Symplectic homology

August 3, 2009

Symplectic homology

・ロン ・回 と ・ ヨン ・ ヨン

æ

Outline

Liouville domains Symplectic homology definition A Calculation Applications

Liouville domains

Symplectic homology definition

A Calculation

Applications

Symplectic homology

<ロ> <部> <部> <き> <き> <

æ

Liouville domain

A Liouville domain is a compact symplectic manifold (M, ω) with boundary and a vector field X satisfying:

$$\blacktriangleright \mathcal{L}_X \omega = \omega$$

• X is transverse to ∂M and pointing outwards.

We can define a 1-form θ by $\theta(\cdot) = \omega(X, \cdot)$. This is called the *Liouville form*.

We can create X and ω using the 1-form θ . We have that $\omega = d\theta$ and X is defined uniquely by $\theta(\cdot) = \omega(X, \cdot)$.

イロン イヨン イヨン イヨン

Examples of Liouville domains

- ► Take \mathbb{C}^n with the standard symplectic form $\sum_j dx_j \wedge dy_j$ where $z_j = x_j + iy_j$ are the standard complex coordinates for \mathbb{C}^n . Choose $X = \sum_j r_j \frac{\partial}{\partial r_j}$. Here (r_j, θ_j) are polar coordinates for z_j .
- More generally let C be any properly embedded complex submanifold of Cⁿ. We define a 1-form θ := ∑ r_j² dθ_j. Let B be a ball of radius R > 0 intersecting C transversally. Then B ∩ C is a Liouville domain with Liouville form θ|_{B∩C}. This is called a *Stein domain*.

イロン イヨン イヨン イヨン

Problems concerning Liouville domains

Does M contain exact Lagrangians? (i.e. Submanifolds L of dimension ¹/₂dim(M) such that θ|_L is an exact 1-form).

A (1) > (1) > (1)

Problems concerning Liouville domains

- Does M contain exact Lagrangians? (i.e. Submanifolds L of dimension ¹/₂dim(M) such that θ|_L is an exact 1-form).
- If so, what are they?

Problems concerning Liouville domains

- Does M contain exact Lagrangians? (i.e. Submanifolds L of dimension ¹/₂dim(M) such that θ|_L is an exact 1-form).
- If so, what are they?
- (Weinstein conjecture) The boundary of M is a contact manifold with contact form $\alpha := \theta|_M$. Does it have Reeb orbits? (i.e. are there maps $\psi : S^1 \to \partial M$ satisfying $\frac{d\psi}{dt} = R$ where R is a vector field satisfying $\alpha(R, Y) = 0$ for all vectors Y and $\alpha(R) = 1$).

・回 ・ ・ ヨ ・ ・ ヨ ・

Problems concerning Liouville domains

- Does M contain exact Lagrangians? (i.e. Submanifolds L of dimension ¹/₂dim(M) such that θ|_L is an exact 1-form).
- If so, what are they?
- (Weinstein conjecture) The boundary of M is a contact manifold with contact form $\alpha := \theta|_M$. Does it have Reeb orbits? (i.e. are there maps $\psi : S^1 \to \partial M$ satisfying $\frac{d\psi}{dt} = R$ where R is a vector field satisfying $\alpha(R, Y) = 0$ for all vectors Y and $\alpha(R) = 1$).
- ▶ We can complete M to form \widehat{M} by attaching a cylindrical end $[1,\infty) \times \partial M$ along ∂M and extending θ by $r\alpha$ where r is the coordinate for $[1,\infty)$.

Is there another Liouville domain N such that \widehat{N} is diffeomorphic to \widehat{M} but not symplectomorphic to \widehat{M} ?

Attaching a cylindrical end

Liouville domain ${\cal M}$

/

Symplectic homology

▲ロ > ▲圖 > ▲ 圖 > ▲ 圖 >

æ

Attaching a cylindrical end

▲ □ → ▲ 三

-

Symplectic homology definition

- We start with the completion \widehat{M} of the Liouville domain M.
- ► Technical assumtion: If we have a Reeb orbit ψ : S¹ → ∂M then its length is the integral of ψ^{*}α over S¹. We assume that the set of Reeb orbit lengths in ℝ is discrete.
- ▶ Let $H : \widehat{M} \to \mathbb{R}$ be a Hamiltonian such that H = kr near infinity. We say H is an *admissible Hamiltonian*.
- ▶ We can choose k so that H has no periodic orbits near infinity.
- Let J : TM → TM be an almost complex structure compatible with ω. (i.e. J² = −1, ω(·, J·) is a Riemmanian metric and ω(JX, JY) = ω(X, Y)).
- J is cylindrical at infinity.
- $c_1(M) = 0.$

We will first define $SH_*(M, H, J)$

(日) (同) (E) (E) (E)

- ► We will be dealing for simplicity with coefficients in Z/2Z. But we can have coefficients over Z.
- Let C be the Z/2Z vector space generated by 1-periodic orbis of H.
- ► Each orbit has an index associated to it called the Conley-Zehnder index. This makes C into a graded vector space ⊕ C_k.

Conley-Zehnder index

Basic idea: Let $\psi : S^1 \to M$ be a 1-periodic orbit.

- Trivialize the symplectic bundle $\psi^* TM \cong S^1 \times Sp(2n)$.
- The derivative of the Hamiltonian flow φ^t_H of H induces a path of symplectic matrices P : [0,1] → Sp(2n) under this trivialization.
- There is a recipe for assigning an index to a path of symplectic matrices. This is the Conley-Zehnder index. (See work by Robbin and Salamon for a good recipe)

イロト イヨト イヨト イヨト

the differential

 $\begin{array}{l} \partial: C_k \to C_{k-1}.\\ \text{For an orbit } x \text{ of index } k \text{ we define}\\ \partial(x) := \sum_{\text{orbits } y \text{ of index } k-1} \sharp(\mathcal{M}(x,y)/\mathbb{R})y. \end{array}$

What is $\mathcal{M}(x, y)$? It is the set of maps $u : \mathbb{R} \times S^1 \to M$ satisfying

∂_su + J∂_tu = ∇H, where (s, t) are the coordinates for ℝ×S¹.
(the gradient is taken with respect to the metric ω(·, J·).

•
$$u(s,t) \rightarrow x(t)$$
 as $s \rightarrow -\infty$.

•
$$u(s,t) \rightarrow y(t)$$
 as $s \rightarrow \infty$.

• The \mathbb{R} action is translation in the *s* direction.

→ 同 → → 目 → → 目 →

It turns out that $\mathcal{M}(x, y)$ is a manifold of dimension index(x) - index(y) - 1 and can be compactified to a manifold with corners.

In our case, $\mathcal{M}(x, y)$ has dimension 0 and is a compact manifold. We set $\sharp(\mathcal{M}(x, y))$ to be the number of points of $\mathcal{M}(x, y)$.

(ロ) (同) (目) (目)

æ

Defining $SH_*(M)$

If $H_1 \leq H_2$ are admissible Hamiltonians, the there is a natural map

 $SH_*(M, H_1, J_1) \rightarrow SH_*(M, H_2, J_2).$

On the chain level, first choose a non-decreasing family of admissible Hamiltonians $(H_s)_{s \in \mathbb{R}}$ joining H_1 and H_2 . Similarly join J_1 and J_2 with a family J_s .

If x is an orbit of H_1 , then our chain level map ϕ is of the form

$$\phi(x) := \sum_{\text{orbits } y \text{ of } H_2 \text{ of index } k} \sharp(\mathcal{M}(x, y))y.$$

Here $\mathcal{M}(x, y)$ counts solutions of

$$\partial_{s}u + J_{s}\partial_{t}u = \nabla_{\omega(\cdot,J_{s}\cdot)}H_{s}.$$

Symplectic homology

→ 御 → → 注 → → 注 注

$$SH_*(M) := \varinjlim_{\text{admissible H}} SH_*(M, H, J).$$

- ▶ The direct limit is taken with respect to the ordering ≤.
- ▶ Note that all we need to do is to consider a family *H*₁, *H*₂, · · · of Hamiltonians tending to infinity.

$$SH_*(M) := \varinjlim_i SH_*(M, H_i, J).$$

In fact we just need H₁ ≤ H₂ · · · such that the slope of H_i tends to infinity. This is because the continuation map SH_{*}(M, H, J) → SH_{*}(M, H + const, J) is an isomorphism.

イロト イヨト イヨト イヨト

Properties of $SH_*(M)$:

- It is an invariant of *M* up to symplectomorphism if *H*¹(*M*) = 0.
- There is a natural map $H^{-*}(M) \to SH_*(M)$.
- If N is a codim 0 submanifold of M such that θ|_N is a Liouville form for N, then there is a map SH_{*}(M) → SH_{*}(N).
- ► The unit disk bundle D*L of a Riemannian manifold L is a Liouville domain. We have SH_{*}(D*L) = H_{*}(ΩL).
- It satisfies a Künneth formula: SH_∗(M × N) = SH_∗(M) ⊗ SH_∗(N).

・日・ ・ ヨ・ ・ ヨ・

A Calculation

We will deal with $M = \mathbb{D}$ (the unit disk in \mathbb{C}), with $\theta := \rho^2 d\theta$ where (ρ, θ) are polar coords. We have $\widehat{M} = \mathbb{C}$.

 $\omega = dx \wedge dy.$

An admissible Hamiltonian H of slope c has the form $c\rho^2$ near infinity.

Choose the cofinal family $H_k := (k\pi - 1)\rho^2$.

There is only 1 periodic orbit of H_k at 0,

This means the rank of $SH_*(\mathbb{D})$ is at most 1.

It turns out that the Conley-Zehnder index of this critical point is 2k + 1.

This means the natural transfer map

 $SH_*(\mathbb{D}, H_k, J) \to SH_*(\mathbb{D}, H_{k+1}, J)$ is zero because it preserves the grading.

Symplectic homology

An application

We will show that a Liouville domain of the form $N := \mathbb{D} \times M$ contains no exact Lagrangians.

Suppose for a contradiction that it does contain *L*. Then a neighbourhood of *L* is a Lioville subdomain equal to D^*L . We have

$$SH_*(D^*L) = H_*(\Omega L).$$

and a commutative diagram:

・ 同 ト ・ ヨ ト ・ ヨ ト

An application

The map *d* corresponds to the map $H^{n-*}(L) \cong H_*(L) \to H_*(\Omega L)$. Hence in degree 0, we have $c \circ d \neq 0$. Which implies that $a \circ b \neq 0$. Hence $SH_*(N) \neq 0$. But $SH_*(\mathbb{D}) = 0$ and the Künneth formula implies

$$SH_*(N) = SH_*(\mathbb{D} \times M) = 0.$$

Contradiction.

<ロ> (四) (四) (三) (三) (三)