Computing Symplectic Homology of Affine Varieties (using Spectral Sequences)

Related Projects (in progress)

- Diogo-Lisi
- Ganatra, Pomerleano
- Sheridan, Borman
- Hülya Argüz
- Joint work with Tehrani, Zinger.

Disclaimer: only one of the spectral sequences in this presentation has been constructed in detail (the second one). The details of the first one have not been worked out fully yet.

An Introduction to Spectral Sequences.

- "The words 'spectral sequence' strike fear into the hearts of many hardened mathematicians. These notes will attempt to demonstrate that spectral sequences are not so scary, and also very powerful." - M. Hutchings

An Introduction to Spectral Sequences.

- "The words 'spectral sequence' strike fear into the hearts of many hardened mathematicians. These notes will attempt to demonstrate that spectral sequences are not so scary, and also very powerful." - M. Hutchings
- "The machinery of spectral sequences, stemming from the algebraic work of Lyndon and Koszul, seemed complicated and obscure to many topologists. Nevertheless, it was successful..." - G. W. Whitehead.

An Introduction to Spectral Sequences.

- "The words 'spectral sequence' strike fear into the hearts of many hardened mathematicians. These notes will attempt to demonstrate that spectral sequences are not so scary, and also very powerful." - M. Hutchings
- "The machinery of spectral sequences, stemming from the algebraic work of Lyndon and Koszul, seemed complicated and obscure to many topologists. Nevertheless, it was successful..." - G. W. Whitehead.
- "A spectral sequence is an algebraic object, like an exact sequence, but more complicated" - J. F. Adams.
- "After my article was published, John Harper sent me email and said that when he was a graduate student back in the 1960s, he personally asked Leray about the term 'spectral' and in particular asked whether it had something to do with the spectrum of an operator. Leray began his reply by saying, "Non"; unfortunately, before he could continue, some professors approached and interrupted the conversation." -Source: Timothy Chow/ Mathoverflow.net
- We will talk about homological spectral sequences since the workshop is on symplectic homology.

A spectral sequence is a sequence of bigraded chain complexes. This is page 0 .

$E_{-1,2}^{0}$	$E_{0,2}^{0}$	$E_{1,2}^{0}$	$E_{2,2}^{0}$	$E_{3,2}^{0}$	$E_{4,2}^{0}$	$E_{5,2}^{0}$
$E_{-1,1}^{0}$	$E_{0,1}^{0}$	$E_{1,1}^{0}$	$E_{2,1}^{0}$	$E_{3,1}^{0}$	$E_{4,1}^{0}$	$E_{5,1}^{0}$
$E_{-1,0}^{0}$	E_{0}^{0}	$E_{1,0}^{0}$	$E_{2,0}^{0}$	$E_{3,0}^{0}$	$E_{4,0}^{0}$	$-E_{5,0}^{0}$
$E_{-1,-1}^{0}$	$E_{0,-1}^{0}$	$E_{1,-1}^{0}$	$E_{2,-1}^{0}$	$E_{3,-1}^{0}$	$E_{4,-1}^{0}$	$E_{5,-1}^{0}$

A spectral sequence is a sequence of bigraded chain complexes. This is page 1 .

$E_{-1,2}^{1}$	$E_{0,2}^{1}$	$E_{1,2}^{1}$	$E_{2,2}^{1}$	$E_{3,2}^{1}$	$E_{4,2}^{1}$	$E_{5,2}^{1}$
$E_{-1,1}^{1}$	$E_{0,1}^{1}$	$E_{1,1}^{1}$	$E_{2,1}^{1}$	$E_{3,1}^{1}$	$E_{4,1}^{1}$	$E_{5,1}^{1}$
$E_{-1,0}^{1}$	$E_{0,0}^{1}$	$E_{1,0}^{1}$	$E_{2,0}^{1}$	$E_{3,0}^{1}$	$E_{4,0}^{1}$	- $E_{5,0}^{1}$
$E_{-1,-1}^{1}$	$E_{0,-1}^{1}$	$E_{1,-1}^{1}$	$E_{2,-1}^{1}$	$E_{3,-1}^{1}$	$E_{4,-1}^{1}$	$E_{5,-1}^{1}$

A spectral sequence is a sequence of bigraded chain complexes. This is page 2.

$E_{-1,2}^{2}$	$E_{0,2}^{2}$	$E_{1,2}^{2}$	$E_{2,2}^{2}$	$E_{3,2}^{2}$	$E_{4,2}^{2}$	$E_{5,2}^{2}$
$E_{-1,1}^{2}$	$E_{0,1}^{2}$	$E_{1,1}^{2}$	$E_{2,1}^{2}$	$E_{3,1}^{2}$	$E_{4,1}^{2}$	$E_{5,1}^{2}$
$\cdot E_{-1,0}^{2}$,0	$E_{1,0}^{2}$	$E_{2,0}^{2}$	$E_{3,0}^{2}$	$E_{4,0}^{2}$	$E_{5,0}^{2} \rightarrow$
$E_{-1,-1}^{2}$	$E_{0,-1}^{2}$	$E_{1,-1}^{2}$	$E_{2,-1}^{2}$	$E_{3,-1}^{2}$	$E_{4,-1}^{2}$	$E_{5,-1}^{2}$

A spectral sequence is a sequence of bigraded chain complexes. This is page 3.

$E_{-1,2}^{3}$	$E_{0,2}^{3}$	$E_{1,2}^{3}$	$E_{2,2}^{3}$	$E_{3,2}^{3}$	$E_{4,2}^{3}$	$E_{5,2}^{3}$
$E_{-1,1}^{3}$	$E_{0,1}^{3}$	$E_{1,1}^{3}$	$E_{2,1}^{3}$	$E_{3,1}^{3}$	$E_{4,1}^{3}$	$E_{5,1}^{3}$
. $E_{-1,0}^{3}$	$E_{0,0}^{3}$	$E_{1,0}^{3}$	$E_{2,0}^{3}$	$E_{3,0}^{3}$	$E_{4,0}^{3}$	$E_{5,0}^{3} \rightarrow$
$E_{-1,-1}^{3}$	$E_{0,-1}^{3}$	$E_{1,-1}^{3}$	$E_{2,-1}^{3}$	$E_{3,-1}^{3}$	$E_{4,-1}^{3}$	$E_{5,-1}^{3}$

The total degree is the sum of the degrees. Diagonal lines have been drawn to highlight groups of the same total degree.

$E_{0,4}^{\uparrow}$	$E_{1,4}^{0}$	$E_{2,4}^{0}$	$E_{3,4}^{0}$	$E_{4,4}^{0}$	$E_{5,4}^{0}$	$E_{6,4}^{0}$
$E_{0,3}^{0}$	$E_{1,3}^{0}$	$E_{2,3}^{0}$	$E_{3,3}^{0}$	$E_{4,3}^{0}$	$E_{5,3}^{0}$	$E_{6,3}^{0}$
$E_{0,2}^{0}$	$E_{1,2}^{0}$	$E_{2,2}^{0}$	$E_{3,2}^{0}$	$E_{4,2}^{0}$	$E_{5,2}^{0}$	$E_{6,2}^{0}$
$E_{0,1}^{0}$	$E_{1,1}^{0}$	$E_{2,1}^{0}$	$E_{3,1}^{0}$	$E_{4,1}^{0}$	$E_{5,1}^{0}$	$E_{6,1}^{0}$
$E_{0,0}^{0}$	$E_{1,0}^{0}$	$E_{2,0}^{0}$	$E_{3,0}^{0}$	$E_{4,0}^{0}$	$E_{5,0}^{0}$	$E_{6,0 \rightarrow}^{0}$

The total degree is the sum of the degrees. Diagonal lines have been drawn to highlight groups of the same total degree.

$E_{0,4}^{\uparrow}$	$E_{1,4}^{1}$	$E_{2,4}^{1}$	$E_{3,4}^{1}$	$E_{4,4}^{1}$	$E_{5,4}^{1}$	$E_{6,4}^{1}$
$E_{0,3}^{1}$	$E_{1,3}^{1}$	$E_{2,3}^{1}$	$E_{3,3}^{1}$	$E_{4,3}^{1}$	$E_{5,3}^{1}$	$E_{6,3}^{1}$
$E_{0,2}^{1}$	$E_{1,2}^{1}$	$E_{2,2}^{1}$	$E_{3,2}^{1}$	$E_{4,2}^{1}$	$E_{5,2}^{1}$	$E_{6,2}^{1}$
$E_{0,1}^{1}$	$E_{1,1}^{1}$	$E_{2,1}^{1}$	$E_{3,1}^{1}$	$E_{4,1}^{1}$	$E_{5,1}^{1}$	$E_{6,1}^{1}$
$E_{0,0}^{1}$	$E_{1,0}^{1}$	$E_{2,0}^{1}$	$E_{3,0}^{1}$	$E_{4,0}^{1}$	$E_{5,0}^{1}$	$E_{6,0}^{1} \rightarrow$

The total degree is the sum of the degrees. Diagonal lines have been drawn to highlight groups of the same total degree.

$E_{0,4}^{\uparrow}$	$E_{1,4}^{2}$	$E_{2,4}^{2}$	$E_{3,4}^{2}$	$E_{4,4}^{2}$	$E_{5,4}^{2}$	$E_{6,4}^{2}$
$E_{0,3}^{2}$	$E_{1,3}^{2}$	$E_{2,3}^{2}$	$E_{3,3}^{2}$	$E_{4,3}^{2}$	$E_{5,3}^{2}$	$E_{6,3}^{2}$
$E_{0,2}^{2}$	$E_{1,2}^{2}$	$E_{2,2}^{2}$	$E_{3,2}^{2}$	$E_{4,2}^{2}$	$E_{5,2}^{2}$	$E_{6,2}^{2}$
$E_{0,1}^{2}$	$E_{1,1}^{2}$	$E_{2,1}^{2}$	$E_{3,1}^{2}$	$E_{4,1}^{2}$	$E_{5,1}^{2}$	$E_{6,1}^{2}$
$E_{0,0}^{2}$	$E_{1,0}^{2}$	$E_{2,0}^{2}$	$E_{3,0}^{2}$	$E_{4,0}^{2}$	$E_{5,0}^{2}$	$E_{6,0 \rightarrow}^{2}$

The total degree is the sum of the degrees. Diagonal lines have been drawn to highlight groups of the same total degree.

$E_{0,4}^{\uparrow}$	$E_{1,4}^{3}$	$E_{2,4}^{3}$	$E_{3,4}^{3}$	$E_{4,4}^{3}$	$E_{5,4}^{3}$	$E_{6,4}^{3}$
$E_{0,3}^{3}$	$E_{1,3}^{3}$	$E_{2,3}^{3}$	$E_{3,3}^{3}$	$E_{4,3}^{3}$	$E_{5,3}^{3}$	$E_{6,3}^{3}$
$E_{0,2}^{3}$	$E_{1,2}^{3}$	$E_{2,2}^{3}$	$E_{3,2}^{3}$	$E_{4,2}^{3}$	$E_{5,2}^{3}$	$E_{6,2}^{3}$
$E_{0,1}^{3}$	$E_{1,1}^{3}$	$E_{2,1}^{3}$	$E_{3,1}^{3}$	$E_{4,1}^{3}$	$E_{5,1}^{3}$	$E_{6,1}^{3}$

- The differential d on $E_{*, *}^{r}$ has degree $(-r, r-1)$. In other words, we have maps:

$$
\left.d\right|_{E_{p, q}^{r}}=d_{p, q}^{r}: E_{p, q}^{r} \longrightarrow E_{p-r, q+r-1}^{r} .
$$

- The differential d on $E_{*, *}^{r}$ has degree $(-r, r-1)$. In other words, we have maps:

$$
\left.d\right|_{E_{p, q}^{r}}=d_{p, q}^{r}: E_{p, q}^{r} \longrightarrow E_{p-r, q+r-1}^{r} .
$$

- Note that $d_{p, q}^{r}$ has total degree -1 since
$(p-r)+(q+r-1)=p+q-1$.
- The differential d on $E_{*, *}^{r}$ has degree $(-r, r-1)$. In other words, we have maps:

$$
\left.d\right|_{E_{p, q}^{r}}=d_{p, q}^{r}: E_{p, q}^{r} \longrightarrow E_{p-r, q+r-1}^{r} .
$$

- Note that $d_{p, q}^{r}$ has total degree -1 since $(p-r)+(q+r-1)=p+q-1$.
- Also $E_{*, *}^{r+1}$ is the homology of the previous page $E_{*, *}^{r}$. In other words,

$$
E_{p, q}^{r+1}=\operatorname{ker}\left(d_{p, q}^{r}\right) / \operatorname{im}\left(d_{p+r, q-r+1}^{r-1}\right) .
$$

Here the differential has degree $(-0,0-1)$.

Here the differential has degree $(-1,1-1)$.

Here the differential has degree $(-2,2-1)$.

Here the differential has degree $(-3,3-1)$.
coses)

What is the E^{∞} page?

- It is the set of elements which 'survive' forever.

What is the E^{∞} page?

- It is the set of elements which 'survive' forever.
- In our case, all the pages $E_{p, q}^{r}$ for $r>0$ will be finite dimensional and they decrease in dimension as r increases.

What is the E^{∞} page?

- It is the set of elements which 'survive' forever.
- In our case, all the pages $E_{p, q}^{r}$ for $r>0$ will be finite dimensional and they decrease in dimension as r increases.
- Therefore, for each p, q there is a constant $C_{p, q}$ so that $E_{p, q}^{r+1}=E_{p, q}^{r}$ for all $r \geq C_{p, q}$. Hence we can define $E_{p, q}^{\infty}$ to be $E_{p, q}^{r}$ for $r=C_{p, q}$.
- Definition: We say that a spectral sequence $\left(E_{p, q}^{r}\right)$ converges to a graded group H_{*} if there is a filtration

$$
\cdots F_{-1} \subset F_{0} \subset F_{1} \subset F_{2} \subset \cdots \subset H_{*}
$$

so that

$$
E_{p, q}^{\infty}=F_{p} \cap H_{p+q} / F_{p-1} \cap H_{p+q} .
$$

- Definition: We say that a spectral sequence $\left(E_{p, q}^{r}\right)$ converges to a graded group H_{*} if there is a filtration

$$
\cdots F_{-1} \subset F_{0} \subset F_{1} \subset F_{2} \subset \cdots \subset H_{*}
$$

so that

$$
E_{p, q}^{\infty}=F_{p} \cap H_{p+q} / F_{p-1} \cap H_{p+q} .
$$

- In our case the filtration will be nice enough so that if the above spectral sequence converges then $H_{n}=\oplus_{p} E_{p, n-p}^{\infty}$.

Spectral Sequence from a filtered complex

- Theorem: Suppose we have a nice filtration
$\cdots F_{-1} C_{*} \subset F_{0} C_{*} \subset F_{1} C_{*} \subset F_{2} C_{*} \subset \cdots \subset C_{*}$ of a chain complex $\left(C_{*}, \partial\right)$. Then there is a spectral sequence converging to $H_{*}\left(C_{*}, \partial\right)$ with E^{1} page equal to:

$$
E_{p, q}^{1}=H_{*}\left(F_{p} C_{p+q} / F_{p-1} C_{p+q}, \partial\right)
$$

- The filtration for us will be the action filtration.

(1)

How to use spectral sequences in our context

1. Start with a filtered chain complex (in our case, the Floer chain complex with some filtration induced by the action functional).

How to use spectral sequences in our context

1. Start with a filtered chain complex (in our case, the Floer chain complex with some filtration induced by the action functional).
2. Write down the E^{1}-page

$$
E_{p, q}^{1}=H_{*}\left(F_{p} C_{p+q} / F_{p-1} C_{p+q}, \partial\right) .
$$

How to use spectral sequences in our context

1. Start with a filtered chain complex (in our case, the Floer chain complex with some filtration induced by the action functional).
2. Write down the E^{1}-page

$$
E_{p, q}^{1}=H_{*}\left(F_{p} C_{p+q} / F_{p-1} C_{p+q}, \partial\right) .
$$

3. Hope that the differentials that we are interested in vanish, or at least are understandable. For instance, if we wish to show that $H_{n} \neq 0$ then it is sufficient for us to find p, q so that $p+q=n$ and the differentials $d_{p, q}^{r}$ and $d_{p+r, q-r+1}^{r}$ vanish for all $r \geq 1$.

How to use spectral sequences in our context

1. Start with a filtered chain complex (in our case, the Floer chain complex with some filtration induced by the action functional).
2. Write down the E^{1}-page

$$
E_{p, q}^{1}=H_{*}\left(F_{p} C_{p+q} / F_{p-1} C_{p+q}, \partial\right) .
$$

3. Hope that the differentials that we are interested in vanish, or at least are understandable. For instance, if we wish to show that $H_{n} \neq 0$ then it is sufficient for us to find p, q so that $p+q=n$ and the differentials $d_{p, q}^{r}$ and $d_{p+r, q-r+1}^{r}$ vanish for all $r \geq 1$.
4. Compute $H_{n}=\oplus_{p} E_{p, n-p}^{\infty}$ (the direct sum of everything along the diagonal line containing ($n, 0)$).

Here $H_{3+2}=H_{5}$ is non-zero.
"... the behavior of this spectral sequence ... is a bit like an Elizabethan drama, full of action, in which the business of each character is to kill at least one other character, so that at the end of the play one has the stage strewn with corpses and only one actor left alive (namely the one who has to speak the last few lines)" - J. F. Adams.

A Spectral Sequence for Symplectic Homology.

- We will construct a spectral sequence converging to $S H_{*}(A)$ (symplectic homology of A) where A is a smooth affine variety of dimension n with $c_{1}(A)=0$ (there is also a similar spectral sequence when $c_{1}(A)$ is torsion but we will not focus on that).

A Spectral Sequence for Symplectic Homology.

- We will construct a spectral sequence converging to $S H_{*}(A)$ (symplectic homology of A) where A is a smooth affine variety of dimension n with $c_{1}(A)=0$ (there is also a similar spectral sequence when $c_{1}(A)$ is torsion but we will not focus on that).
- Choose a non-zero section κ_{A} of the canonical bundle $K_{A} \equiv \wedge^{n} T^{*} A$ of A.

A Spectral Sequence for Symplectic Homology.

- We will construct a spectral sequence converging to $S H_{*}(A)$ (symplectic homology of A) where A is a smooth affine variety of dimension n with $c_{1}(A)=0$ (there is also a similar spectral sequence when $c_{1}(A)$ is torsion but we will not focus on that).
- Choose a non-zero section κ_{A} of the canonical bundle $K_{A} \equiv \wedge^{n} T^{*} A$ of A.
- Such a section (up to homotopy) gives $S H_{*}(A)$ a \mathbb{Z}-grading.
- Definition: A smooth normal crossing divisor in a smooth projective variety X is a finite union of transversely intersecting smooth complex hypersurfaces $\left(D_{i}\right)_{i \in S}$.
- Definition: A smooth normal crossing divisor in a smooth projective variety X is a finite union of transversely intersecting smooth complex hypersurfaces $\left(D_{i}\right)_{i \in S}$.
- Theorem (Hironaka) Every smooth affine variety A is isomorphic to $X-\cup_{i \in S} D_{i}$ for some $X,\left(D_{i}\right)_{i \in S}$ as above. From now on fix this notation.
- Definition: A smooth normal crossing divisor in a smooth projective variety X is a finite union of transversely intersecting smooth complex hypersurfaces $\left(D_{i}\right)_{i \in S}$.
- Theorem (Hironaka) Every smooth affine variety A is isomorphic to $X-\cup_{i \in S} D_{i}$ for some $X,\left(D_{i}\right)_{i \in S}$ as above. From now on fix this notation.
- For any $I \subset S$, define $D_{I} \equiv \cap_{i \in I} D_{i}$. Here, $D_{\emptyset}=X$.

$$
\begin{gathered}
\text { E.g. } A=\mathbb{C}^{2} \\
X=\mathbb{C P}^{1} \times \mathbb{C P}^{1} \\
D_{1}=\mathbb{C P}^{1} \times\{\infty\} \\
D_{2}=\{\infty\} \times \mathbb{C P}^{1} \\
D_{12}=\{\infty\} \times\{\infty\}
\end{gathered}
$$

- We'll assume κ_{A} is a meromorphic section of the canonical bundle of X which is non-zero along A.
- We'll assume κ_{A} is a meromorphic section of the canonical bundle of X which is non-zero along A.
- We define the discrepancy a_{i} of D_{i} to be the order of $\kappa_{A}^{-1}(0)$ minus the order of $\kappa_{A}^{-1}(\infty)$ along D_{i}. I.e. $\kappa_{A}=z_{1}^{a_{i}}$ in some chart z_{1}, \cdots, z_{n} satisfying $D_{i}=\left\{z_{1}=0\right\}$.
- We'll assume κ_{A} is a meromorphic section of the canonical bundle of X which is non-zero along A.
- We define the discrepancy a_{i} of D_{i} to be the order of $\kappa_{A}^{-1}(0)$ minus the order of $\kappa_{A}^{-1}(\infty)$ along D_{i}. I.e. $\kappa_{A}=z_{1}^{a_{i}}$ in some chart z_{1}, \cdots, z_{n} satisfying $D_{i}=\left\{z_{1}=0\right\}$.
- Choose an ample line bundle L on X and a holomorphic section s_{A} of L so that s_{A} restricted to A is non-zero and $D=s_{A}^{-1}(0)$.
- We'll assume κ_{A} is a meromorphic section of the canonical bundle of X which is non-zero along A.
- We define the discrepancy a_{i} of D_{i} to be the order of $\kappa_{A}^{-1}(0)$ minus the order of $\kappa_{A}^{-1}(\infty)$ along D_{i}. I.e. $\kappa_{A}=z_{1}^{a_{i}}$ in some chart z_{1}, \cdots, z_{n} satisfying $D_{i}=\left\{z_{1}=0\right\}$.
- Choose an ample line bundle L on X and a holomorphic section s_{A} of L so that s_{A} restricted to A is non-zero and $D=s_{A}^{-1}(0)$.
- We define the wrapping number w_{i} of D_{i} to be minus the order of $s_{A}^{-1}(0)$ along D_{i}.
- Definition: For each $I \subset S$ let $N D_{I}$ be a small tubular neighborhood of D_{l} so that $N D_{I} \cap D_{l^{\prime}}$ is a tubular neighborhood of $D_{I \cup I^{\prime}}$ for all $I^{\prime} \subset S$. Also $\partial N D_{I}$ should intersect $D_{I^{\prime}}$ transversally for all $I^{\prime} \subset S$.
- Definition: For each $I \subset S$ let $N D_{I}$ be a small tubular neighborhood of D_{l} so that $N D_{l} \cap D_{l^{\prime}}$ is a tubular neighborhood of $D_{I \cup I^{\prime}}$ for all $I^{\prime} \subset S$. Also $\partial N D_{I}$ should intersect $D_{I^{\prime}}$ transversally for all $I^{\prime} \subset S$.
- Define $\check{N} D_{l} \equiv N D_{l}-\cup_{i \in S} D_{i}$. This as a bundle over $\check{V}_{I} \equiv D_{I}-\cup_{i \in S-I} D_{i}$ with fiber a product of punctured disks.

- Definition: For each $I \subset S$ let $N D_{I}$ be a small tubular neighborhood of D_{l} so that $N D_{I} \cap D_{l^{\prime}}$ is a tubular neighborhood of $D_{I \cup I}$ for all $I^{\prime} \subset S$. Also $\partial N D_{I}$ should intersect $D_{I^{\prime}}$ transversally for all $I^{\prime} \subset S$.
- Define $\check{N} D_{I} \equiv N D_{I}-\cup_{i \in S_{-I}} D_{i}$. This as a bundle over $\check{V}_{I} \equiv D_{I}-\cup_{i \in S-I} D_{i}$ with fiber a product of punctured disks.

- Definition: For each $I \subset S$ let $N D_{I}$ be a small tubular neighborhood of D_{l} so that $N D_{l} \cap D_{l^{\prime}}$ is a tubular neighborhood of $D_{I \cup I^{\prime}}$ for all $I^{\prime} \subset S$. Also $\partial N D_{I}$ should intersect $D_{I^{\prime}}$ transversally for all $I^{\prime} \subset S$.
- Define $\check{N} D_{l} \equiv N D_{l}-\cup_{i \in S_{-l}} D_{i}$. This as a bundle over $\check{V}_{I} \equiv D_{I}-\cup_{i \in S-I} D_{i}$ with fiber a product of punctured disks.

Theorem (M - in progress):
There is a spectral sequence converging to $S H_{*}(A)$ with E^{1} page

$$
E_{p, q}^{1}=\bigoplus_{\left\{\left(k_{i}\right) \in \mathbb{N}^{S}: \sum_{i} k_{i} w_{i}=-p\right\}} H^{n-p-q-2\left(\sum_{i} k_{i}\left(a_{i}+1\right)\right)}\left(\check{N} D_{\left.l_{\left(k_{i}\right)}\right)}\right)
$$

where \mathbb{N}^{S} is the set of tuples of non-negative integers indexed by S and $I_{\left(k_{i}\right)}=\left\{i \in S: k_{i} \neq 0\right\}$.

- There is a similar spectral sequence for $S H_{*}^{>0}(A)$ where we sum over everything except the term corresponding to $(0) \in \mathbb{N}^{S}$.
- There is a similar spectral sequence for $\mathrm{SH}_{*}^{>0}(A)$ where we sum over everything except the term corresponding to $(0) \in \mathbb{N}^{S}$.
- If c_{1} is torsion then K_{A} is a section of $K_{A}^{\otimes r}$ and the discrepancies a_{i} are now defined to be the order of $\kappa_{A}^{-1}(0)$ minus the order of $\kappa_{A}^{-1}(\infty)$ along D_{i} divided by r. The associated spectral sequence is identical but the pages could potentially have entries with non-integer p, q since a_{i} may not be an integer. The differentials have the same gradings.
- There is a similar spectral sequence for $S H_{*}^{>0}(A)$ where we sum over everything except the term corresponding to $(0) \in \mathbb{N}^{S}$.
- If c_{1} is torsion then κ_{A} is a section of $K_{A}^{\otimes r}$ and the discrepancies a_{i} are now defined to be the order of $\kappa_{A}^{-1}(0)$ minus the order of $\kappa_{A}^{-1}(\infty)$ along D_{i} divided by r. The associated spectral sequence is identical but the pages could potentially have entries with non-integer p, q since a_{i} may not be an integer. The differentials have the same gradings.
- The future work of Diogo-Lisi and Ganata-Pomerleano hopefully should give better descriptions of the differentials in some cases.

Other Grading Conventions

- There are other grading conventions.
- You might need to replace (p, q) with $(-p, n-q)$ or $(-p,-q)$ and your spectral sequence differentials will go in the other direction (this would be a cohomological spectral sequence).

Sanity Check

- $X=\mathbb{C P}^{n}, D_{1}=\mathbb{C P}^{n-1}$ and $A=\mathbb{C}^{n}$.

Sanity Check

- $X=\mathbb{C P}^{n}, D_{1}=\mathbb{C P}^{n-1}$ and $A=\mathbb{C}^{n}$.
- $w_{1}=-1$ and $a_{1}=-n-1$.

Sanity Check

- $X=\mathbb{C P}^{n}, D_{1}=\mathbb{C P}^{n-1}$ and $A=\mathbb{C}^{n}$.
- $w_{1}=-1$ and $a_{1}=-n-1$.
- $H^{*}\left(\check{N} D_{1}\right)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=0 \text { or } 2 n-1 \\ 0 & \text { otherwise. }\end{array}\right.$

Sanity Check

- $X=\mathbb{C P}^{n}, D_{1}=\mathbb{C P}^{n-1}$ and $A=\mathbb{C}^{n}$.
- $w_{1}=-1$ and $a_{1}=-n-1$.
- $H^{*}\left(\check{N} D_{1}\right)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=0 \text { or } 2 n-1 \\ 0 & \text { otherwise. }\end{array}\right.$
- $H^{*}\left(\check{N} D_{\emptyset}\right)=H^{*}(A)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=0 \\ 0 & \text { otherwise } .\end{array}\right.$.

> Case: $n=3$
> $E_{p, q}^{2}=0$ for all p, q
> $S H_{*}(A)=0$

Example

- Let X be a smooth degree 5 hypersurface in $\mathbb{C P}^{3}$ and let D_{1} be the intersection of X with a generic degree 1 hypersurface and $A=X-D_{1}$.

Example

- Let X be a smooth degree 5 hypersurface in $\mathbb{C P}^{3}$ and let D_{1} be the intersection of X with a generic degree 1 hypersurface and $A=X-D_{1}$.
- $w_{1}=-1$ and $a_{1}=1$.

Example

- Let X be a smooth degree 5 hypersurface in $\mathbb{C P}^{3}$ and let D_{1} be the intersection of X with a generic degree 1 hypersurface and $A=X-D_{1}$.
- $w_{1}=-1$ and $a_{1}=1$.
- $H^{*}\left(\check{N} D_{1}\right)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=0 \text { or } 3 \\ \mathbb{Z}^{12} & \text { if } *=1 \text { or } 2 . \\ 0 & \text { otherwise. } .\end{array}\right.$.

Example

- Let X be a smooth degree 5 hypersurface in $\mathbb{C P}^{3}$ and let D_{1} be the intersection of X with a generic degree 1 hypersurface and $A=X-D_{1}$.
- $w_{1}=-1$ and $a_{1}=1$.
- $H^{*}\left(\check{N} D_{1}\right)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=0 \text { or } 3 \\ \mathbb{Z}^{12} & \text { if } *=1 \text { or } 2 . \\ 0 & \text { otherwise. } .\end{array}\right.$.
- $H^{*}\left(\check{N} D_{\emptyset}\right)=H^{*}(A)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=0 \\ \mathbb{Z}^{64} & \text { if } *=2 \\ 0 & \text { otherwise } .\end{array}\right.$.

Example

- Let X be a smooth degree 5 hypersurface in $\mathbb{C P}^{3}$ and let D_{1} be the intersection of X with a generic degree 1 hypersurface and $A=X-D_{1}$.
- $w_{1}=-1$ and $a_{1}=1$.
- $H^{*}\left(\check{N} D_{1}\right)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=0 \text { or } 3 \\ \mathbb{Z}^{12} & \text { if } *=1 \text { or } 2 . \\ 0 & \text { otherwise. } .\end{array}\right.$.
- $H^{*}\left(\check{N} D_{\emptyset}\right)=H^{*}(A)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=0 \\ \mathbb{Z}^{64} & \text { if } *=2 \\ 0 & \text { otherwise }\end{array}\right.$.
- Computations using ideas from Milnor's paper "On simply connected 4-manifolds". See also https://amathew.wordpress.com/2012/03/05/the-cohomology-of-projective-hypersurfaces/

Therefore

$S H_{*}(A)=$
$\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=2 \\ \mathbb{Z}^{64} & \text { if } *=0 \\ \mathbb{Z} & \text { if } *<-1 \text { and } *=0 \text { or } 1 \bmod 4 \\ \mathbb{Z}^{12} & \text { if } *<-1 \text { and } *=2 \text { or } 3 \bmod 4 \\ 0 & \text { otherwise. }\end{array}\right.$

Example with two divisors

- X be a smooth degree 6 hypersurface in $\mathbb{C P}^{3}, D_{1}, D_{2}$ are generic degree 1 hypersurfaces and $A=X-D_{1}-D_{2}$.

Example with two divisors

- X be a smooth degree 6 hypersurface in $\mathbb{C P}^{3}, D_{1}, D_{2}$ are generic degree 1 hypersurfaces and $A=X-D_{1}-D_{2}$.
- $w_{1}=w_{2}=-1$ and $a_{1}=a_{2}=1$.

Example with two divisors

- X be a smooth degree 6 hypersurface in $\mathbb{C P}^{3}, D_{1}, D_{2}$ are generic degree 1 hypersurfaces and $A=X-D_{1}-D_{2}$.
- $w_{1}=w_{2}=-1$ and $a_{1}=a_{2}=1$.
- $H^{*}\left(\check{N} D_{12}\right)=\left\{\begin{array}{cc}\mathbb{Z}^{6} & \text { if } *=0 \text { or } 2 \\ \mathbb{Z}^{12} & \text { if } *=1 \\ 0 & \text { otherwise. }\end{array}\right.$.

Example with two divisors

- X be a smooth degree 6 hypersurface in $\mathbb{C P}^{3}, D_{1}, D_{2}$ are generic degree 1 hypersurfaces and $A=X-D_{1}-D_{2}$.
- $w_{1}=w_{2}=-1$ and $a_{1}=a_{2}=1$.
- $H^{*}\left(\check{N} D_{12}\right)=\left\{\begin{array}{cc}\mathbb{Z}^{6} & \text { if } *=0 \text { or } 2 \\ \mathbb{Z}^{12} & \text { if } *=1 \\ 0 & \text { otherwise. }\end{array}\right.$.
- $H^{*}\left(\check{N} D_{1}\right)=H^{*}\left(\check{N} D_{2}\right)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=0 \\ \mathbb{Z}^{26} & \text { if } *=1 \\ \mathbb{Z}^{25} & \text { if } *=2 \\ 0 & \text { otherwise. }\end{array}\right.$.

Example with two divisors

- X be a smooth degree 6 hypersurface in $\mathbb{C P}^{3}, D_{1}, D_{2}$ are generic degree 1 hypersurfaces and $A=X-D_{1}-D_{2}$.
- $w_{1}=w_{2}=-1$ and $a_{1}=a_{2}=1$.
- $H^{*}\left(\check{N} D_{12}\right)=\left\{\begin{array}{cc}\mathbb{Z}^{6} & \text { if } *=0 \text { or } 2 \\ \mathbb{Z}^{12} & \text { if } *=1 \\ 0 & \text { otherwise. }\end{array}\right.$.
- $H^{*}\left(\check{N} D_{1}\right)=H^{*}\left(\check{N} D_{2}\right)=\left\{\begin{array}{cl}\mathbb{Z} & \text { if } *=0 \\ \mathbb{Z}^{26} & \text { if } *=1 \\ \mathbb{Z}^{25} & \text { if } *=2 \\ 0 & \text { otherwise. }\end{array}\right.$.
- $H^{*}\left(\check{N} D_{\emptyset}\right)=H^{*}(A)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=0 \text { or } 1 \\ \mathbb{Z}^{150} & \text { if } *=2 \\ 0 & \text { otherwise } .\end{array}\right.$.

$$
\begin{aligned}
& \begin{array}{ccccccc}
\underset{\mathbb{Z}}{\mathbb{Z}} & 0 & 0 & 0 & 0 & 0 & 0 \\
\stackrel{\rightharpoonup}{\mathbb{Z}} & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathbb{Z}^{150} & 0- & 0-0 & 0 & 0 & 0 \rightarrow & 0
\end{array} \\
& \begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \mathbb{Z}^{2} & 0 & 0 & 0 & 0 & 0
\end{array} \\
& 0 \mathbb{Z}^{52} 00000000
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
0 & 0 & \mathbb{Z}^{8} & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \quad 0 \mathbb{Z}^{56} \quad 0 \quad 0 \quad 0 \quad 0 \\
& \begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
0 & 0 & 0 & \mathbb{Z}^{14} & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbb{Z}^{76} & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
0 & 0 & 0 & \mathbb{Z}^{62} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{llllcll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \mathbb{Z}^{20} & 0 & 0
\end{array} \\
& 0 \quad 0 \quad 0 \quad 0 \mathbb{Z}^{88} \quad 0 \quad 0 \\
& 0 \quad 0 \quad 0 \quad 0 \mathbb{Z}^{68} \quad 0 \quad 0 \\
& \text { Therefore } \\
& S H_{*}(A)= \\
& \text { if } *=1 \text { or } 2 \\
& \text { if } *=0 \\
& \mathbb{Z}^{2+3(-*-2) / 2} \quad \text { if } *<-1 \text { and } *=2 \bmod 4 \\
& \mathbb{Z}^{52+3(-*-1)} \quad \text { if } *<-1 \text { and } *=1 \bmod 4 \\
& \mathbb{Z}^{50+3(-*-4) / 2} \quad \text { if } *<-1 \text { and } *=0 \bmod 4 \\
& 0 \\
& \begin{array}{l}
\text { if } *<-1 \text { and } *=2 \bmod 4 \\
\text { if } *<-1 \text { and } *=1 \bmod 4
\end{array} \\
& \text { if } *<-1 \text { and } *=0 \bmod 4 \\
& \text { otherwise. }
\end{aligned}
$$

Weinstein Conjecture

- Weinstein conjecture: Every contact form has a Reeb orbit.

Weinstein Conjecture

- Weinstein conjecture: Every contact form has a Reeb orbit.
- Definition: A cooriented contact manifold (C, ξ) satisfies the Weinstein conjecture if every contact form α compatible with ξ has a Reeb orbit.

Weinstein Conjecture

- Weinstein conjecture: Every contact form has a Reeb orbit.
- Definition: A cooriented contact manifold (C, ξ) satisfies the Weinstein conjecture if every contact form α compatible with ξ has a Reeb orbit.
- Which contact manifolds satisfy the Weinstein conjecture?
- Recall that positive symplectic homology $S H_{*}^{>0}(M)$ of a Liouville domain M has a chain complex freely generated by two copies of each Reeb orbit on ∂M. In other words, we do not consider critical points of the Hamiltonian in the interior.
- Recall that positive symplectic homology $S H_{*}^{>0}(M)$ of a Liouville domain M has a chain complex freely generated by two copies of each Reeb orbit on ∂M. In other words, we do not consider critical points of the Hamiltonian in the interior.
- Definition: M satisfies the algebraic Weinstein conjecture if $S H_{*}^{>0}(M) \neq 0$.
- Recall that positive symplectic homology $S H_{*}^{>0}(M)$ of a Liouville domain M has a chain complex freely generated by two copies of each Reeb orbit on ∂M. In other words, we do not consider critical points of the Hamiltonian in the interior.
- Definition: M satisfies the algebraic Weinstein conjecture if $S H_{*}^{>0}(M) \neq 0$.
- Lemma: If M satisfies the algebraic Weinstein conjecture then ∂M satisfies the Weinstein conjecture.
- Recall that positive symplectic homology $S H_{*}^{>0}(M)$ of a Liouville domain M has a chain complex freely generated by two copies of each Reeb orbit on ∂M. In other words, we do not consider critical points of the Hamiltonian in the interior.
- Definition: M satisfies the algebraic Weinstein conjecture if $S H_{*}^{>0}(M) \neq 0$.
- Lemma: If M satisfies the algebraic Weinstein conjecture then ∂M satisfies the Weinstein conjecture.
- Question: Which smooth affine varieties satisfy the algebraic Weinstein conjecture?
- $X=$ smooth projective variety and $A=X-\cup_{i} D_{i}$ where $\left(D_{i}\right)_{i \in S}$ is a smooth normal crossing divisor.
- $X=$ smooth projective variety and $A=X-\cup_{i} D_{i}$ where $\left(D_{i}\right)_{i \in S}$ is a smooth normal crossing divisor.
- Theorem: Suppose that the discrepancy a_{i} of D_{i} is ≤-1 for all $i \in S$. Then A satisfies the algebraic Weinstein conjecture.
- $X=$ smooth projective variety and $A=X-\cup_{i} D_{i}$ where $\left(D_{i}\right)_{i \in S}$ is a smooth normal crossing divisor.
- Theorem: Suppose that the discrepancy a_{i} of D_{i} is ≤-1 for all $i \in S$. Then A satisfies the algebraic Weinstein conjecture.
- Proof of the main Theorem:

$E_{*, *}^{1}$	This is the highest non-zero E^{1} term on the highest diagonal.		
$E_{*, *}^{1} E_{*, *}^{1}$	$E_{*, *}^{1} E_{*, *}^{1}$		This term exists since $a_{i} \leq-1, \forall i$
:---			
and it survives to the E^{∞} page			
$E_{*, *}^{1} E_{*, *}^{1}$			
term all differentials connecting this			

An Additional Grading.

- We have a direct sum decomposition

$$
S H_{*}(A)=\bigoplus_{\alpha \in H_{1}(A)} S H_{*, \alpha}(A)
$$

where $S H_{*, \alpha}(A)$ is the subgroup generated by periodic orbits representing α.

- This grading can be seen in our spectral sequence.
- The H_{1}-class associated to D_{i} is a class $\alpha_{i} \in H_{1}(A)$ represented by the boundary of a small disk in X intersecting D_{i} once transversely and negatively at 0 and intersecting no other D_{j} 's.

- For each $\alpha \in H_{1}(A)$, there is a spectral sequence converging to $S H_{*, \alpha}(A)$ with E^{1} page

$$
E_{p, q}^{1}=\bigoplus_{\left\{\left(k_{i}\right) \in \mathbb{N}^{S}: \sum_{\substack{\left.i k_{i} w_{i}=-p, \alpha_{\left(k_{i}\right)}\right)=\alpha}}\right.} H^{n-p-q-2\left(\sum_{i} k_{i}\left(a_{i}+1\right)\right)}\left(\check{N} D_{I_{\left(k_{i}\right)}}\right) .
$$

where $\alpha_{\left(k_{i}\right)} \equiv \sum_{i} k_{i} \alpha_{i}$.

- For each $\alpha \in H_{1}(A)$, there is a spectral sequence converging to $S H_{*, \alpha}(A)$ with E^{1} page

$$
E_{p, q}^{1}=\bigoplus_{\left\{\left(k_{i}\right) \in \mathbb{N}^{S}: \sum_{\substack{i k_{i} w_{i}=-p, \alpha_{\left(k_{i}\right)}=\alpha}}\right.} H^{n-p-q-2\left(\sum_{i} k_{i}\left(a_{i}+1\right)\right)}\left(\tilde{N} D_{\left.l_{\left(k_{i}\right)}\right)}\right) .
$$

where $\alpha_{\left(k_{i}\right)} \equiv \sum_{i} k_{i} \alpha_{i}$.

- Our original spectral sequence is the direct sum of the above ones over all $\alpha \in H_{1}(A)$.
- Simple Corollary. Our spectral sequence degenerates at the E^{1} page when the affine variety A is one dimensional and not equal to \mathbb{C}.
- Simple Corollary. Our spectral sequence degenerates at the E^{1} page when the affine variety A is one dimensional and not equal to \mathbb{C}.
- Therefore if $A=C-\left\{p_{1}, \cdots, p_{l}\right\}$ where C is a Riemann surface and p_{1}, \cdots, p_{l} distinct points then

$$
S H_{*}(A)=H^{1-*}(C) \oplus \bigoplus_{i=1}^{\prime}\left(\oplus_{k \geq 1} H^{1-*-2 k\left(a_{i}+1\right)}\left(S^{1}\right)\right)
$$

Here a_{i} is the discrepancy of the divisor p_{i}, which isn't unique. The only constraint is $\sum_{i} a_{i}=-\chi(C)$.

- Simple Corollary. Our spectral sequence degenerates at the E^{1} page when the affine variety A is one dimensional and not equal to \mathbb{C}.
- Therefore if $A=C-\left\{p_{1}, \cdots, p_{l}\right\}$ where C is a Riemann surface and p_{1}, \cdots, p_{l} distinct points then

$$
S H_{*}(A)=H^{1-*}(C) \oplus \bigoplus_{i=1}^{\prime}\left(\oplus_{k \geq 1} H^{1-*-2 k\left(a_{i}+1\right)}\left(S^{1}\right)\right)
$$

Here a_{i} is the discrepancy of the divisor p_{i}, which isn't unique. The only constraint is $\sum_{i} a_{i}=-\chi(C)$.

- Proof:

The spectral sequence computing $S H_{*, \alpha}(A)$ is non-zero only in one column for each $\alpha \in H_{1}(A)$.

- Theorem

The spectral sequence degenerates at the E^{1} page when A is the complement of $\geq n+2$ generic linear hypersurfaces in $\mathbb{C P}^{n}$. I.e.

$$
S H_{*}(A)=\bigoplus_{\left(k_{i}\right) \in \mathbb{N}^{S}} H^{n-*-2\left(\sum_{i} k_{i}\left(a_{i}+1\right)\right)}\left(\check{N} D_{\left(k_{i}\right)}\right)
$$

- Theorem

The spectral sequence degenerates at the E^{1} page when A is the complement of $\geq n+2$ generic linear hypersurfaces in $\mathbb{C P}^{n}$. I.e.

$$
S H_{*}(A)=\bigoplus_{\left(k_{i}\right) \in \mathbb{N}^{S}} H^{n-*-2\left(\sum_{i} k_{i}\left(a_{i}+1\right)\right)}\left(\check{N} D_{\left(k_{i}\right)}\right)
$$

- Proof:

We have that $H_{1}(A)$ is the quotient of the free abelian group generated by $\left(\alpha_{i}\right)_{i \in S}$ quotiented out by the relation $\sum_{i \in S} \alpha_{i}=0$ where α_{i} is the H_{1}-class associated to D_{i}. This means that for each $\alpha \in H_{1}(A)$, there is at most one representation of α of the form $\sum_{i \in I} k_{i} \alpha_{i}$ where $|I| \leq n$ and $k_{i} \geq 0$.
Therefore the E^{1} page of the spectral sequence computing $S H_{*, \alpha}(A)$ is contained in at most one column and hence must degenerate.

- Open Question: What happens when the linear hypersurfaces are not generic?
- Open Question: What happens when the linear hypersurfaces are not generic?
- Can we still compute $\mathrm{SH}_{*}(A)$ in this case?
- Open Question: What happens when the linear hypersurfaces are not generic?
- Can we still compute $\mathrm{SH}_{*}(A)$ in this case?
- Does it detect the dual graph of these hypersurfaces?

Additional Structure

- For many important varieties (e.g log Calabi-Yau varieties), the spectral sequence does not help us compute $S H_{*}(A)$ as the differentials may not be 0 . Also we wish to compute $S H_{*}(A)$ as an algebra with the pair of pants product.

Additional Structure

- For many important varieties (e.g log Calabi-Yau varieties), the spectral sequence does not help us compute $S H_{*}(A)$ as the differentials may not be 0 . Also we wish to compute $S H_{*}(A)$ as an algebra with the pair of pants product.
- A spectral sequence $E_{*, *}^{*}$ is a spectral sequence of algebras if each page $E_{*, *}^{r}$ is a differential bigraded algebra so that the product structure on $E_{*, *}^{r+1}$ is induced by the product structure on $E_{*, *}^{r}$ for each r.

Additional Structure

- For many important varieties (e.g log Calabi-Yau varieties), the spectral sequence does not help us compute $S H_{*}(A)$ as the differentials may not be 0 . Also we wish to compute $S H_{*}(A)$ as an algebra with the pair of pants product.
- A spectral sequence $E_{*, *}^{*}$ is a spectral sequence of algebras if each page $E_{*, *}^{r}$ is a differential bigraded algebra so that the product structure on $E_{*, *}^{r+1}$ is induced by the product structure on $E_{*, *}^{r}$ for each r.
- Convergence is defined in the same way, except that the filtration has to respect the product structure on the algebra H_{*}.
- Assume: $\check{N} D_{l^{\prime}} \subset \check{N} D_{l}$ for all $I \subset I^{\prime}$.
- Assume: $\check{N} D_{I^{\prime}} \subset \check{N} D_{l}$ for all $I \subset I^{\prime}$.
- Let $\iota_{l^{\prime}, l}: \check{N} D_{I^{\prime}} \rightarrow \check{N} D_{l}$ be the natural inclusion map.
- Assume: $\check{N} D_{I^{\prime}} \subset \check{N} D_{l}$ for all $I \subset I^{\prime}$.
- Let $\iota_{l^{\prime}, l}: \check{N} D_{I^{\prime}} \rightarrow \check{N} D_{l}$ be the natural inclusion map.
- For all $I, J \subset S$, define:

$$
\begin{aligned}
P_{I J}: H^{*}\left(\check{N} D_{l}\right) & \otimes H^{*}\left(\check{N} D_{J}\right) \longrightarrow H^{*}\left(\check{N} D_{I \cup J}\right) \\
a & \otimes b \longrightarrow \iota_{I \cup J, I}^{*} \cup \iota_{I \cup J, J}^{*} b .
\end{aligned}
$$

Conjecture

The spectral sequence above is in fact a spectral sequence of algebras converging to $S H_{n+*}(A)$ with the pair of pants product. The product structure

$$
E_{p, q}^{1} \otimes E_{p^{\prime}, q^{\prime}}^{1} \longrightarrow E_{p+p^{\prime}, q+q^{\prime}}^{1}
$$

on the E^{1} page

$$
\left.E_{p, q}^{1}=\bigoplus_{\left\{\left(k_{i}\right) \in \mathbb{N}^{S}\right.}: \sum_{i} k_{i} w_{i}=-p\right\} \leq 10\left(\sum_{i} k_{i}\left(a_{i}+1\right)\right)\left(\check{N} D_{\left(k_{i}\right)}\right) .
$$

is induced by the maps $P_{I J}$ above.

Recall: α_{i} is the H_{1}-class associated to D_{i}.
Theorem (assuming conjecture): Suppose that $\alpha_{i} \neq \alpha_{j}$ for all $i \neq j$ and $\alpha_{i} \neq 0$ for all $i \in S$ and suppose the union of all images of the restriction maps $P_{i I}: H^{*}\left(\check{N} D_{i}\right) \longrightarrow H^{*}\left(\check{N} D_{l}\right)$ for all $i \in I$ generate $H^{*}\left(\check{N} D_{l}\right)$ as an algebra for all $I \subset S$. Then the spectral sequence above degenerates on the first page. Hence there is a filtration on $S H_{n+*}(A)$ whose associated graded algebra is:

$$
\bigoplus_{\left(k_{i}\right) \in \mathbb{N}^{S}} H^{-*-2\left(\sum_{i} k_{i}\left(a_{i}+1\right)\right)}\left(\check{N} D_{\left(k_{i}\right)}\right)
$$

graded by $\sum_{i} k_{i}$.

- Folklore Theorem(?) If a degree n or $n-1$ element in the $p=0$ page is killed then the affine variety A is ruled by lines \mathbb{C}.

Related to the work of Diogo-Lisi and Ganata-Pomerleano.

- Folklore Theorem(?) If a degree n or $n-1$ element in the $p=0$ page is killed then the affine variety A is ruled by lines \mathbb{C}.

Related to the work of Diogo-Lisi and Ganata-Pomerleano.

- Why?

Because one should be able to make the Hamiltonian H defining $S H_{*}(A)$ equal to 0 and then a limiting argument produces a family of curves isomorphic to \mathbb{C} passing through every point of a real hypersurface and hence through every point of A (since the space of such curves has even real dimension).

Other Floer Cohomology Groups

1. Floer homology $H F_{*}(\phi)$ of a symplectomorphism
$\phi: M \longrightarrow M$. The chain complex here is generated by fixed points of ϕ and the differential counts holomorphic strips $u: \mathbb{R} \times[0,1] \longrightarrow M$ satisfying $\phi(u(s, 1))=u(s, 0)$ for all $s \in \mathbb{R}$.

Other Floer Cohomology Groups

1. Floer homology $H F_{*}(\phi)$ of a symplectomorphism $\phi: M \longrightarrow M$. The chain complex here is generated by fixed points of ϕ and the differential counts holomorphic strips $u: \mathbb{R} \times[0,1] \longrightarrow M$ satisfying $\phi(u(s, 1))=u(s, 0)$ for all $s \in \mathbb{R}$.
2. Full contact homology $\mathrm{CH}_{*}(C, \xi)$ of a $2 n-1$-contact manifold (C, ξ) indexed by Conley-Zehnder index $+(n-3)$. Chain complex is the free supercommutative algebra generated by Reeb orbits of a compatible contact form λ. The differential is:

Number of holomorphic in the symplectization is the γ coefficient of $\partial\left(\gamma_{1} \gamma_{2} \gamma_{3}\right)$.

Floer homology of a symplectomorphism

- $(M, \theta)=$ Liouville domain and r_{M} is the cylindrical coordinate near ∂M.

Floer homology of a symplectomorphism

- $(M, \theta)=$ Liouville domain and r_{M} is the cylindrical coordinate near ∂M.
- Let $\phi: M \longrightarrow M$ be an exact symplectomorphism (I.e. $\left.\phi^{*} \theta=\theta+d F_{\phi}\right)$ so that $\phi=i d$ near ∂M and $F_{\phi}=0$ near ∂M.

Floer homology of a symplectomorphism

- $(M, \theta)=$ Liouville domain and r_{M} is the cylindrical coordinate near ∂M.
- Let $\phi: M \longrightarrow M$ be an exact symplectomorphism (I.e. $\left.\phi^{*} \theta=\theta+d F_{\phi}\right)$ so that $\phi=i d$ near ∂M and $F_{\phi}=0$ near ∂M.
- A positive slope perturbation of ϕ is a C^{∞} small perturbation to $\check{\phi}$ so that ϕ is the time 1 flow of the Hamiltonian δr_{M} near ∂M where $\delta>0$ is small (I.e. $\bar{\phi}$ is the time δ Reeb flow near $\partial M)$.
- Assume that ϕ is a graded symplectomorphism (enabling us to give fixed points a grading).
- Assume that ϕ is a graded symplectomorphism (enabling us to give fixed points a grading).
- Choose a generic positive slope perturbation $\check{\phi}$ of ϕ.
- Assume that ϕ is a graded symplectomorphism (enabling us to give fixed points a grading).
- Choose a generic positive slope perturbation $\check{\phi}$ of ϕ.
- The chain complex for $H F_{*}(\phi,+)$ is the free group generated by fixed points of $\check{\phi}$.
- Assume that ϕ is a graded symplectomorphism (enabling us to give fixed points a grading).
- Choose a generic positive slope perturbation $\check{\phi}$ of ϕ.
- The chain complex for $H F_{*}(\phi,+)$ is the free group generated by fixed points of $\check{\phi}$.
- Fix almost complex structures $\left(J_{t}\right)_{t \in[0,1]}$ which are cylindrical near ∂M. The differential counts smooth maps $u: \mathbb{R} \times[0,1] \longrightarrow M$ connecting these fixed points satisfying
- Assume that ϕ is a graded symplectomorphism (enabling us to give fixed points a grading).
- Choose a generic positive slope perturbation $\check{\phi}$ of ϕ.
- The chain complex for $H F_{*}(\phi,+)$ is the free group generated by fixed points of $\check{\phi}$.
- Fix almost complex structures $\left(J_{t}\right)_{t \in[0,1]}$ which are cylindrical near ∂M. The differential counts smooth maps $u: \mathbb{R} \times[0,1] \longrightarrow M$ connecting these fixed points satisfying 1. $\partial_{s} u(s, t)+J_{t} \partial_{t} u(s, t)=0$.
- Assume that ϕ is a graded symplectomorphism (enabling us to give fixed points a grading).
- Choose a generic positive slope perturbation $\check{\phi}$ of ϕ.
- The chain complex for $H F_{*}(\phi,+)$ is the free group generated by fixed points of $\check{\phi}$.
- Fix almost complex structures $\left(J_{t}\right)_{t \in[0,1]}$ which are cylindrical near ∂M. The differential counts smooth maps $u: \mathbb{R} \times[0,1] \longrightarrow M$ connecting these fixed points satisfying

1. $\partial_{s} u(s, t)+J_{t} \partial_{t} u(s, t)=0$.
2. $\phi(u(s, 1))=u(s, 0)$ for all $s \in \mathbb{R}$.

- Let $f: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ be a polynomial with at most one isolated singularity at 0 and no other singularities.
- Let $f: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ be a polynomial with at most one isolated singularity at 0 and no other singularities.
- Choose $0<\delta \ll \epsilon \ll 1$ and let $B(\epsilon) \subset \mathbb{C}^{n+1}$ be the closed ball of radius ϵ. Then $\left(M_{z}, \theta_{z}\right) \equiv\left(f^{-1}(z) \cap B(\epsilon), \frac{1}{2} \sum_{i} x_{i} d y_{i}-y_{i} d x_{i}\right)$ is a Liouville domain for all $|z|<\delta$ called the Milnor fiber of f.

- Let $f: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ be a polynomial with at most one isolated singularity at 0 and no other singularities.
- Choose $0<\delta \ll \epsilon \ll 1$ and let $B(\epsilon) \subset \mathbb{C}^{n+1}$ be the closed ball of radius ϵ. Then $\left(M_{z}, \theta_{z}\right) \equiv\left(f^{-1}(z) \cap B(\epsilon), \frac{1}{2} \sum_{i} x_{i} d y_{i}-y_{i} d x_{i}\right)$ is a Liouville domain for all $|z|<\delta$ called the Milnor fiber of f.

- The monodromy map $\phi_{f}: M_{\delta} \longrightarrow M_{\delta}$ around the loop $\epsilon e^{i t}, t \in[0,2 \pi]$ can be deformed to an exact symplectomorphism as above. It has a grading induced from \mathbb{C}^{n+1}.
- Defintion: A log resolution of $\left(\mathbb{C}^{n+1}, f^{-1}(0)\right)$ is a proper map $\pi: Y \longrightarrow \mathbb{C}$ so that
- Defintion: A log resolution of $\left(\mathbb{C}^{n+1}, f^{-1}(0)\right)$ is a proper map $\pi: Y \longrightarrow \mathbb{C}$ so that

1. $\left.\pi\right|_{Y-\pi^{-1}\left(f^{-1}(0)\right)}$ is a biholomorphism onto its image.

- Defintion: A log resolution of $\left(\mathbb{C}^{n+1}, f^{-1}(0)\right)$ is a proper map $\pi: Y \longrightarrow \mathbb{C}$ so that

1. $\left.\pi\right|_{Y-\pi^{-1}\left(f^{-1}(0)\right)}$ is a biholomorphism onto its image.
2. $\pi^{-1}\left(f^{-1}(0)\right)$ is a smooth normal crossing divisor $\left(D_{i}\right)_{i \in S}$.

- Defintion: A \log resolution of $\left(\mathbb{C}^{n+1}, f^{-1}(0)\right)$ is a proper map $\pi: Y \longrightarrow \mathbb{C}$ so that

1. $\left.\pi\right|_{Y-\pi^{-1}(f-1(0))}$ is a biholomorphism onto its image.
2. $\pi^{-1}\left(f^{-1}(0)\right)$ is a smooth normal crossing divisor $\left(D_{i}\right)_{i \in S}$.

- The hypersurfaces $\left(D_{i}\right)_{i \in S}$ are called resolution divisors and the hypersurfaces $\left(D_{i}\right)_{i \in \widehat{S}}, \widehat{S} \subset S$ satisfying $\pi\left(D_{i}\right)=\{0\}$ are called exceptional divisors.

- Defintion: A \log resolution of $\left(\mathbb{C}^{n+1}, f^{-1}(0)\right)$ is a proper map $\pi: Y \longrightarrow \mathbb{C}$ so that

1. $\left.\pi\right|_{Y-\pi^{-1}\left(f^{-1}(0)\right)}$ is a biholomorphism onto its image.
2. $\pi^{-1}\left(f^{-1}(0)\right)$ is a smooth normal crossing divisor $\left(D_{i}\right)_{i \in S}$.

- The hypersurfaces $\left(D_{i}\right)_{i \in S}$ are called resolution divisors and the hypersurfaces $\left(D_{i}\right)_{i \in \widehat{S}}, \widehat{S} \subset S$ satisfying $\pi\left(D_{i}\right)=\{0\}$ are called exceptional divisors.

- Goal: compute (parts of) $H F_{*}\left(\phi_{f},+\right)$ from a log resolution.

Simple example

- $f\left(z_{0}, \cdots, z_{n}\right)=z_{0}$.

Simple example

- $f\left(z_{0}, \cdots, z_{n}\right)=z_{0}$.
- The Milnor fiber is the ball of radius ϵ in \mathbb{C}^{n}.

Simple example

- $f\left(z_{0}, \cdots, z_{n}\right)=z_{0}$.
- The Milnor fiber is the ball of radius ϵ in \mathbb{C}^{n}.
- The monodromy map ϕ_{f} is the identity map, but the grading is non-trivial.

Simple example

- $f\left(z_{0}, \cdots, z_{n}\right)=z_{0}$.
- The Milnor fiber is the ball of radius ϵ in \mathbb{C}^{n}.
- The monodromy map ϕ_{f} is the identity map, but the grading is non-trivial.
- $H F_{*}\left(\phi_{f}^{m}\right)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=n+2 m \\ 0 & \text { otherwise }\end{array}\right.$.
- Define
$\Lambda\left(\phi_{f}^{m}\right):=\sum_{j=0}^{\infty}(-1)^{j} \operatorname{Tr}\left(\left(\phi_{f}\right)_{*}^{m}: H_{j}\left(M_{f} ; \mathbb{Z}\right) \longrightarrow H_{j}\left(M_{f} ; \mathbb{Z}\right)\right)$.
- Define $\Lambda\left(\phi_{f}^{m}\right):=\sum_{j=0}^{\infty}(-1)^{j} \operatorname{Tr}\left(\left(\phi_{f}\right)_{*}^{m}: H_{j}\left(M_{f} ; \mathbb{Z}\right) \longrightarrow H_{j}\left(M_{f} ; \mathbb{Z}\right)\right)$.
- The multiplicity m_{i} of f along D_{i} is the order of $(f \circ \pi)^{-1}(0)$ along D_{i}.
- Define $\Lambda\left(\phi_{f}^{m}\right):=\sum_{j=0}^{\infty}(-1)^{j} \operatorname{Tr}\left(\left(\phi_{f}\right)_{*}^{m}: H_{j}\left(M_{f} ; \mathbb{Z}\right) \longrightarrow H_{j}\left(M_{f} ; \mathbb{Z}\right)\right)$.
- The multiplicity m_{i} of f along D_{i} is the order of $(f \circ \pi)^{-1}(0)$ along D_{i}.
- Define $D_{i}^{o} \equiv D_{i}-\cup_{j \in S-i} D_{j}$ for all $i \in S$.
- Define

$$
\Lambda\left(\phi_{f}^{m}\right):=\sum_{j=0}^{\infty}(-1)^{j} \operatorname{Tr}\left(\left(\phi_{f}\right)_{*}^{m}: H_{j}\left(M_{f} ; \mathbb{Z}\right) \longrightarrow H_{j}\left(M_{f} ; \mathbb{Z}\right)\right) .
$$

- The multiplicity m_{i} of f along D_{i} is the order of $(f \circ \pi)^{-1}(0)$ along D_{i}.
- Define $D_{i}^{o} \equiv D_{i}-\cup_{j \in S-i} D_{j}$ for all $i \in S$.
- Theorem (A'Campo)

$$
\Lambda\left(\phi_{f}^{m}\right)=\sum_{\left\{i \in \widehat{S}: m_{i} \mid m\right\}} m_{i} \chi\left(D_{i}^{o}\right), \quad \forall m>0
$$

- Definition Let s_{Y} be a meromorphic section of an ample line bundle on Y with a pole of order w_{i} along D_{i} for all $i \in \widehat{S}$ and which is non-zero and holomorphic away from $\pi^{-1}(0)$. The wrapping number of D_{i} is defined to be w_{i}.
- Definition Let s_{Y} be a meromorphic section of an ample line bundle on Y with a pole of order w_{i} along D_{i} for all $i \in \widehat{S}$ and which is non-zero and holomorphic away from $\pi^{-1}(0)$. The wrapping number of D_{i} is defined to be w_{i}.
- Definition Choose a holomorphic coordinate chart x_{1}, \cdots, x_{n+1} centered at some point of D_{i}. The discrepancy a_{i} of D_{i} is the order of the Jacobian of $\pi\left(x_{1}, \cdots, x_{n}\right)$ along D_{i}.
- Definition A multiplicity m separating resolution $\pi: Y \longrightarrow \mathbb{C}^{n+1}$ is a log resolution as above so that $m_{i}+m_{j}>m$ for all $i, j \in S$ satisfying $D_{i j} \neq 0$. I.e. the sum of the multiplicities of adjacent resolution divisors is greater than m.
- Definition For each $i \in S$ let $N D_{i}$ be a small tubular neighborhood of D_{i} with boundary transverse to all of the strata of $\cup_{i} D_{i}$. Define $\widetilde{D}_{i} \equiv f^{-1}(\delta) \cap N D_{i}$ for $\delta>0$ sufficiently small.
This is homotopic to an m_{i}-fold cover of D_{i}^{o}.

- Theorem (M-98\% done):

Fix $m>0$, and let $\pi: Y \longrightarrow \mathbb{C}^{n+1}$ be a multiplicity m separating resolution. Then there is a spectral sequence converging to $H F_{*}\left(\phi_{f}^{m}\right)$ with E^{1} page

$$
\left.E_{p, q}^{1}=\bigoplus_{\left\{i \in \widehat{S}: \frac{m}{m_{i} \mid m}\right\}}^{\substack{m_{i} \\ w_{i}=p}} \right\rvert\, H_{n+p+q-2 m\left(\frac{a_{i}+1}{m_{i}}\right)}\left(\widetilde{D}_{i}\right)
$$

- Theorem (M-98\% done):

Fix $m>0$, and let $\pi: Y \longrightarrow \mathbb{C}^{n+1}$ be a multiplicity m separating resolution. Then there is a spectral sequence converging to $H F_{*}\left(\phi_{f}^{m}\right)$ with E^{1} page

$$
\left.E_{p, q}^{1}=\bigoplus_{\left\{i \in \widehat{S}: \frac{m}{m_{i} \mid m}\right\}}^{\substack{m_{i} \\ w_{i}=p}} \right\rvert\, H_{n+p+q-2 m\left(\frac{a_{i}+1}{m_{i}}\right)}\left(\widetilde{D}_{i}\right)
$$

- The Euler characteristic of the right hand side is naturally equal to $(-1)^{n}$ times the right hand side of A'Campo's formula above. Similarly the left hand side of A'Campo's formula is $(-1)^{n} \chi\left(H F_{*}\left(\phi_{f}^{m}\right)\right)$.

Simplest Example, $m=1$.

- Suppose $f\left(z_{1}, \cdots, z_{n+1}\right)=z_{1}$ and $m=1$.

Simplest Example, $\mathrm{m}=1$.

- Suppose $f\left(z_{1}, \cdots, z_{n+1}\right)=z_{1}$ and $m=1$.
- Multiplicity 1 separating resolution is 1-point blowup at 0 .

$$
D_{1}=f^{-1}(0)\left|\underset{D_{1}}{\stackrel{B l_{0}}{\rightleftarrows}}\right|^{\square}
$$

Simplest Example, $\mathrm{m}=1$.

- Suppose $f\left(z_{1}, \cdots, z_{n+1}\right)=z_{1}$ and $m=1$.
- Multiplicity 1 separating resolution is 1-point blowup at 0 .

- $m_{1}=1, m_{2}=1, w_{2}=1$ and $a_{2}=n-1$.

Simplest Example, $\mathrm{m}=1$.

- Suppose $f\left(z_{1}, \cdots, z_{n+1}\right)=z_{1}$ and $m=1$.
- Multiplicity 1 separating resolution is 1 -point blowup at 0 .

- $m_{1}=1, m_{2}=1, w_{2}=1$ and $a_{2}=n-1$.
- Our spectral sequence degenerates and we get:

$$
H F_{*}\left(\phi_{f}\right)=\left\{\begin{array}{cc}
\mathbb{Z} & \text { if } *=n \\
0 & \text { otherwise }
\end{array}\right.
$$

Simplest Example, $\mathrm{m}=2, \mathrm{n}=2$.

- Suppose $n=2, f\left(z_{1}, z_{2}\right)=z_{1}$ and $m=2$.

Simplest Example, $\mathrm{m}=2, \mathrm{n}=2$.

- Suppose $n=2, f\left(z_{1}, z_{2}\right)=z_{1}$ and $m=2$.
- Multiplicity 1 separating resolution is 1 -point blowup at 0 followed by an additional blowup along the intersection of the exceptional divisor with the proper transform.

Simplest Example, $\mathrm{m}=2, \mathrm{n}=2$.

- Suppose $n=2, f\left(z_{1}, z_{2}\right)=z_{1}$ and $m=2$.
- Multiplicity 1 separating resolution is 1 -point blowup at 0 followed by an additional blowup along the intersection of the exceptional divisor with the proper transform.

$$
D_{1}=f^{-1}(0)\left|\stackrel{B l_{0}}{\stackrel{B}{\leftrightarrows}} \underset{D_{1}}{\stackrel{D_{D_{1} \cap D_{2}}}{\leftrightarrows}}\right|_{D_{1}} \overbrace{D_{3}}^{D_{2}}
$$

- $w_{2}=2, w_{3}=3, m_{2}=1, m_{3}=2, a_{1}=1, a_{2}=2$ and $H_{*}\left(\widetilde{D}_{2}^{o}\right)=H_{*}(\mathrm{pt})$ and $H_{*}\left(\widetilde{D}_{3}^{o}\right)=H_{*}\left(S^{1}\right)$.

$$
\begin{array}{cccccc}
\mid & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \\
1 & 0 & 0 & \mathbb{Z} & \mathbb{Z} & 0 \\
0 & 0 & 0 & \mathbb{Z} & 0 & 0 \\
0 & 0 & 0 & \mathbb{Z} & \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

Case: $n=2$
$H F_{*}\left(\phi_{f}^{2}\right)=\left\{\begin{array}{cc}\mathbb{Z} & \text { if } *=4 \\ 0 & \text { otherwise. }\end{array}\right\}$

Example 2, $x^{2}+y^{3}, m=1,2,3,4,5$

$$
\begin{aligned}
& H_{*}\left(\widetilde{D}_{3}^{o}\right)=\oplus_{i=1}^{2} H_{*}\left(S^{1}\right) \begin{aligned}
& m_{4}=6 a_{4}=4 \\
& D_{4}=14
\end{aligned} \\
& x^{2}+y^{3}=0 \\
& \\
& H_{*}\left(\widetilde{D}_{2}^{o}\right)=H_{*}\left(S^{1}\right) H_{*}\left(\widetilde{D}_{3}^{o}\right)=H_{*}\left(S^{1}\right)
\end{aligned}
$$

1. $H F_{*}\left(\phi_{f}^{m}\right)=0$ if $m=1,5$,
2. $H F_{*}\left(\phi_{f}^{2}\right)=H_{*-2}\left(S^{1}\right)$,
3. $H F_{*}\left(\phi_{f}^{3}\right)=H_{*-4}\left(S^{1}\right)$ and
4. $H F_{*}\left(\phi_{f}^{4}\right)=H_{*-6}\left(S^{1}\right)$.

$$
f(x, y)=x^{2}+y^{3}
$$

Having said that, we cannot use the spectral sequence to compute $H F_{*}\left(\phi_{f}^{6}\right)$ since our E^{1} page is:

$$
\begin{array}{llllllllllllllllll}
0 & 0 & 0 & -0 & -0 & -0 & 0 & -0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \mathbf{0} \rightarrow
$$

- But, ϕ_{f}^{7} is fine.

- $H F_{*}\left(\phi_{f}^{7}\right)=H^{*-11}\left(S^{1}\right)$.
- Theorem 2 Fix $m>0$. Let $\pi: Y \longrightarrow \mathbb{C}^{n+1}$ be a multiplicity m separating resolution with exceptional divisors $\left(D_{i}\right)_{i \in \widehat{S}}$ of multiplicity $\left(m_{i}\right)_{i \in \widehat{S}}$ and discrepancy $\left(a_{i}\right)_{i \in \widehat{S}}$. Define $S_{m} \equiv\left\{i \in \widehat{S}: m_{i} \mid m\right\}$. Then
$\inf \left\{\alpha: H F_{\alpha}\left(\phi_{f}^{m},+\right) \neq 0\right\}=\inf \left\{2 m\left(\frac{a_{i}+1}{m_{i}}\right)-n: i \in S_{m}\right\}$.

In particular, $H F_{*}\left(\phi_{f}^{m},+\right)$ vanishes if and only if m_{i} does not divide m for each $i \in \widehat{S}$.

Proof

This is the lowest non-zero E^{1} term on the lowest diagonal.

This term exists since $\operatorname{dim}\left(\oplus_{p, q} E_{p, q}^{1}\right)<\infty$ and it survives to the E^{∞} page since all differentials connecting this term have source or target 0 .

Multiplicity

- Definition The multiplicity mult ${ }_{0} f$ of f at 0 is defined to be the degree of the lowest homogeneous term of f.

Multiplicity

- Definition The multiplicity mult ${ }_{0} f$ of f at 0 is defined to be the degree of the lowest homogeneous term of f.
- E.g. $\operatorname{mult}_{0}\left(x^{2}+y^{3}\right)=2$.

Multiplicity

- Definition The multiplicity mult ${ }_{0} f$ of f at 0 is defined to be the degree of the lowest homogeneous term of f.
- E.g. $\operatorname{mult}_{0}\left(x^{2}+y^{3}\right)=2$.
- Lemma: mult $_{0} f=\min _{i \in \widehat{S}} m_{i}$.
E.g.

$$
m_{4}=6
$$

Here $\operatorname{mult}_{0}\left(x^{2}+y^{3}\right)=\min \left(m_{2}, m_{3}, m_{4}\right)=2$.

Corollary of Theorem 2: $\operatorname{mult}_{0}(f)=\inf _{m} H F_{*}\left(\phi_{f}^{m},+\right) \neq 0$.
This proves a conjecture by Seidel.
E.g.

If $f=x^{2}+y^{3}$ then $H F_{*}\left(\phi_{f},+\right)=0$ but $H F_{*}\left(\phi_{f}^{2},+\right)=H_{*-2}\left(S^{1}\right) \neq 0$.

Log Canonical Threshold

- The log canonical threshold of f at 0 is defined as

$$
\operatorname{lct}_{0}(f) \equiv \sup \left\{s>0: \frac{1}{|f|^{2 s}} \text { is locally integrable near } 0\right\}
$$

Log Canonical Threshold

- The log canonical threshold of f at 0 is defined as

$$
\operatorname{lct}_{0}(f) \equiv \sup \left\{s>0: \frac{1}{|f|^{2 s}} \text { is locally integrable near } 0\right\}
$$

- Introduced by work of Atiyah.

Log Canonical Threshold

- The \log canonical threshold of f at 0 is defined as

$$
\operatorname{Ict}_{0}(f) \equiv \sup \left\{s>0: \frac{1}{|f|^{2 s}} \text { is locally integrable near } 0\right\} .
$$

- Introduced by work of Atiyah.
- If $f \in \mathbb{Z}\left[x_{0}, \cdots, x_{n}\right]$ then $\operatorname{Ict}_{0}(f)$ is related to the rate of growth of the number of solutions of f in $\mathbb{Z} / p^{m} \mathbb{Z}$ as $m \rightarrow \infty$ (Igusa).

Log Canonical Threshold

- The \log canonical threshold of f at 0 is defined as

$$
\operatorname{lct}_{0}(f) \equiv \sup \left\{s>0: \frac{1}{|f|^{2 s}} \text { is locally integrable near } 0\right\}
$$

- Introduced by work of Atiyah.
- If $f \in \mathbb{Z}\left[x_{0}, \cdots, x_{n}\right]$ then $\operatorname{Ict}_{0}(f)$ is related to the rate of growth of the number of solutions of f in $\mathbb{Z} / p^{m} \mathbb{Z}$ as $m \rightarrow \infty$ (Igusa).
- A version of this invariant can be used as a criterion for the existence of Kähler Einstein metrics (Tian).

Log Canonical Threshold

- The \log canonical threshold of f at 0 is defined as

$$
\operatorname{lct}_{0}(f) \equiv \sup \left\{s>0: \frac{1}{|f|^{2 s}} \text { is locally integrable near } 0\right\}
$$

- Introduced by work of Atiyah.
- If $f \in \mathbb{Z}\left[x_{0}, \cdots, x_{n}\right]$ then $\operatorname{Ict}_{0}(f)$ is related to the rate of growth of the number of solutions of f in $\mathbb{Z} / p^{m} \mathbb{Z}$ as $m \rightarrow \infty$ (Igusa).
- A version of this invariant can be used as a criterion for the existence of Kähler Einstein metrics (Tian).
- Used for proving vanishing theorems in algebraic geometry (helpful in birational geometry).

Log Canonical Threshold

- The log canonical threshold of f at 0 is defined as

$$
\operatorname{lct}_{0}(f) \equiv \sup \left\{s>0: \frac{1}{|f|^{2 s}} \text { is locally integrable near } 0\right\}
$$

- Introduced by work of Atiyah.
- If $f \in \mathbb{Z}\left[x_{0}, \cdots, x_{n}\right]$ then $\operatorname{Ict}_{0}(f)$ is related to the rate of growth of the number of solutions of f in $\mathbb{Z} / p^{m} \mathbb{Z}$ as $m \rightarrow \infty$ (Igusa).
- A version of this invariant can be used as a criterion for the existence of Kähler Einstein metrics (Tian).
- Used for proving vanishing theorems in algebraic geometry (helpful in birational geometry).
- A version of Ict has been used to prove certain Fano manifolds are non-rational (Corti, de Fernex, Ein, Mustata).
- Lemma: Let $\pi: Y \longrightarrow \mathbb{C}^{n+1}$ be a log resolution for $\left(\mathbb{C}^{n+1}, f^{-1}(0)\right)$ with exceptional divisors $\left(D_{i}\right)_{i \in \widehat{S}}$ of multiplicity $\left(m_{i}\right)_{i \in \widehat{S}}$ and discrepancy $\left(a_{i}\right)_{i \in \widehat{S}}$. Then

$$
\operatorname{Ict}_{0}(f)=\min \left\{\beta: \beta=\frac{a_{i}+1}{m_{i}} \text { for some } i \text { or } \beta=1\right\}
$$

- Lemma: Let $\pi: Y \longrightarrow \mathbb{C}^{n+1}$ be a log resolution for $\left(\mathbb{C}^{n+1}, f^{-1}(0)\right)$ with exceptional divisors $\left(D_{i}\right)_{i \in \hat{S}}$ of multiplicity $\left(m_{i}\right)_{i \in \widehat{S}}$ and discrepancy $\left(a_{i}\right)_{i \in \widehat{S}}$. Then

$$
\operatorname{Ict}_{0}(f)=\min \left\{\beta: \beta=\frac{a_{i}+1}{m_{i}} \text { for some } i \text { or } \beta=1\right\}
$$

- proof idea: $\frac{1}{|f|^{2 s}}$ is integrable near 0 iff its pullback to Y is integrable near $\pi^{-1}(0)$ with respect to the pullback measure. Use a change of variables formula.
- Lemma: Let $\pi: Y \longrightarrow \mathbb{C}^{n+1}$ be a log resolution for $\left(\mathbb{C}^{n+1}, f^{-1}(0)\right)$ with exceptional divisors $\left(D_{i}\right)_{i \in \hat{S}}$ of multiplicity $\left(m_{i}\right)_{i \in \widehat{S}}$ and discrepancy $\left(a_{i}\right)_{i \in \widehat{S}}$. Then

$$
\operatorname{Ict}_{0}(f)=\min \left\{\beta: \beta=\frac{a_{i}+1}{m_{i}} \text { for some } i \text { or } \beta=1\right\} .
$$

- proof idea: $\frac{1}{|f|^{2 s}}$ is integrable near 0 iff its pullback to Y is integrable near $\pi^{-1}(0)$ with respect to the pullback measure. Use a change of variables formula.
- Corollary: $\operatorname{lct}_{0}(f)$ is a rational number.
E.g.

$\operatorname{lct}_{0}\left(x^{2}+y^{2}\right)=\min \left(\frac{1+1}{2}, \frac{2+1}{3}, \frac{4+1}{6}\right)=\frac{5}{6}$.

Aside: Counting Solutions Mod p^{m}

- Suppose $f \in \mathbb{Z}\left[z_{0}, \cdots, z_{n}\right]$ and let N_{k} be the number of solutions of $f=0 \bmod p^{k}(p$ is a fixed prime $)$.

Aside: Counting Solutions Mod p^{m}

- Suppose $f \in \mathbb{Z}\left[z_{0}, \cdots, z_{n}\right]$ and let N_{k} be the number of solutions of $f=0 \bmod p^{k}(p$ is a fixed prime).
- Theorem (Igusa). $Z_{p}(f):=\sum_{k \in \mathbb{N}} p^{-k n} N_{k} z^{k}$ is a meromorphic function whose nearest pole is at $-\operatorname{lct}_{0}(f)$. (Proof uses p-adic integration).

Aside: Counting Solutions Mod p^{m}

- Suppose $f \in \mathbb{Z}\left[z_{0}, \cdots, z_{n}\right]$ and let N_{k} be the number of solutions of $f=0 \bmod p^{k}(p$ is a fixed prime).
- Theorem (Igusa). $Z_{p}(f):=\sum_{k \in \mathbb{N}} p^{-k n} N_{k} z^{k}$ is a meromorphic function whose nearest pole is at $-\operatorname{lct}_{0}(f)$. (Proof uses p-adic integration).
- This means that we know the radius of convergence of $Z_{p}(f)$ which can be used to estimate the growth of N_{k}.
- E.g. (ratio test):

$$
\lim \frac{p^{-(k+1) n} N_{k+1}}{p^{-k n} N_{k}}|z|=\lim \frac{N_{k+1}}{p^{n} N_{k}}<1 \quad \text { iff } \quad|z|<\operatorname{lct}_{0}(f) .
$$

- E.g. (ratio test):

$$
\lim \frac{p^{-(k+1) n} N_{k+1}}{p^{-k n} N_{k}}|z|=\lim \frac{N_{k+1}}{p^{n} N_{k}}<1 \quad \text { iff } \quad|z|<\operatorname{lct}_{0}(f) .
$$

- Hence $\exists C_{1}, C_{2}$ such that

$$
C_{1}\left(\frac{p^{n}}{\operatorname{lct}_{0}(f)}\right)^{k}<N_{k}<C_{2}\left(\frac{p^{n}}{\operatorname{lct}_{0}(f)}\right)^{k} \quad \forall k
$$

- Reminder: Theorem 2 gives us the formula:

$$
\inf \left\{\alpha: H F_{\alpha}\left(\phi_{f}^{m},+\right) \neq 0\right\}=\inf \left\{2 m\left(\frac{a_{i}+1}{m_{i}}\right)-n: i \in S_{m}\right\}
$$

Hence:

- Reminder: Theorem 2 gives us the formula:

$$
\inf \left\{\alpha: H F_{\alpha}\left(\phi_{f}^{m},+\right) \neq 0\right\}=\inf \left\{2 m\left(\frac{a_{i}+1}{m_{i}}\right)-n: i \in S_{m}\right\}
$$

Hence:

- Corollary of Theorem 2:

$$
\operatorname{lct}_{0}(f)=\inf \left\{\frac{\alpha+n}{2 m}: H F_{\alpha}\left(\phi_{f}^{m}\right) \neq 0 \text { or } \frac{\alpha+n}{2 m}=1\right\}
$$

- Lemma (Varchenko) For all sufficiently small $\epsilon>0$, $L_{f} \equiv f^{-1}(0) \cap S(\epsilon)$ is a contact submanifold of the ϵ-sphere $S(\epsilon) \subset \mathbb{C}^{n+1}$.
- Lemma (Varchenko) For all sufficiently small $\epsilon>0$, $L_{f} \equiv f^{-1}(0) \cap S(\epsilon)$ is a contact submanifold of the ϵ-sphere $S(\epsilon) \subset \mathbb{C}^{n+1}$.
- Definition: The embedded link of f at zero is the contact submanifold $L_{f} \subset S(\epsilon)$.
- Lemma (Varchenko) For all sufficiently small $\epsilon>0$, $L_{f} \equiv f^{-1}(0) \cap S(\epsilon)$ is a contact submanifold of the ϵ-sphere $S(\epsilon) \subset \mathbb{C}^{n+1}$.
- Definition: The embedded link of f at zero is the contact submanifold $L_{f} \subset S(\epsilon)$.
- f_{1} and f_{2} have contactomorphic embedded links if there is a coorientation preserving contactomorphism $S(\epsilon) \longrightarrow S(\epsilon)$ sending $L_{f_{1}}$ to $L_{f_{2}}$.
- Lemma (Varchenko) For all sufficiently small $\epsilon>0$, $L_{f} \equiv f^{-1}(0) \cap S(\epsilon)$ is a contact submanifold of the ϵ-sphere $S(\epsilon) \subset \mathbb{C}^{n+1}$.
- Definition: The embedded link of f at zero is the contact submanifold $L_{f} \subset S(\epsilon)$.
- f_{1} and f_{2} have contactomorphic embedded links if there is a coorientation preserving contactomorphism $S(\epsilon) \longrightarrow S(\epsilon)$ sending $L_{f_{1}}$ to $L_{f_{2}}$.
- Theorem If f_{1} and f_{2} have contactomorphic embedded links then $H F_{*}\left(\phi_{f_{1}}^{m}\right)=H F_{*}\left(\phi_{f_{2}}^{m}\right), \forall m>0$.
- Zariski Conjecture: Let $f_{1}, f_{2}: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ have isolated singularities at 0 and suppose that there is a diffeomorphism $S(\epsilon) \longrightarrow S(\epsilon)$ sending $L_{f_{1}}$ to $L_{f_{2}}$ then is the multiplicity of f_{1} equal to the multiplicity of f_{2} ?
- Zariski Conjecture: Let $f_{1}, f_{2}: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ have isolated singularities at 0 and suppose that there is a diffeomorphism $S(\epsilon) \longrightarrow S(\epsilon)$ sending $L_{f_{1}}$ to $L_{f_{2}}$ then is the multiplicity of f_{1} equal to the multiplicity of f_{2} ?
- Question: What about log canonical Threshold? (See N. Budur 2012).
- Zariski Conjecture: Let $f_{1}, f_{2}: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ have isolated singularities at 0 and suppose that there is a diffeomorphism $S(\epsilon) \longrightarrow S(\epsilon)$ sending $L_{f_{1}}$ to $L_{f_{2}}$ then is the multiplicity of f_{1} equal to the multiplicity of f_{2} ?
- Question: What about log canonical Threshold? (See N. Budur 2012).
- Corollary: Suppose f_{1} and f_{2} have contactomorphic embedded links, then they have the same multiplicity and log canonical threshold at 0 .
- Zariski Conjecture: Let $f_{1}, f_{2}: \mathbb{C}^{n+1} \longrightarrow \mathbb{C}$ have isolated singularities at 0 and suppose that there is a diffeomorphism $S(\epsilon) \longrightarrow S(\epsilon)$ sending $L_{f_{1}}$ to $L_{f_{2}}$ then is the multiplicity of f_{1} equal to the multiplicity of f_{2} ?
- Question: What about log canonical Threshold? (See N. Budur 2012).
- Corollary: Suppose f_{1} and f_{2} have contactomorphic embedded links, then they have the same multiplicity and log canonical threshold at 0 .
- For instance, if $f_{1}, f_{2} \in \mathbb{Z}\left[z_{0}, \cdots, z_{n}\right]$ then the number N_{k}^{1}, N_{k}^{2} of solutions of $f_{1}=0$ and $f_{2}=0 \bmod p^{k}$ respectively satisfy

$$
C_{1} N_{k}^{1}<N_{k}^{2}<C_{2} N_{k}^{2}
$$

for some constants C_{1}, C_{2}.

Full Contact Homology

Full contact homology $\mathrm{CH}_{*}(C, \xi)$ of a $2 n-1$-contact manifold (C, ξ) indexed by Conley-Zehnder index $+(n-3)$. Chain complex is the free supercommutative algebra generated by Reeb orbits of a compatible contact form λ. The differential is:

Number of holomorphic in the symplectization is the γ coefficient of $\partial\left(\gamma_{1} \gamma_{2} \gamma_{3}\right)$.

$$
\gamma_{1}
$$

- An isolated singularity $A \subset \mathbb{C}^{N}$ is the germ at 0 of an affine variety $A \equiv\left\{z \in \mathbb{C}^{n}: f_{1}=\cdots=f_{l}=0\right\}$ with an isolated singularity at 0 , or is smooth at 0 (I.e. the matrix $\left(\frac{\partial f_{i}}{\partial z_{j}}\right)_{i, j}$ has constant rank on $U-\{0\}$ where U is a neighborhood of 0).
- An isolated singularity $A \subset \mathbb{C}^{N}$ is the germ at 0 of an affine variety $A \equiv\left\{z \in \mathbb{C}^{n}: f_{1}=\cdots=f_{l}=0\right\}$ with an isolated singularity at 0 , or is smooth at 0 (I.e. the matrix $\left(\frac{\partial f_{i}}{\partial z_{j}}\right)_{i, j}$ has constant rank on $U-\{0\}$ where U is a neighborhood of 0).
- Lemma (Varchenko): $L_{A} \equiv A \cap S(\epsilon)$ is a contact manifold with contact structure $\xi_{A} \equiv T L_{A} \cap J_{0} T L_{A}$ where $J_{0}: T \mathbb{C}^{N} \longrightarrow T \mathbb{C}^{N}$ is the standard complex structure.
- An isolated singularity $A \subset \mathbb{C}^{N}$ is the germ at 0 of an affine variety $A \equiv\left\{z \in \mathbb{C}^{n}: f_{1}=\cdots=f_{l}=0\right\}$ with an isolated singularity at 0 , or is smooth at 0 (I.e. the matrix $\left(\frac{\partial f_{i}}{\partial z_{j}}\right)_{i, j}$ has constant rank on $U-\{0\}$ where U is a neighborhood of 0).
- Lemma (Varchenko): $L_{A} \equiv A \cap S(\epsilon)$ is a contact manifold with contact structure $\xi_{A} \equiv T L_{A} \cap J_{0} T L_{A}$ where $J_{0}: T \mathbb{C}^{N} \longrightarrow T \mathbb{C}^{N}$ is the standard complex structure.
- We call $\left(L_{A}, \xi_{A}\right)$ the link of A at 0 .
- A resolution of A at 0 is a proper morphism $\pi: Y \longrightarrow A$ so that

1. Y is smooth.
2. $\left.\pi\right|_{\pi^{-1}(U-\{0\})}$ is a biholomorphism onto its image for some small neighborhood U of 0 ,
3. $\pi^{-1}(0)$ is a smooth normal crossing divisor $\left(D_{i}\right)_{i \in S}$.

The divisors $\left(D_{i}\right)_{i \in S}$ are called exceptional divisors.

Y

- An isolated singularity A is numerically Gorenstein if $c_{1}\left(L_{A}, \xi_{A}\right)=0$. It is numerically \mathbb{Q}-Gorenstein if $c_{1}\left(L_{A}, \xi_{A}\right)$ is torsion.
- An isolated singularity A is numerically Gorenstein if $c_{1}\left(L_{A}, \xi_{A}\right)=0$. It is numerically \mathbb{Q}-Gorenstein if $c_{1}\left(L_{A}, \xi_{A}\right)$ is torsion.
- The discrepancy a_{i} of an exceptional divisor D_{i} of a numerically \mathbb{Q}-Gorenstein singularity is defined as follows: Let $\widetilde{A}_{\epsilon} \equiv \pi^{-1}(A \cap B(\epsilon))$ where $B(\epsilon)$ is the closed ϵ ball. Then $\partial \widetilde{A}_{\epsilon}=L_{A}$. Also one can show that $c_{1}\left(\widetilde{A}_{\epsilon} ; \mathbb{Q}\right) \in H^{2}\left(\widetilde{A}_{\epsilon} ; \mathbb{Q}\right)$ lifts to a unique class in $H^{2}\left(\widetilde{A}_{\epsilon}, L_{A} ; \mathbb{Q}\right)$. The Lefschetz dual of this class is a unique sum $\sum_{i} a_{i}\left[D_{i}\right] \in H_{n-2}\left(\widetilde{A}_{\epsilon} ; \mathbb{Q}\right)$. We define the discrepancy of D_{i} to be a_{i}.

- Let $\pi: Y \longrightarrow A$ be a resolution. Suppose that we have an ample line bundle and a meromorphic section which is non-zero away from $\pi^{-1}(0)$ and has a non-trivial pole of order w_{i} along D_{i} for each $i \in S$. Then the wrapping number w_{i} of D_{i} is the order of this pole along D_{i}.
- Let $N D_{l}$ be a small tubular neighborhood of D_{l} whose boundary is transverse to the strata of $\cup_{i} D_{i}$ and so that $N D_{I} \cap D_{I^{\prime}}$ is a tubular neighborhood of $N D_{I \cup I^{\prime}}$ for all $I, I^{\prime} \subset S$. Define $N{ }^{\prime} D_{I} \equiv N D_{I}-\cup_{i \in S-I} D_{i}$.
- Let $N D_{l}$ be a small tubular neighborhood of D_{l} whose boundary is transverse to the strata of $\cup_{i} D_{i}$ and so that $N D_{I} \cap D_{I^{\prime}}$ is a tubular neighborhood of $N D_{I \cup I^{\prime}}$ for all $I, I^{\prime} \subset S$. Define $N{ }^{\prime} D_{I} \equiv N D_{I}-\cup_{i \in S-I} D_{i}$.
- This is a fiber bundle over $D_{l}-\cup_{i \in S-I} D_{i}$ with fiber $(\mathbb{D}-0)^{|I|}$.
- Let $N D_{l}$ be a small tubular neighborhood of D_{l} whose boundary is transverse to the strata of $\cup_{i} D_{i}$ and so that $N D_{I} \cap D_{I^{\prime}}$ is a tubular neighborhood of $N D_{I \cup \prime \prime}$ for all $I, I^{\prime} \subset S$. Define $N \check{N} D_{I} \equiv N D_{I}-\cup_{i \in S-I} D_{i}$.
- This is a fiber bundle over $D_{l}-\cup_{i \in S-I} D_{i}$ with fiber $(\mathbb{D}-0)^{|I|}$.
- Hence for each tuple $\left(b_{i}\right)_{i \in I}$ of integers, there is a $U(1)$ action on $\check{N} D_{\text {I }}$ preserving the fibers so that $\beta \in U(1)$ sends a point $\left(x_{i}\right)_{i \in I} \in(\mathbb{D}-0)^{|I|}$ to $\left(\beta^{b_{i}} x_{i}\right)_{i \in I}$. Let $\bar{N} D_{I}^{/\left(b_{i}\right)}$ be the corresponding quotient.

Conjecture.

Let $\pi: Y \longrightarrow A$ be a resolution of an isolated numerically \mathbb{Q}-Gorenstein singularity A with exceptional divisors $\left(D_{i}\right)_{i \in S}$.
Define

$$
A_{p, q} \equiv \bigoplus_{\left\{\left(k_{i}\right) \in \mathbb{N}^{S}: \sum_{i} k_{i} w_{i}=p\right\}} H_{p+q-2 \sum_{i} k_{i} a_{i}}\left(\bar{N} D_{l_{\left(k_{i}\right)}}^{/\left(k_{i}\right)} ; \mathbb{Q}\right)
$$

where $I_{\left(k_{i}\right)} \equiv\left\{i \in S: k_{i} \neq 0\right\}$.
Then there is a spectral sequence converging to $C H_{*}\left(L_{A}, \xi_{A}\right)$ with E^{1} page equal to the free supercommutative algebra generated by the bigraded vector space $A_{*, *}$. I.e.

$$
E_{*, *}^{1}=\bigoplus_{n \geq 0} \operatorname{Sym}_{\mathbb{Q}}^{n}\left(A_{*, *}\right) .
$$

- Definition: A is a \log canonical singularity if $a_{i} \geq-1$ for all $i \in S$.
- Definition: A is a log canonical singularity if $a_{i} \geq-1$ for all $i \in S$.
- The minimal discrepancy $\operatorname{md}_{0}(A)$ of log canonical singularity is $\min _{i} a_{i}$. This measures how 'singular' A is at 0 (the higher the number, the less singular). We define $\operatorname{md}_{0}(A) \equiv-\infty$ if A is not log canonical.
- Definition: A is a \log canonical singularity if $a_{i} \geq-1$ for all $i \in S$.
- The minimal discrepancy $\operatorname{md}_{0}(A)$ of log canonical singularity is $\min _{i} a_{i}$. This measures how 'singular' A is at 0 (the higher the number, the less singular). We define $\operatorname{md}_{0}(A) \equiv-\infty$ if A is not log canonical.
- Shokurov Conjecture A is smooth at 0 if $\operatorname{md}_{0}(A)$ is $n-1$.
- Definition: A is a \log canonical singularity if $a_{i} \geq-1$ for all $i \in S$.
- The minimal discrepancy $\operatorname{md}_{0}(A)$ of log canonical singularity is $\min _{i} a_{i}$. This measures how 'singular' A is at 0 (the higher the number, the less singular). We define $\operatorname{md}_{0}(A) \equiv-\infty$ if A is not log canonical.
- Shokurov Conjecture A is smooth at 0 if $\operatorname{md}_{0}(A)$ is $n-1$.
- Work of de Fernex and Yu-Chao proves this conjecture when the tangent cone of A at 0 has a reduced component.
- Theorem (assuming spectral sequence conjecture.) If A is log canonical and numerically Q-Gorenstein then the smallest degree for which $C H_{*}\left(L_{A}, \xi_{A}\right) / \mathbb{Q}\langle i d\rangle$ is non-zero is $2 \mathrm{md}_{0}(A)$. Here $\mathbb{Q}\langle i d\rangle$ is the subvector space spanned by the identity element.
- Theorem (assuming spectral sequence conjecture.) If A is log canonical and numerically Q-Gorenstein then the smallest degree for which $C H_{*}\left(L_{A}, \xi_{A}\right) / \mathbb{Q}\langle i d\rangle$ is non-zero is $2 \mathrm{md}_{0}(A)$. Here $\mathbb{Q}\langle i d\rangle$ is the subvector space spanned by the identity element.
- Proof idea: Find the largest p satisfying $E_{p, q}^{1} \neq 0$ where $q=2 \operatorname{md}_{0}(A)-p$. This cannot kill or be killed by any differential $d_{p, q}^{r}, r>0$.
- Question: Can $C H_{*}\left(L_{A}, \xi_{A}\right)$ detect whether A is log canonical or not? (I.e. whether $\operatorname{md}_{0}(A)=-\infty$ or not)?
- Question: Can $C H_{*}\left(L_{A}, \xi_{A}\right)$ detect whether A is log canonical or not? (l.e. whether $\operatorname{md}_{0}(A)=-\infty$ or not)?
- This would reprove the theorem ($\mathrm{M}-2014$) that $\left(L_{A}, \xi_{A}\right)$ detects smoothness of A at 0 assuming Shokurov's conjecture.

Construction of the Spectral Sequence.

- All of the above spectral sequences are Morse-Bott spectral sequences. What are they?

Construction of the Spectral Sequence.

- All of the above spectral sequences are Morse-Bott spectral sequences. What are they?
- Let (C, α) be a manifold with contact form. A Morse-Bott submanifold is a submanifold of C consisting of periodic Reeb orbits of α which is non-degenerate in the normal direction (I.e. the 1-eigenspace of the linearized return map is tangent to our submanifold).

Construction of the Spectral Sequence.

- All of the above spectral sequences are Morse-Bott spectral sequences. What are they?
- Let (C, α) be a manifold with contact form. A Morse-Bott submanifold is a submanifold of C consisting of periodic Reeb orbits of α which is non-degenerate in the normal direction (l.e. the 1 -eigenspace of the linearized return map is tangent to our submanifold).
- We say that (C, α) is Morse-Bott if every Reeb orbit sits inside a Morse-Bott submanifold.
- Now suppose that we have a Liouville domain (M, θ). Recall that the chain complex for $S H_{*}(M, \theta)$ consists of critical points of some Morse function in the interior of M plus two copies of each Reeb orbit after perturbing the Liouville form generically so that the contact form is non-degenerate.
- Now suppose that we have a Liouville domain (M, θ). Recall that the chain complex for $S H_{*}(M, \theta)$ consists of critical points of some Morse function in the interior of M plus two copies of each Reeb orbit after perturbing the Liouville form generically so that the contact form is non-degenerate.
- This chain complex has a natural increasing filtration given by the length of these Reeb orbits and where the critical points are at the bottom of this filtration. We will call this the action filtration.
- Let (\widehat{M}, θ) be the completion of (M, θ).
- Let (\widehat{M}, θ) be the completion of (M, θ).
- A Hamiltonian H on \widehat{M} is admissible if it is equal to λr_{M} near infinity where r_{M} is the cylindrical coordinate.
- Let (\widehat{M}, θ) be the completion of (M, θ).
- A Hamiltonian H on \widehat{M} is admissible if it is equal to λr_{M} near infinity where r_{M} is the cylindrical coordinate.
- Define $C F_{*}^{\leq b}(H)$ to be the Hamiltonian Floer chain complex consisting of 1 -periodic orbits of H of action $\leq b$ (I.e $\left.-\int_{S^{1}} \gamma^{*} \theta-\int_{S^{1}} H(\gamma(t)) d t<b\right)$.
- Let (\widehat{M}, θ) be the completion of (M, θ).
- A Hamiltonian H on \widehat{M} is admissible if it is equal to λr_{M} near infinity where r_{M} is the cylindrical coordinate.
- Define $C F_{*}^{\leq b}(H)$ to be the Hamiltonian Floer chain complex consisting of 1-periodic orbits of H of action $\leq b$ (I.e $\left.-\int_{S^{1}} \gamma^{*} \theta-\int_{S^{1}} H(\gamma(t)) d t<b\right)$.
- Define $C F_{*}^{[a, b]}(H):=C F_{*}^{\leq b}(H) / C F_{*}^{\leq a}(H)$ and let $H F_{*}^{[a, b]}(H)$ be the homology of this chain complex.
- Define $S H_{*}^{[a, b]}(M, \theta):=\underset{\longrightarrow}{\lim _{\rightarrow} H F_{*}^{[a, b]}(H) \text { where our direct limit }}$ is taken over admissible Hamiltonians H satisfying $\left.H\right|_{M}<0$.

- Lemma: Let $a_{i} \in \mathbb{R}, i \in \mathbb{N}$ be an increasing sequence tending to infinity where a_{i} is not the length or a Reeb orbit or 0 . There is a spectral sequence converging to $S H_{*}(M, \theta)$ with E^{1} page

$$
E_{p, q}^{1}=S H_{p+q}^{\left[a_{p}, a_{p+1}\right]}(M, \theta) .
$$

- Lemma: Let $a_{i} \in \mathbb{R}, i \in \mathbb{N}$ be an increasing sequence tending to infinity where a_{i} is not the length or a Reeb orbit or 0 . There is a spectral sequence converging to $S H_{*}(M, \theta)$ with E^{1} page

$$
E_{p, q}^{1}=S H_{p+q}^{\left[a_{p}, a_{p+1}\right]}(M, \theta)
$$

- Lemma: Suppose that the set of Reeb orbits of length in [a_{p}, a_{p+1}] is a finite union of connected Morse-Bott families $\left(B_{p}^{j}\right)_{j \in I_{p}}$ of Reeb orbits all of the same length. Then $S H_{p+q}^{\left[a_{p}, a_{p+1}\right]}(M, \theta)=\oplus_{j \in I_{p}} H^{p+q-C Z\left(B_{p}\right)}\left(B_{p}, \mathcal{L}_{B_{p}^{j}}\right)$ where $\mathcal{L}_{B_{p}^{j}}$ is a certain local coefficient system.
- By the two lemmas above:

Proposition: Suppose that (M, θ) has a Morse-Bott boundary and let $\left(B_{k}^{j}\right)_{k \in \mathbb{N}, j \in I_{k}}$ be the set of all of the Morse-Bott submanifolds so that

1. they are connected,
2. I_{k} is a finite set for all $k \in \mathbb{N}$,
3. the length of B_{k}^{j} is the length of $B_{k}^{j^{\prime}}$ for all $j, j^{\prime} \in I_{k}$ and these lengths tend to infinity as $k \rightarrow \infty$ and
4. the length of B_{k}^{j} is less than the length of $B_{k+1}^{j^{\prime}}$ for all $k \in \mathbb{N}$, $j \in I_{k}$ and $j^{\prime} \in I_{k+1}$.
Then there is spectral sequence converging to $S H_{p+q}(M)$ with E^{1} page

$$
E_{p, q}^{1}=\bigoplus_{j \in I_{p}} H^{p+q-C Z\left(B_{p}\right)}\left(B_{p}^{j}, \mathcal{L}_{B_{p}^{j}}\right)
$$

where $\mathcal{L}_{B_{p}^{j}}$ is a certain local coefficient system.

- Definition. An isolated family of Reeb orbits B of (C, α) of length / is a subset $B \subset C$ consisting of Reeb orbits of length / so that there is a neighborhood \mathcal{N} of B so that there are no Reeb orbits in \mathcal{N} of length in $[I-\epsilon, I+\epsilon]$ for some small $\epsilon>0$.
- Definition. An isolated family of Reeb orbits B of (C, α) of length / is a subset $B \subset C$ consisting of Reeb orbits of length / so that there is a neighborhood \mathcal{N} of B so that there are no Reeb orbits in \mathcal{N} of length in $[I-\epsilon, I+\epsilon]$ for some small $\epsilon>0$.
- Definition (c.f. Kirwan 1985): A minimally degenerate subset of length $/$ is a closed subset $B \subset C$ so that there is a function $f: C \longrightarrow(0, \infty)$ and a submanifold $N \subset C$ (possibly with boundary) satisfying
- Definition. An isolated family of Reeb orbits B of (C, α) of length / is a subset $B \subset C$ consisting of Reeb orbits of length / so that there is a neighborhood \mathcal{N} of B so that there are no Reeb orbits in \mathcal{N} of length in $[I-\epsilon, I+\epsilon]$ for some small $\epsilon>0$.
- Definition (c.f. Kirwan 1985): A minimally degenerate subset of length $/$ is a closed subset $B \subset C$ so that there is a function $f: C \longrightarrow(0, \infty)$ and a submanifold $N \subset C$ (possibly with boundary) satisfying

1. $B \subset N$,

- Definition. An isolated family of Reeb orbits B of (C, α) of length / is a subset $B \subset C$ consisting of Reeb orbits of length / so that there is a neighborhood \mathcal{N} of B so that there are no Reeb orbits in \mathcal{N} of length in $[I-\epsilon, I+\epsilon]$ for some small $\epsilon>0$.
- Definition (c.f. Kirwan 1985): A minimally degenerate subset of length $/$ is a closed subset $B \subset C$ so that there is a function $f: C \longrightarrow(0, \infty)$ and a submanifold $N \subset C$ (possibly with boundary) satisfying

1. $B \subset N$,
2. B is an isolated family of Reeb orbits of length I,

- Definition. An isolated family of Reeb orbits B of (C, α) of length / is a subset $B \subset C$ consisting of Reeb orbits of length / so that there is a neighborhood \mathcal{N} of B so that there are no Reeb orbits in \mathcal{N} of length in $[I-\epsilon, I+\epsilon]$ for some small $\epsilon>0$.
- Definition (c.f. Kirwan 1985): A minimally degenerate subset of length $/$ is a closed subset $B \subset C$ so that there is a function $f: C \longrightarrow(0, \infty)$ and a submanifold $N \subset C$ (possibly with boundary) satisfying

1. $B \subset N$,
2. B is an isolated family of Reeb orbits of length I,
3. N is a Morse-Bott submanifold of $(C, f \alpha)$,

- Definition. An isolated family of Reeb orbits B of (C, α) of length / is a subset $B \subset C$ consisting of Reeb orbits of length / so that there is a neighborhood \mathcal{N} of B so that there are no Reeb orbits in \mathcal{N} of length in $[I-\epsilon, I+\epsilon]$ for some small $\epsilon>0$.
- Definition (c.f. Kirwan 1985): A minimally degenerate subset of length $/$ is a closed subset $B \subset C$ so that there is a function $f: C \longrightarrow(0, \infty)$ and a submanifold $N \subset C$ (possibly with boundary) satisfying

1. $B \subset N$,
2. B is an isolated family of Reeb orbits of length I,
3. N is a Morse-Bott submanifold of $(C, f \alpha)$,
4. $f^{-1}(1)=B$ and 1 is the maximum of f.

- Definition. An isolated family of Reeb orbits B of (C, α) of length / is a subset $B \subset C$ consisting of Reeb orbits of length / so that there is a neighborhood \mathcal{N} of B so that there are no Reeb orbits in \mathcal{N} of length in $[I-\epsilon, I+\epsilon]$ for some small $\epsilon>0$.
- Definition (c.f. Kirwan 1985): A minimally degenerate subset of length $/$ is a closed subset $B \subset C$ so that there is a function $f: C \longrightarrow(0, \infty)$ and a submanifold $N \subset C$ (possibly with boundary) satisfying

1. $B \subset N$,
2. B is an isolated family of Reeb orbits of length I,
3. N is a Morse-Bott submanifold of $(C, f \alpha)$,
4. $f^{-1}(1)=B$ and 1 is the maximum of f.

- Definition : A minimally degenerate contact pair a contact pair (C, α) so that every periodic orbit is contained inside a minimally degenerate subset.
- We have a similar spectral sequence in this case (this isn't proven yet, really).

Proposition: Suppose that the boundary of (M, θ) is a minimally degenerate contact pair and let $\left(B_{k}^{j}\right)_{k \in \mathbb{N}, j \in I_{k}}$ be the set of all of the minimally degenerate subsets so that

1. they are connected,
2. I_{k} is a finite set for all $k \in \mathbb{N}$,
3. the length of B_{k}^{j} is the length of $B_{k}^{j^{\prime}}$ for all $j, j^{\prime} \in I_{k}$ and these lengths tend to infinity as $k \rightarrow \infty$ and
4. the length of B_{k}^{j} is less than the length of $B_{k+1}^{j^{\prime}}$ for all $k \in \mathbb{N}$, $j \in I_{k}$ and $j^{\prime} \in I_{k+1}$.
Then there is spectral sequence converging to $S H_{p+q}(M)$ with E^{1} page

$$
E_{p, q}^{1}=\bigoplus_{j \in I_{p}} H^{p+q-C Z\left(B_{p}\right)}\left(B_{p}^{j}, \mathcal{L}_{B_{p}^{j}}\right)
$$

where $\mathcal{L}_{B_{p}^{j}}$ is a certain local coefficient system.

- Our spectral sequence will be obtained by constructing an appropriate minimally degenerate contact form on the boundary of our Liouville domain.
- Our spectral sequence will be obtained by constructing an appropriate minimally degenerate contact form on the boundary of our Liouville domain.
- In order to find a such a boundary, we need to construct a symplectically nice neighborhood of the divisor in question (resolution divisor or compactifying divisor).
- Our spectral sequence will be obtained by constructing an appropriate minimally degenerate contact form on the boundary of our Liouville domain.
- In order to find a such a boundary, we need to construct a symplectically nice neighborhood of the divisor in question (resolution divisor or compactifying divisor).
- We need a purely symplectic notion of divisor. See 1011.2542 and work of M-Tehrani-Zinger.
- Let (X, ω) be a symplectic manifold. Let $\left(D_{i}\right)_{i \in S}$ be transversally intersecting codimension 2 symplectic submanifolds so that $D_{I} \equiv \cap_{i \in I} D_{i}$ is symplectic form all $I \subset S$.
- Definition: The symplectic orientation of D_{l} is the orientation on D_{l} induced by the symplectic structure.
- Since (X, ω) is oriented by ω^{n}, there is a natural 1-1 correspondence between orientations on the normal bundle $N_{X} D_{l}=\left.\oplus_{i \in I} N D_{i}\right|_{D_{l}}$ and orientations on D_{l}.
- Since (X, ω) is oriented by ω^{n}, there is a natural 1-1 correspondence between orientations on the normal bundle $N_{X} D_{l}=\left.\oplus_{i \in I} N D_{i}\right|_{D_{l}}$ and orientations on D_{l}.
- Definition: Since D_{i} has a natural orientation, we get that $N_{X} D_{i}$ has an induced orientation for all $i \in I$ and hence D_{I} has an induced orientation called the intersection orientation of D_{l} for all $I \subset S$.
- Since (X, ω) is oriented by ω^{n}, there is a natural 1-1 correspondence between orientations on the normal bundle $N_{X} D_{l}=\left.\oplus_{i \in I} N D_{i}\right|_{D_{l}}$ and orientations on D_{l}.
- Definition: Since D_{i} has a natural orientation, we get that $N_{X} D_{i}$ has an induced orientation for all $i \in I$ and hence D_{I} has an induced orientation called the intersection orientation of D_{l} for all $I \subset S$.
- We say that $\left(D_{i}\right)_{i \in S}$ is a symplectic SNC divisor if the symplectic orientation of D_{l} is equal to the intersection orientation of D_{l} for all $I \subset S$.
- Example:

Let M be a Kähler manifold with Kähler form ω. Let $\left(D_{i}\right)_{i \in S}$ be smooth transversally intersecting complex hypersurfaces. Then $\left(D_{i}\right)_{i \in S}$ is a symplectic SNC divisor.

- Example:

Let M be a Kähler manifold with Kähler form ω. Let $\left(D_{i}\right)_{i \in S}$ be smooth transversally intersecting complex hypersurfaces. Then $\left(D_{i}\right)_{i \in S}$ is a symplectic SNC divisor.

- Non-example Let $M=T^{*} \mathbb{R}^{2}$ with the standard symplectic form. Let D_{1} be the graph of the 1-form xdy and let D_{2} be the graph of $y d x$. Then D_{1}, D_{2} are transversely intersecting but they intersect negatively and hence cannot be a symplectic SNC divisor.
- Example:

Let M be a Kähler manifold with Kähler form ω. Let $\left(D_{i}\right)_{i \in S}$ be smooth transversally intersecting complex hypersurfaces. Then $\left(D_{i}\right)_{i \in S}$ is a symplectic SNC divisor.

- Non-example Let $M=T^{*} \mathbb{R}^{2}$ with the standard symplectic form. Let D_{1} be the graph of the 1-form xdy and let D_{2} be the graph of $y d x$. Then D_{1}, D_{2} are transversely intersecting but they intersect negatively and hence cannot be a symplectic SNC divisor.
- Non-example 2. There is a 3-dimensional example of three codimension two linear hypersurfaces D_{1}, D_{2}, D_{3} in \mathbb{R}^{6} in which the intersection orientation is equal to the symplectic orientation for $I=\{1,2\},\{2,3\},\{1,2,3\}$ but not for $I=\{1,3\}$.
- We wish to deform any symplectic SNC divisor so that it looks nice. What does nice mean?
- We wish to deform any symplectic SNC divisor so that it looks nice. What does nice mean?
- Definition: Let $\pi: E \longrightarrow B$ be a fiber bundle and let ω_{E} be a symplectic form on E making the fibers symplectic. Then the associated symplectic connection is the Ehresmann connection induced by vectors symplectically orthogonal to the fibers.
- We wish to deform any symplectic SNC divisor so that it looks nice. What does nice mean?
- Definition: Let $\pi: E \longrightarrow B$ be a fiber bundle and let ω_{E} be a symplectic form on E making the fibers symplectic. Then the associated symplectic connection is the Ehresmann connection induced by vectors symplectically orthogonal to the fibers.
- Definition: Let $S \subset W$ be a submanifold of a manifold W. A tubular fibration is a smooth fibration $P: U_{S} \longrightarrow S$ where $U_{S} \subset W$ is a neighborhood of S in W so that the differential of P along S is the identity map.
- A regularization of a symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$ inside (X, ω) consists of tubular fibrations $\left(\pi_{l}\right)_{I \subset S}$ of $\left(D_{I}\right)_{I \subset S}$ with symplectic fibers so that

1. $\pi_{l_{1} \cup I_{2}}=\pi_{l_{1}} \circ \pi_{l_{2}}$ on their common domain of definition for all $l_{1}, l_{2} \subset S$ and
2. the fibers of π_{I} are symplectomorphic to a product $\prod_{i \in I} \mathbb{D}(\epsilon)$ of ϵ disks and the associated symplectic connection has parallel transport maps rotating these disks giving us a $U(1)^{|/|}$ structure group.
3. There should also be a particular almost complex structure but we won't need this.

- Theorem M (2011), M-Tehrani-Zinger (2014): Every symplectic SNC divisor is isotopic through symplectic SNC divisors to one which admits a regularization.
- Theorem M (2011), M-Tehrani-Zinger (2014): Every symplectic SNC divisor is isotopic through symplectic SNC divisors to one which admits a regularization.
- The proof first involves proving the Theorem in the linear case first and then using a Moser argument to extend this linear argument to the general non-linear case.

Proof idea in the Linear Case

- Let $D_{i} \subset \mathbb{C}^{n}$ be equal to $\mathbb{C}^{i-1} \times 0 \times \mathbb{C}^{n-i}$ and let ω be a linear symplectic form on \mathbb{C}^{n} so that $\left(D_{i}\right)_{i=1}^{n}$ is a symplectic SNC divisor. Let $\check{D}_{i} \subset \mathbb{C}^{n}$ be the complementary subspace $0 \times \mathbb{C} \times 0$ where \mathbb{C} is the i th \mathbb{C} factor.

Proof idea in the Linear Case

- Let $D_{i} \subset \mathbb{C}^{n}$ be equal to $\mathbb{C}^{i-1} \times 0 \times \mathbb{C}^{n-i}$ and let ω be a linear symplectic form on \mathbb{C}^{n} so that $\left(D_{i}\right)_{i=1}^{n}$ is a symplectic SNC divisor. Let $\check{D}_{i} \subset \mathbb{C}^{n}$ be the complementary subspace $0 \times \mathbb{C} \times 0$ where \mathbb{C} is the i th \mathbb{C} factor.
- Let $p_{i}: \mathbb{C}^{n} \longrightarrow D_{i}, \check{p}_{i}: \mathbb{C}^{n} \longrightarrow \check{D}_{i}$ be the natural projection maps. Let $\rho:[0,1] \longrightarrow \mathbb{R}$ be equal to:

Proof idea in the Linear Case

- Let $D_{i} \subset \mathbb{C}^{n}$ be equal to $\mathbb{C}^{i-1} \times 0 \times \mathbb{C}^{n-i}$ and let ω be a linear symplectic form on \mathbb{C}^{n} so that $\left(D_{i}\right)_{i=1}^{n}$ is a symplectic SNC divisor. Let $\check{D}_{i} \subset \mathbb{C}^{n}$ be the complementary subspace $0 \times \mathbb{C} \times 0$ where \mathbb{C} is the i th \mathbb{C} factor.
- Let $p_{i}: \mathbb{C}^{n} \longrightarrow D_{i}, \check{p}_{i}: \mathbb{C}^{n} \longrightarrow \check{D}_{i}$ be the natural projection maps. Let $\rho:[0,1] \longrightarrow \mathbb{R}$ be equal to:

- Then $\omega_{t}:=(1-\rho(t)) \omega+C \rho(t) \check{p}_{i}^{*}\left(\left.\omega\right|_{\check{D}_{i}}\right)+\rho(t) p_{i}^{*}\left(\left.\omega\right|_{D_{i}}\right)$ is a smooth family of symplectic forms making $\left(D_{i}\right)_{i=1}^{n}$ into a symplectic SNC divisor for $C \gg 0$.

Proof idea in the Linear Case

- Let $D_{i} \subset \mathbb{C}^{n}$ be equal to $\mathbb{C}^{i-1} \times 0 \times \mathbb{C}^{n-i}$ and let ω be a linear symplectic form on \mathbb{C}^{n} so that $\left(D_{i}\right)_{i=1}^{n}$ is a symplectic SNC divisor. Let $\check{D}_{i} \subset \mathbb{C}^{n}$ be the complementary subspace $0 \times \mathbb{C} \times 0$ where \mathbb{C} is the i th \mathbb{C} factor.
- Let $p_{i}: \mathbb{C}^{n} \longrightarrow D_{i}, \check{p}_{i}: \mathbb{C}^{n} \longrightarrow \check{D}_{i}$ be the natural projection maps. Let $\rho:[0,1] \longrightarrow \mathbb{R}$ be equal to:

- Then $\omega_{t}:=(1-\rho(t)) \omega+C \rho(t) \check{p}_{i}^{*}\left(\left.\omega\right|_{\check{D}_{i}}\right)+\rho(t) p_{i}^{*}\left(\left.\omega\right|_{D_{i}}\right)$ is a smooth family of symplectic forms making $\left(D_{i}\right)_{i=1}^{n}$ into a symplectic SNC divisor for $C \gg 0$.
- Repeat this process for all i until $\omega=\sum_{i} C_{i} \check{p}_{i}^{*}\left(\left.\omega\right|_{\check{D}_{i}}\right)$ for large $C_{i}>0$ (this has a regularization).
- Lemma: If two symplectic SNC divisors are isotopic to each other through symplectic SNC divisors then their complements are naturally symplectomorphic (note that there may not be a symplectomorphism sending one divisor to the other though).
- We now need to know which divisors have a natural (concave or convex) contact neighborhood.
- We now need to know which divisors have a natural (concave or convex) contact neighborhood.
- In algebraic geometry, if we have an effective ample divisor representing a Kähler form then it has a natural concave contact neighborhood. Conversely if we have an anti-effective ample divisor then it has a convex contact neighborhood.
- Let L be an ample line bundle on some smooth quasi-projective variety Y. Choose a Hermitian metric $|\cdot|$ on L so that $-i$ times its curvature form is a Kähler form ω.
- Let L be an ample line bundle on some smooth quasi-projective variety Y. Choose a Hermitian metric $|\cdot|$ on L so that $-i$ times its curvature form is a Kähler form ω.
- Suppose that L admits a holomorphic section s so that $s^{-1}(0)=\cup_{i} D_{i}$ is an SNC divisor.
- Let L be an ample line bundle on some smooth quasi-projective variety Y. Choose a Hermitian metric $|\cdot|$ on L so that $-i$ times its curvature form is a Kähler form ω.
- Suppose that L admits a holomorphic section s so that $s^{-1}(0)=\cup_{i} D_{i}$ is an SNC divisor.
- Then the set

$$
(M, \theta):=\left(\{x \in Y: \ln (|s(x)|) \geq C\},-d^{c} \ln (|s(x)|)\right.
$$

is a Liouville submanifold for all large enough C.

- Let L be an ample line bundle on some smooth quasi-projective variety Y. Choose a Hermitian metric $|\cdot|$ on L so that $-i$ times its curvature form is a Kähler form ω.
- Suppose that L admits a holomorphic section s so that $s^{-1}(0)=\cup_{i} D_{i}$ is an SNC divisor.
- Then the set

$$
(M, \theta):=\left(\{x \in Y: \ln (|s(x)|) \geq C\},-d^{c} \ln (|s(x)|)\right.
$$

is a Liouville submanifold for all large enough C.

- $Y-M$ is a neighborhood of $\cup_{i} D_{i}$ with concave boundary.
- There is a similar construction when s has poles along D_{i} and no zeros, and then we get a convex neighborhood of $\cup_{i} D_{i}$.
- There is a similar construction when s has poles along D_{i} and no zeros, and then we get a convex neighborhood of $\cup_{i} D_{i}$.
- We need a symplectic version of this (anti-)ampleness condition so that we can mimic the above construction of a neighborhood with concave (or convex) boundary. We will do this by defining a purely symplectic notion of wrapping number.
- Definition: An exact symplectic SNC divisor $\left(\left(D_{i}\right)_{i \in S}, \theta\right)$ in (X, ω) is a symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$ and a 1-form $\theta \in \Omega^{1}\left(X-\cup_{i} D_{i}\right)$ satisfying $d \theta=\omega$.
- Definition: An exact symplectic SNC divisor $\left(\left(D_{i}\right)_{i \in S}, \theta\right)$ in (X, ω) is a symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$ and a 1-form $\theta \in \Omega^{1}\left(X-\cup_{i} D_{i}\right)$ satisfying $d \theta=\omega$.
- Definition: Let $\left(\left(D_{i}\right)_{i \in S}, \theta\right)$ be an exact symplectic SNC divisor. Let $\mathbb{D}_{i} \subset X$ be a small symplectic disk intersecting D_{i} once at 0 positively and not intersecting D_{j} for all $j \neq i$ with polar coordinates (r, ϑ). The wrapping number of D_{i} is the unique $w_{i} \in \mathbb{R}$ so that $\frac{w_{i}}{2 \pi} d \vartheta \in \Omega^{1}\left(\mathbb{D}_{i}-0\right)$ is cohomologous to $\left.\left(\theta-\frac{1}{2} r^{2}\right)\right|_{\mathbb{D}_{i}-0}$.

Alternative Definition of Wrapping Number

- Let U be a neighborhood of $\cup_{i} D_{i}$ which deformation retracts on to $\cup_{i} D_{i}$. Then $H_{2 n-2}(U)$ is freely generated by $\left[D_{i}\right]$.

Alternative Definition of Wrapping Number

- Let U be a neighborhood of $\cup_{i} D_{i}$ which deformation retracts on to $\cup_{i} D_{i}$. Then $H_{2 n-2}(U)$ is freely generated by [D_{i}].
- Let $\rho: U \longrightarrow \mathbb{R}$ be equal to 1 near $\cup_{i} D_{i}$ and have compact support.

Alternative Definition of Wrapping Number

- Let U be a neighborhood of $\cup_{i} D_{i}$ which deformation retracts on to $\cup_{i} D_{i}$. Then $H_{2 n-2}(U)$ is freely generated by $\left[D_{i}\right]$.
- Let $\rho: U \longrightarrow \mathbb{R}$ be equal to 1 near $\cup_{i} D_{i}$ and have compact support.
- Then w_{i} are the unique numbers so that $-\sum_{i} w_{i}\left[D_{i}\right] \in H_{2 n-2}(U)$ is the Lefschetz dual of

$$
\Omega \in \Omega_{c}^{2}(U), \quad \Omega=\left\{\begin{array}{cc}
d(\rho \theta) & \text { outside } \cup_{i} D_{i} \\
\omega & \text { near } \cup_{i} D_{i}
\end{array} .\right.
$$

- Let $r_{i}: X \longrightarrow \mathbb{R}$ be the the distance from D_{i} with respect to some metric. A function $f: X-\cup_{i} D_{i} \longrightarrow \mathbb{R}$ is compatible with $\left(D_{i}\right)_{i \in S}$ if

$$
f=\sigma+\sum_{i} c_{i} \log \left(r_{i}^{2}\right)
$$

for some constants $\left(c_{i}\right)_{i \in S}$ and a smooth function $\sigma: X \longrightarrow \mathbb{R}$.

- Let $r_{i}: X \longrightarrow \mathbb{R}$ be the the distance from D_{i} with respect to some metric. A function $f: X-\cup_{i} D_{i} \longrightarrow \mathbb{R}$ is compatible with $\left(D_{i}\right)_{i \in S}$ if

$$
f=\sigma+\sum_{i} c_{i} \log \left(r_{i}^{2}\right)
$$

for some constants $\left(c_{i}\right)_{i \in S}$ and a smooth function $\sigma: X \longrightarrow \mathbb{R}$.

- This is our 'symplectic version' of $\ln (|s|)$ mentioned earlier (s was our holomorphic section and $|\cdot|$ our Hermitian metric.).
- Proposition M. Let $\left(D_{i}\right)_{i \in S}, w_{i}, \theta$ be as above. Suppose that all of the wrapping numbers w_{i} are negative. Then there is a smooth function $g: X-\cup_{i} D_{i} \longrightarrow \mathbb{R}$ so that $d f\left(X_{\theta+d g}\right)>0$ near $\cup_{i} D_{i}$. In particular $\left(f^{-1}(-C), \theta+d g\right)$ is a concave contact boundary of a small neighborhood of $\cup_{i} D_{i}$ for $C \gg 1$.
- Also $\left(f^{-1}(-C, \infty), \theta\right)$ is a Liouville submanifold for all $C \gg 1$.
- Proposition The contactomorphism type of ($\left.f^{-1}(-C), \theta+d g\right)$ does not depend on the choice of f or g although it does depend on the choice of 1-form θ.
- Proposition The contactomorphism type of ($\left.f^{-1}(-C), \theta+d g\right)$ does not depend on the choice of f or g although it does depend on the choice of 1-form θ.
- Definition: We will call this contact manifold the contact boundary of $\left(\left(D_{i}\right)_{i \in S}, \theta\right)$.
- Proposition The contactomorphism type of $\left(f^{-1}(-C), \theta+d g\right)$ does not depend on the choice of f or g although it does depend on the choice of 1-form θ.
- Definition: We will call this contact manifold the contact boundary of $\left(\left(D_{i}\right)_{i \in S}, \theta\right)$.
- Similarly if all the wrapping numbers are positive we can choose g so that $d f\left(X_{\theta+d g}\right)<0$ near D_{i}. Hence $f^{-1}(C)$ is convex contact boundary of a neighborhood of $\cup_{i} D_{i}$ also called the contact boundary of $\left(\left(D_{i}\right)_{i \in S}, \theta\right)$.
- Proposition: If there is a smooth family of exact symplectic SNC divisors, $\left(\left(D_{i}^{t}\right)_{i \in S}, \theta_{t}\right) t \in[0,1]$ so that the wrapping numbers of D_{i}^{t} are all positive or all negative, then the contact boundaries of $\left(D_{i}^{t}\right)_{i \in S}$ are all naturally contactomorphic.
- Hence the contact boundary of $\cup_{i} D_{i}$ is an invariant up to isotopy.
- Now suppose that our symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$ admits a regularization $\left(\pi_{l}\right)_{I \subset S}$ (recall, these are tubular fibrations of $\left.D_{l}\right)$ and that the wrapping numbers w_{i} of $\left(\left(D_{i}\right)_{i \in S}, \theta\right)$ are negative.
- Now suppose that our symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$ admits a regularization $\left(\pi_{l}\right)_{l \subset S}$ (recall, these are tubular fibrations of $\left.D_{l}\right)$ and that the wrapping numbers w_{i} of $\left(\left(D_{i}\right)_{i \in S}, \theta\right)$ are negative.
- Since the tubular fibrations $\pi_{\{i\}}$ have a natural $U(1)$ structure group, we have radial coordinates $r_{i}: \operatorname{Dom}\left(\pi_{\{i\}}\right) \longrightarrow \mathbb{R}$.
- Now suppose that our symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$ admits a regularization $\left(\pi_{l}\right)_{l \subset S}$ (recall, these are tubular fibrations of $\left.D_{l}\right)$ and that the wrapping numbers w_{i} of $\left(\left(D_{i}\right)_{i \in S}, \theta\right)$ are negative.
- Since the tubular fibrations $\pi_{\{i\}}$ have a natural $U(1)$ structure group, we have radial coordinates $r_{i}: \operatorname{Dom}\left(\pi_{\{i\}}\right) \longrightarrow \mathbb{R}$.
- Let $f=\sum_{i} \ln \left(\rho\left(r_{i}\right)\right)$ where ρ is:

Then f is compatible with $\left(D_{i}\right)_{i \in S}$.

- Now suppose that our symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$ admits a regularization $\left(\pi_{l}\right)_{l \subset S}$ (recall, these are tubular fibrations of $\left.D_{l}\right)$ and that the wrapping numbers w_{i} of $\left(\left(D_{i}\right)_{i \in S}, \theta\right)$ are negative.
- Since the tubular fibrations $\pi_{\{i\}}$ have a natural $U(1)$ structure group, we have radial coordinates $r_{i}: \operatorname{Dom}\left(\pi_{\{i\}}\right) \longrightarrow \mathbb{R}$.
- Let $f=\sum_{i} \ln \left(\rho\left(r_{i}\right)\right)$ where ρ is:

Then f is compatible with $\left(D_{i}\right)_{i \in S}$.

- We can choose g so that $\theta+d g$ restricted to each fiber $\prod_{i \in I}(\mathbb{D}-0)$ of D_{l} is $\sum_{i}\left(r_{i}^{2}+\frac{w_{i}}{2 \pi}\right) d \vartheta_{i}$ where $\left(r_{i}, \vartheta_{i}\right)$ are polar coordinates on the i th \mathbb{D} factor.
- We have $d f\left(X_{\theta+d g}\right)>0$ near $\cup_{i} D_{i}$ and so $\left(f^{-1}(-C), \alpha_{C}:=\theta+\left.d g\right|_{f^{-1}(C)}\right)$ is a contact boundary of $\cup_{i} D_{i}$ called a regular contact boundary of $\cup_{i} D_{i}$.
- We have $d f\left(X_{\theta+d g}\right)>0$ near $\cup_{i} D_{i}$ and so $\left(f^{-1}(-C), \alpha_{C}:=\theta+\left.d g\right|_{f^{-1}(C)}\right)$ is a contact boundary of $\cup_{i} D_{i}$ called a regular contact boundary of $\cup_{i} D_{i}$.
- The contact form α_{C} is minimally degenerate.
- We have $d f\left(X_{\theta+d g}\right)>0$ near $\cup_{i} D_{i}$ and so $\left(f^{-1}(-C), \alpha_{C}:=\theta+\left.d g\right|_{f^{-1}(C)}\right)$ is a contact boundary of $\cup_{i} D_{i}$ called a regular contact boundary of $\cup_{i} D_{i}$.
- The contact form α_{C} is minimally degenerate.
- For each $I \subset S$ and each $\left(k_{i}\right)_{i \in I} \in \mathbb{N}_{>0}^{\prime}$ there is a minimally degenerate subset $B_{\left(k_{i}\right)_{i \in 1}}$ of length $-\sum_{i} l_{i}\left(2 \pi w_{i}+\epsilon\right)$ and all Reeb orbits are contained in one such subset.
- We have $d f\left(X_{\theta+d g}\right)>0$ near $\cup_{i} D_{i}$ and so $\left(f^{-1}(-C), \alpha_{C}:=\theta+\left.d g\right|_{f^{-1}(C)}\right)$ is a contact boundary of $\cup_{i} D_{i}$ called a regular contact boundary of $\cup_{i} D_{i}$.
- The contact form α_{C} is minimally degenerate.
- For each $I \subset S$ and each $\left(k_{i}\right)_{i \in I} \in \mathbb{N}_{>0}^{\prime}$ there is a minimally degenerate subset $B_{\left(k_{i}\right)_{i \in 1}}$ of length $-\sum_{i} I_{i}\left(2 \pi w_{i}+\epsilon\right)$ and all Reeb orbits are contained in one such subset.
- $B_{\left(k_{i}\right)_{i \in I}}$ is diffeomorphic to a $U(1)^{|l|}$ fibration over $D_{l}-\cup_{i \in S-i} \operatorname{Dom}\left(\pi_{i}\right)$ and is homotopic to $\check{N} D_{l}$.

what about Conley-Zehnder index?

- Now suppose that $c_{1}\left(X-\cup_{i} D_{i}\right)=0$. Then we can choose a (not necessarily unique) representative $\sum_{i} a_{i}\left[D_{i}\right] \in H_{2 n-2}(X)$ Poincaré dual to $c_{1}(X)$.

what about Conley-Zehnder index?

- Now suppose that $c_{1}\left(X-\cup_{i} D_{i}\right)=0$. Then we can choose a (not necessarily unique) representative $\sum_{i} a_{i}\left[D_{i}\right] \in H_{2 n-2}(X)$ Poincaré dual to $c_{1}(X)$.
- a_{i} is called the discrepancy of D_{i}.

what about Conley-Zehnder index?

- Now suppose that $c_{1}\left(X-\cup_{i} D_{i}\right)=0$. Then we can choose a (not necessarily unique) representative $\sum_{i} a_{i}\left[D_{i}\right] \in H_{2 n-2}(X)$ Poincaré dual to $c_{1}(X)$.
- a_{i} is called the discrepancy of D_{i}.
- It coincides with the definition of discrepancy earlier when X was projective.

what about Conley-Zehnder index?

- Now suppose that $c_{1}\left(X-\cup_{i} D_{i}\right)=0$. Then we can choose a (not necessarily unique) representative $\sum_{i} a_{i}\left[D_{i}\right] \in H_{2 n-2}(X)$ Poincaré dual to $c_{1}(X)$.
- a_{i} is called the discrepancy of D_{i}.
- It coincides with the definition of discrepancy earlier when X was projective.
- The Conley-Zehnder index of $B_{\left(k_{i}\right)_{i \in S}}$ is

$$
-2 \sum_{i} k_{i}\left(a_{i}+1\right)-n-\frac{|I|}{2} .
$$

- Main idea:

1. Deform the symplectic SNC divisor so that it has a regularization.
2. This does not change the contact boundary of such a divisor up to contactomorphism.
3. Then construct the regular contact boundary using this regularization as above.

- We will now use this technique for affine varieties.

Recall that we wish to prove the following:
There is a spectral sequence converging to $S H_{*}(A)$ with E^{1} page

$$
E_{p, q}^{1}=\bigoplus_{\left\{\left(k_{i}\right) \in \mathbb{N}^{S}: \sum_{i} k_{i} w_{i}=-p\right\}} H^{n-p-q-2\left(\sum_{i} k_{i}\left(a_{i}+1\right)\right)}\left(\check{N} D_{\left.l_{\left(k_{i}\right)}\right)}\right)
$$

where \mathbb{N}^{S} is the set of tuples of non-negative integers indexed by S and $I_{\left(k_{i}\right)}=\left\{i \in S: k_{i} \neq 0\right\}$.

Proof Sketch:

1. First of all we compactify our affine variety A to a smooth projective variety X so that $X-A$ is an SNC divisor $\left(D_{i}\right)_{i \in S}$.

Proof Sketch:

1. First of all we compactify our affine variety A to a smooth projective variety X so that $X-A$ is an SNC divisor $\left(D_{i}\right)_{i \in S}$.
2. Since $S H_{*}(A)$ is a biholomorphic invariant we can compute it with respect to any Stein structure. We choose the Stein structure with plurisubharmonic function $\phi \equiv-d^{c} \log (\|s\|)$ where s is a section of an ample line bundle on X so that $s^{-1}(0)=\cup_{i} D_{i}$ and $\|\cdot\|$ is a positive metric. The critical set of ϕ is compact.

Proof Sketch:

1. First of all we compactify our affine variety A to a smooth projective variety X so that $X-A$ is an SNC divisor $\left(D_{i}\right)_{i \in S}$.
2. Since $S H_{*}(A)$ is a biholomorphic invariant we can compute it with respect to any Stein structure. We choose the Stein structure with plurisubharmonic function $\phi \equiv-d^{c} \log (\|s\|)$ where s is a section of an ample line bundle on X so that $s^{-1}(0)=\cup_{i} D_{i}$ and $\|\cdot\|$ is a positive metric. The critical set of ϕ is compact.
3. Therefore in order to compute $S H_{*}(A)$ we need to compute $S H_{*}(M, \theta)$ where $(M, \theta) \equiv\left(\phi^{-1}(-\infty, C],-d^{c} \phi\right)$ for some $C \gg 1$.
4. Lemma: The wrapping numbers of the exact symplectic SNC divisor $\left(\left(D_{i}\right)_{i \in S},-d^{c} \phi\right)$ are equal to the wrapping numbers defined in the first lecture using s (I.e. minus the order of $s^{-1}(0)$ along $\left.D_{i}\right)$. Also ($\partial M, \theta$) is contactomorphic to the contact boundary of the symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$.
5. Lemma: The wrapping numbers of the exact symplectic SNC divisor $\left(\left(D_{i}\right)_{i \in S},-d^{c} \phi\right)$ are equal to the wrapping numbers defined in the first lecture using s (I.e. minus the order of $s^{-1}(0)$ along $\left.D_{i}\right)$. Also ($\partial M, \theta$) is contactomorphic to the contact boundary of the symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$.
6. Now we isotope $\left(\left(D_{i}\right)_{i \in S},-d^{c} \phi\right)$ through exact symplectic SNC divisors so that it admits a regularization and hence has a regular contact boundary.
7. Lemma: The wrapping numbers of the exact symplectic SNC divisor $\left(\left(D_{i}\right)_{i \in S},-d^{c} \phi\right)$ are equal to the wrapping numbers defined in the first lecture using s (I.e. minus the order of $s^{-1}(0)$ along $\left.D_{i}\right)$. Also $(\partial M, \theta)$ is contactomorphic to the contact boundary of the symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$.
8. Now we isotope $\left(\left(D_{i}\right)_{i \in S},-d^{c} \phi\right)$ through exact symplectic SNC divisors so that it admits a regularization and hence has a regular contact boundary.
9. Since this regular contact boundary is contactomorphic to $\phi^{-1}(C)$ we can deform our Liouville domain (M, θ) so that it is minimally degenerate as described earlier.
10. Lemma: The wrapping numbers of the exact symplectic SNC divisor $\left(\left(D_{i}\right)_{i \in S},-d^{c} \phi\right)$ are equal to the wrapping numbers defined in the first lecture using s (I.e. minus the order of $s^{-1}(0)$ along $\left.D_{i}\right)$. Also $(\partial M, \theta)$ is contactomorphic to the contact boundary of the symplectic SNC divisor $\left(D_{i}\right)_{i \in S}$.
11. Now we isotope $\left(\left(D_{i}\right)_{i \in S},-d^{c} \phi\right)$ through exact symplectic SNC divisors so that it admits a regularization and hence has a regular contact boundary.
12. Since this regular contact boundary is contactomorphic to $\phi^{-1}(C)$ we can deform our Liouville domain (M, θ) so that it is minimally degenerate as described earlier.
13. The spectral sequence is then the associated Morse-Bott spectral sequence.
