9 = 0} = {(0, 0,0)}

is the zero vector space, so it is clearly a vector space.

Winw, = {(al,ag,ag) €R®: a; = 3ag, a3 = —ag, a; — 4ay — as = 0} =
= {(al,ag,ag) € R3 Lap = 3(12, az = —ag, 3(12 - 4a2 - (—0,2) = 0} =
= {(a1,a2,a3) € R® : a; =3ay, a3 = —ay} = W,
is W) itself (this means that Wy C Wy). W, is a vector space. Namely:
1) (0,0,0) € W, since it satisfies the equations a; = 3a,, a3 = —as.
2) Note that Wy = {(3t,t,—t) € R® : t € R}. Thus, given two vectors (3t,t, —t), (3s,s, —s) €

W, for some t,s € R, their sum is (3(t + s),t + s, —(t + s)) with ¢t + s € R, and therefore
belongs to Wj.

3) Given a vector (3t,t,—t) € W, for some t € R and a scalar ¢ € R, ¢(3t,t,—t) =
(3(tc), te, —(tc)) with tc € R, and therefore belongs to W;.

W30W4={(a1,a2,a3)€R3 : 2a1—7a2+a3:O, a3:a,1—4a2}=

3



= {(al,a2,a3) (S R3 : 20;1 d 7(12 + a; — 4a2 — O} —
= {(alaa2aa3) S R3 : 3(11 - 11(1.2 = 0}.

W3 N Wy is a vector space. Namely:

1) The zero vector belongs to W5 N Wy since it satisfies the equation 3a; — 1las = 0.

2) If (a1, az,as), (b1, by, b3) € WaNWy, then 3a; — 11ay = 0 and 3b; — 116, = 0. Therefore the
sum vector belongs to W3 N Wy, since the equation 3(a; + b;) — 11(ag + by) = 0 is satisfied.
3) If (a1,a2,a3) € W3 N Wy, then 3a; — 1la, = 0. Say that ¢ € R is a scalar. Then
(a1, a2, a3) € W3 N Wy since the equation 3(ca;) — 11(cay) = 0 is satisfied.

Exercise 10

To prove both that W is a subspace and Wj is not, we can use Theorem 1.3. Consider W;
first.

The zero vector of F™ is (0, ...,0). Since 0+ ... + 0 = 0, the zero vector belongs to Wj.
Now say that (a1, ...,an), (b1, ...,bn) € Wi. Then (ay, ..., an)+ (b1, ..., bp) = (a1 +by, ..., an+by).
Since (a1 + b1) + ... + (ap + by) = (@1 + ... + a5) + (by + ...b,) = 04+ 0 = 0, the sum vector
(a1 + by, ..., an + by,) belongs to W;.

Finally, say ¢ € F' and (a4, ...,a,) € Wi. Then c(ay,...,a,) = (cay, ..., ca,) also belongs to
W) since ca; + ... + can = c(ay + ... + an) = c0 = 0.

Therefore, by Theorem 1.3, W, is a subspace of F".

Now consider W,. The zero vector of F™ does not belong to W, since the sum of its entries
is 0+ ... + 0 = 0 # 1. Therefore, by Theorem 1.3, W is not a subspace of F™.

Exercise 12

Once again, we can solve the problem using Theorem 1.3.

The zero matrix O is upper triangular, since O;; = 0 for all i, j.

Say that matrices A and B are upper triangular, so that Aij = 0 = B;; for i > j. Then
(A+ B);j = Ajj + B;j; =0+ 0 =0 for i > j, which means that A + B is upper triangular.
Say finally that c € F' and A is an upper triangular matrix, so that A;; = 0 for i > j. Then
(cA)ij = aA;j =c-0=0 for i > j, which means that cA is upper triangular.

Thus upper triangular matrices form a subspace of M,,x.(F).

Exercise 20

Given vectors wy,...,w, € W and scalars ay,...,a, € F, we know that a,w; € W for all
t=1,...,n by Theorem 1.3c. By Theorem 1.3b, we also know that the sum of any two vectors
of W still belongs to W. Therefore, a;w; +aow, € W. This implies that a;w; +asws+azws =
(@1wy +asws) +asws € W. Iterating this process, we have that ajwy + ...+ ap—1We—1 + arwi =
(@rwy + ... + ag—1wg—1) + agpwy € W for every k=1, ..., n.



