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Related Projects (in progress)

I Diogo-Lisi

I Ganatra, Pomerleano

I Sheridan, Borman

I Hülya Argüz

I Joint work with Tehrani, Zinger.



Disclaimer: only one of the spectral sequences in this presentation
has been constructed in detail (the second one). The details of the
first one have not been worked out fully yet.



An Introduction to Spectral Sequences.

I “The words ‘spectral sequence’ strike fear into the hearts of
many hardened mathematicians. These notes will attempt to
demonstrate that spectral sequences are not so scary, and also
very powerful.” - M. Hutchings

I “The machinery of spectral sequences, stemming from the
algebraic work of Lyndon and Koszul, seemed complicated
and obscure to many topologists. Nevertheless, it was
successful...” - G. W. Whitehead.

I “A spectral sequence is an algebraic object, like an exact
sequence, but more complicated” - J. F. Adams.
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I “A spectral sequence is an algebraic object, like an exact
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I “After my article was published, John Harper sent me email
and said that when he was a graduate student back in the
1960s, he personally asked Leray about the term ‘spectral’
and in particular asked whether it had something to do with
the spectrum of an operator. Leray began his reply by saying,
”Non”; unfortunately, before he could continue, some
professors approached and interrupted the conversation.”
-Source: Timothy Chow/ Mathoverflow.net



I We will talk about homological spectral sequences since the
workshop is on symplectic homology.



A spectral sequence is a sequence of bigraded chain complexes.
This is page 0.
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A spectral sequence is a sequence of bigraded chain complexes.
This is page 2.
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A spectral sequence is a sequence of bigraded chain complexes.
This is page 3.
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The total degree is the sum of the degrees. Diagonal lines have
been drawn to highlight groups of the same total degree.
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I The differential d on E r
∗,∗ has degree (−r , r − 1). In other

words, we have maps:

d |E r
p,q

= d r
p,q : E r

p,q −→ E r
p−r ,q+r−1.

I Note that d r
p,q has total degree −1 since

(p − r) + (q + r − 1) = p + q − 1.

I Also E r+1
∗,∗ is the homology of the previous page E r

∗,∗. In other
words,

E r+1
p,q = ker(d r

p,q)/im(d r−1
p+r ,q−r+1).
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Here the differential has degree (−0, 0− 1).
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Here the differential has degree (−1, 1− 1).
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Here the differential has degree (−2, 2− 1).
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Here the differential has degree (−3, 3− 1).
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What is the E∞ page?

I It is the set of elements which ‘survive’ forever.

I In our case, all the pages E r
p,q for r > 0 will be finite

dimensional and they decrease in dimension as r increases.

I Therefore, for each p, q there is a constant Cp,q so that
E r+1
p,q = E r

p,q for all r ≥ Cp,q. Hence we can define E∞p,q to be
E r
p,q for r = Cp,q.
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I Definition: We say that a spectral sequence (E r
p,q) converges

to a graded group H∗ if there is a filtration

· · ·F−1 ⊂ F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ H∗

so that
E∞p,q = Fp ∩ Hp+q/Fp−1 ∩ Hp+q.

I In our case the filtration will be nice enough so that if the
above spectral sequence converges then Hn = ⊕pE

∞
p,n−p.
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Spectral Sequence from a filtered complex

I Theorem: Suppose we have a nice filtration
· · ·F−1C∗ ⊂ F0C∗ ⊂ F1C∗ ⊂ F2C∗ ⊂ · · · ⊂ C∗ of a chain
complex (C∗, ∂). Then there is a spectral sequence converging
to H∗(C∗, ∂) with E 1 page equal to:

E 1
p,q = H∗(FpCp+q/Fp−1Cp+q, ∂).

I The filtration for us will be the action filtration.
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How to use spectral sequences in our context

1. Start with a filtered chain complex (in our case, the Floer
chain complex with some filtration induced by the action
functional).

2. Write down the E 1-page

E 1
p,q = H∗(FpCp+q/Fp−1Cp+q, ∂).

3. Hope that the differentials that we are interested in vanish, or
at least are understandable. For instance, if we wish to show
that Hn 6= 0 then it is sufficient for us to find p, q so that
p + q = n and the differentials d r

p,q and d r
p+r ,q−r+1 vanish for

all r ≥ 1.

4. Compute Hn = ⊕pE
∞
p,n−p (the direct sum of everything along

the diagonal line containing (n, 0)).
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p+r ,q−r+1 vanish for

all r ≥ 1.

4. Compute Hn = ⊕pE
∞
p,n−p (the direct sum of everything along

the diagonal line containing (n, 0)).
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2,3
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5,3
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5,4
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6,1
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6,2
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6,3
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6,4

E 1
3,20 0

0

0

0

0

0

0

0

0

0

0

0

0

Here H3+2 = H5 is non-zero.



”... the behavior of this spectral sequence ... is a bit like an
Elizabethan drama, full of action, in which the business of each
character is to kill at least one other character, so that at the end
of the play one has the stage strewn with corpses and only one
actor left alive (namely the one who has to speak the last few
lines)” - J. F. Adams.



A Spectral Sequence for Symplectic Homology.

I We will construct a spectral sequence converging to SH∗(A)
(symplectic homology of A) where A is a smooth affine variety
of dimension n with c1(A) = 0 (there is also a similar spectral
sequence when c1(A) is torsion but we will not focus on that).

I Choose a non-zero section κA of the canonical bundle
KA ≡ ∧nT ∗A of A.

I Such a section (up to homotopy) gives SH∗(A) a Z-grading.



A Spectral Sequence for Symplectic Homology.

I We will construct a spectral sequence converging to SH∗(A)
(symplectic homology of A) where A is a smooth affine variety
of dimension n with c1(A) = 0 (there is also a similar spectral
sequence when c1(A) is torsion but we will not focus on that).

I Choose a non-zero section κA of the canonical bundle
KA ≡ ∧nT ∗A of A.

I Such a section (up to homotopy) gives SH∗(A) a Z-grading.



A Spectral Sequence for Symplectic Homology.

I We will construct a spectral sequence converging to SH∗(A)
(symplectic homology of A) where A is a smooth affine variety
of dimension n with c1(A) = 0 (there is also a similar spectral
sequence when c1(A) is torsion but we will not focus on that).

I Choose a non-zero section κA of the canonical bundle
KA ≡ ∧nT ∗A of A.

I Such a section (up to homotopy) gives SH∗(A) a Z-grading.



I Definition: A smooth normal crossing divisor in a smooth
projective variety X is a finite union of transversely
intersecting smooth complex hypersurfaces (Di )i∈S .

I Theorem (Hironaka) Every smooth affine variety A is
isomorphic to X − ∪i∈SDi for some X , (Di )i∈S as above.
From now on fix this notation.

I For any I ⊂ S , define DI ≡ ∩i∈IDi . Here, D∅ = X .

D1

D2

D12

A

X = D∅X = D∅

E.g. A = C2

X = CP1 × CP1

D1 = CP1 × {∞}
D2 = {∞} × CP1

D12 = {∞} × {∞}
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I We’ll assume κA is a meromorphic section of the canonical
bundle of X which is non-zero along A.

I We define the discrepancy ai of Di to be the order of κ−1
A (0)

minus the order of κ−1
A (∞) along Di . I.e. κA = zai1 in some

chart z1, · · · , zn satisfying Di = {z1 = 0}.
I Choose an ample line bundle L on X and a holomorphic

section sA of L so that sA restricted to A is non-zero and
D = s−1

A (0).

I We define the wrapping number wi of Di to be minus the
order of s−1

A (0) along Di .
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I Definition: For each I ⊂ S let NDI be a small tubular
neighborhood of DI so that NDI ∩ DI ′ is a tubular
neighborhood of DI∪I ′ for all I ′ ⊂ S . Also ∂NDI should
intersect DI ′ transversally for all I ′ ⊂ S .

I Define ŇDI ≡ NDI − ∪i∈SDi . This as a bundle over
V̌I ≡ DI − ∪i∈S−IDi with fiber a product of punctured disks.

D1

D2

D12

A = ŇD∅ŇD1



I Definition: For each I ⊂ S let NDI be a small tubular
neighborhood of DI so that NDI ∩ DI ′ is a tubular
neighborhood of DI∪I ′ for all I ′ ⊂ S . Also ∂NDI should
intersect DI ′ transversally for all I ′ ⊂ S .
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neighborhood of DI so that NDI ∩ DI ′ is a tubular
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Theorem (M - in progress):
There is a spectral sequence converging to SH∗(A) with E 1 page

E 1
p,q =

⊕
{(ki )∈NS :

∑
i kiwi=−p}

Hn−p−q−2(
∑

i ki (ai+1))(ŇDI(ki )
)

where NS is the set of tuples of non-negative integers indexed by S
and I(ki ) = {i ∈ S : ki 6= 0}.



I There is a similar spectral sequence for SH>0
∗ (A) where we

sum over everything except the term corresponding to
(0) ∈ NS .

I If c1 is torsion then κA is a section of K⊗rA and the
discrepancies ai are now defined to be the order of κ−1

A (0)
minus the order of κ−1

A (∞) along Di divided by r . The
associated spectral sequence is identical but the pages could
potentially have entries with non-integer p, q since ai may not
be an integer. The differentials have the same gradings.

I The future work of Diogo-Lisi and Ganata-Pomerleano
hopefully should give better descriptions of the differentials in
some cases.
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Other Grading Conventions

I There are other grading conventions.

I You might need to replace (p, q) with (−p, n− q) or (−p,−q)
and your spectral sequence differentials will go in the other
direction (this would be a cohomological spectral sequence).



Sanity Check

I X = CPn, D1 = CPn−1 and A = Cn.

I w1 = −1 and a1 = −n − 1.

I H∗(ŇD1) =

{
Z if ∗ = 0 or 2n − 1
0 otherwise.

.

I H∗(ŇD∅) = H∗(A) =

{
Z if ∗ = 0
0 otherwise .

.
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Case: n = 3

SH∗(A) = 0

E 2
p,q = 0 for all p, q



Example

I Let X be a smooth degree 5 hypersurface in CP3 and let D1

be the intersection of X with a generic degree 1 hypersurface
and A = X − D1.

I w1 = −1 and a1 = 1.

I H∗(ŇD1) =


Z if ∗ = 0 or 3
Z12 if ∗ = 1 or 2

0 otherwise.
.

I H∗(ŇD∅) = H∗(A) =


Z if ∗ = 0
Z64 if ∗ = 2

0 otherwise .
.

I Computations using ideas from Milnor’s paper “On simply
connected 4-manifolds”. See also
https://amathew.wordpress.com/2012/03/05/the-
cohomology-of-projective-hypersurfaces/
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I H∗(ŇD∅) = H∗(A) =


Z if ∗ = 0
Z64 if ∗ = 2

0 otherwise .
.

I Computations using ideas from Milnor’s paper “On simply
connected 4-manifolds”. See also
https://amathew.wordpress.com/2012/03/05/the-
cohomology-of-projective-hypersurfaces/



Example

I Let X be a smooth degree 5 hypersurface in CP3 and let D1

be the intersection of X with a generic degree 1 hypersurface
and A = X − D1.

I w1 = −1 and a1 = 1.

I H∗(ŇD1) =
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Z64

Z
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Z
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Therefore


Z if ∗ = 2
Z64 if ∗ = 0
Z if ∗ < −1 and ∗ = 0 or 1 mod 4
Z12 if ∗ < −1 and ∗ = 2 or 3 mod 4

0 otherwise.

SH∗(A) =



Example with two divisors

I X be a smooth degree 6 hypersurface in CP3, D1,D2 are
generic degree 1 hypersurfaces and A = X − D1 − D2.

I w1 = w2 = −1 and a1 = a2 = 1.

I H∗(ŇD12) =


Z6 if ∗ = 0 or 2
Z12 if ∗ = 1

0 otherwise.
.

I H∗(ŇD1) = H∗(ŇD2) =


Z if ∗ = 0
Z26 if ∗ = 1
Z25 if ∗ = 2

0 otherwise.

.

I H∗(ŇD∅) = H∗(A) =


Z if ∗ = 0 or 1

Z150 if ∗ = 2
0 otherwise .

.
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I H∗(ŇD12) =


Z6 if ∗ = 0 or 2
Z12 if ∗ = 1

0 otherwise.
.

I H∗(ŇD1) = H∗(ŇD2) =
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I H∗(ŇD1) = H∗(ŇD2) =
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I H∗(ŇD1) = H∗(ŇD2) =
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0Z
Z

Z150

Z2

Z52

Z50
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Z64
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Z14
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Z32

Z112
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Therefore



Z if ∗ = 1 or 2
Z150 if ∗ = 0

Z2+3(−∗−2)/2 if ∗ < −1 and ∗ = 2 mod 4

Z52+3(−∗−1) if ∗ < −1 and ∗ = 1 mod 4

Z50+3(−∗−4)/2 if ∗ < −1 and ∗ = 0 mod 4
0 otherwise.

SH∗(A) =



Weinstein Conjecture

I Weinstein conjecture: Every contact form has a Reeb orbit.

I Definition: A cooriented contact manifold (C , ξ) satisfies the
Weinstein conjecture if every contact form α compatible with
ξ has a Reeb orbit.

I Which contact manifolds satisfy the Weinstein conjecture?
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I Recall that positive symplectic homology SH>0
∗ (M) of a

Liouville domain M has a chain complex freely generated by
two copies of each Reeb orbit on ∂M. In other words, we do
not consider critical points of the Hamiltonian in the interior.

I Definition: M satisfies the algebraic Weinstein conjecture
if SH>0

∗ (M) 6= 0.

I Lemma: If M satisfies the algebraic Weinstein conjecture
then ∂M satisfies the Weinstein conjecture.

I Question: Which smooth affine varieties satisfy the algebraic
Weinstein conjecture?



I Recall that positive symplectic homology SH>0
∗ (M) of a

Liouville domain M has a chain complex freely generated by
two copies of each Reeb orbit on ∂M. In other words, we do
not consider critical points of the Hamiltonian in the interior.

I Definition: M satisfies the algebraic Weinstein conjecture
if SH>0

∗ (M) 6= 0.

I Lemma: If M satisfies the algebraic Weinstein conjecture
then ∂M satisfies the Weinstein conjecture.

I Question: Which smooth affine varieties satisfy the algebraic
Weinstein conjecture?



I Recall that positive symplectic homology SH>0
∗ (M) of a

Liouville domain M has a chain complex freely generated by
two copies of each Reeb orbit on ∂M. In other words, we do
not consider critical points of the Hamiltonian in the interior.

I Definition: M satisfies the algebraic Weinstein conjecture
if SH>0

∗ (M) 6= 0.

I Lemma: If M satisfies the algebraic Weinstein conjecture
then ∂M satisfies the Weinstein conjecture.

I Question: Which smooth affine varieties satisfy the algebraic
Weinstein conjecture?



I Recall that positive symplectic homology SH>0
∗ (M) of a

Liouville domain M has a chain complex freely generated by
two copies of each Reeb orbit on ∂M. In other words, we do
not consider critical points of the Hamiltonian in the interior.

I Definition: M satisfies the algebraic Weinstein conjecture
if SH>0

∗ (M) 6= 0.

I Lemma: If M satisfies the algebraic Weinstein conjecture
then ∂M satisfies the Weinstein conjecture.

I Question: Which smooth affine varieties satisfy the algebraic
Weinstein conjecture?



I X = smooth projective variety and A = X − ∪iDi where
(Di )i∈S is a smooth normal crossing divisor.

I Theorem: Suppose that the discrepancy ai of Di is ≤ −1 for
all i ∈ S . Then A satisfies the algebraic Weinstein conjecture.

I Proof of the main Theorem:
0
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This is the highest non-zero
E 1 term on the highest diagonal.

This term exists since ai ≤ −1, ∀i
and it survives to the E∞ page
since all differentials connecting this
term have source or target 0.
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An Additional Grading.

I We have a direct sum decomposition

SH∗(A) =
⊕

α∈H1(A)

SH∗,α(A)

where SH∗,α(A) is the subgroup generated by periodic orbits
representing α.

I This grading can be seen in our spectral sequence.



I The H1-class associated to Di is a class αi ∈ H1(A)
represented by the boundary of a small disk in X intersecting
Di once transversely and negatively at 0 and intersecting no
other Dj ’s.

D1

D2

D12

A

X = D∅X = D∅
−ive

−ive
α1

α2



I For each α ∈ H1(A), there is a spectral sequence converging
to SH∗,α(A) with E 1 page

E 1
p,q =

⊕
{

(ki )∈NS :

∑
i kiwi=−p,
α(ki )

=α

}Hn−p−q−2(
∑

i ki (ai+1))(ŇDI(ki )
).

where α(ki ) ≡
∑

i kiαi .

I Our original spectral sequence is the direct sum of the above
ones over all α ∈ H1(A).
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I Simple Corollary. Our spectral sequence degenerates at the
E 1 page when the affine variety A is one dimensional and not
equal to C.

I Therefore if A = C − {p1, · · · , pl} where C is a Riemann
surface and p1, · · · , pl distinct points then

SH∗(A) = H1−∗(C )⊕
l⊕

i=1

(
⊕k≥1H

1−∗−2k(ai+1)(S1)
)

Here ai is the discrepancy of the divisor pi , which isn’t unique.
The only constraint is

∑
i ai = −χ(C ).

I Proof:
The spectral sequence computing SH∗,α(A) is non-zero only in
one column for each α ∈ H1(A).
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I Theorem
The spectral sequence degenerates at the E 1 page when A is
the complement of ≥ n + 2 generic linear hypersurfaces in
CPn. I.e.

SH∗(A) =
⊕

(ki )∈NS

Hn−∗−2(
∑

i ki (ai+1))(ŇDI(ki )
).

I Proof:
We have that H1(A) is the quotient of the free abelian group
generated by (αi )i∈S quotiented out by the relation∑

i∈S αi = 0 where αi is the H1-class associated to Di . This
means that for each α ∈ H1(A), there is at most one
representation of α of the form

∑
i∈I kiαi where |I | ≤ n and

ki ≥ 0.
Therefore the E 1 page of the spectral sequence computing
SH∗,α(A) is contained in at most one column and hence must
degenerate.
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).

I Proof:
We have that H1(A) is the quotient of the free abelian group
generated by (αi )i∈S quotiented out by the relation∑

i∈S αi = 0 where αi is the H1-class associated to Di . This
means that for each α ∈ H1(A), there is at most one
representation of α of the form

∑
i∈I kiαi where |I | ≤ n and

ki ≥ 0.
Therefore the E 1 page of the spectral sequence computing
SH∗,α(A) is contained in at most one column and hence must
degenerate.



I Open Question: What happens when the linear hypersurfaces
are not generic?

I Can we still compute SH∗(A) in this case?

I Does it detect the dual graph of these hypersurfaces?



I Open Question: What happens when the linear hypersurfaces
are not generic?

I Can we still compute SH∗(A) in this case?

I Does it detect the dual graph of these hypersurfaces?



I Open Question: What happens when the linear hypersurfaces
are not generic?

I Can we still compute SH∗(A) in this case?

I Does it detect the dual graph of these hypersurfaces?



Additional Structure

I For many important varieties (e.g log Calabi-Yau varieties),
the spectral sequence does not help us compute SH∗(A) as
the differentials may not be 0. Also we wish to compute
SH∗(A) as an algebra with the pair of pants product.

I A spectral sequence E ∗∗,∗ is a spectral sequence of algebras
if each page E r

∗,∗ is a differential bigraded algebra so that the
product structure on E r+1

∗,∗ is induced by the product structure
on E r

∗,∗ for each r .

I Convergence is defined in the same way, except that the
filtration has to respect the product structure on the algebra
H∗.
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I Assume: ŇDI ′ ⊂ ŇDI for all I ⊂ I ′.

I Let ιI ′,I : ŇDI ′ → ŇDI be the natural inclusion map.

I For all I , J ⊂ S , define:

PIJ : H∗(ŇDI )⊗ H∗(ŇDJ) −→ H∗(ŇDI∪J)

a⊗ b −→ ι∗I∪J,Ia ∪ ι∗I∪J,Jb.
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Conjecture
The spectral sequence above is in fact a spectral sequence of
algebras converging to SHn+∗(A) with the pair of pants product.
The product structure

E 1
p,q ⊗ E 1

p′,q′ −→ E 1
p+p′,q+q′

on the E 1 page

E 1
p,q =

⊕
{(ki )∈NS :

∑
i kiwi=−p}

H−p−q−2(
∑

i ki (ai+1))(ŇDI(ki )
).

is induced by the maps PIJ above.



Recall: αi is the H1-class associated to Di .

Theorem (assuming conjecture): Suppose that αi 6= αj for all
i 6= j and αi 6= 0 for all i ∈ S and suppose the union of all images
of the restriction maps PiI : H∗(ŇDi ) −→ H∗(ŇDI ) for all i ∈ I
generate H∗(ŇDI ) as an algebra for all I ⊂ S . Then the spectral
sequence above degenerates on the first page. Hence there is a
filtration on SHn+∗(A) whose associated graded algebra is:⊕

(ki )∈NS

H−∗−2(
∑

i ki (ai+1))(ŇDI(ki )
),

graded by
∑

i ki .



I Folklore Theorem(?) If a degree n or n − 1 element in the
p = 0 page is killed then the affine variety A is ruled by lines
C.

Related to the work of Diogo-Lisi and Ganata-Pomerleano.

I Why?
Because one should be able to make the Hamiltonian H
defining SH∗(A) equal to 0 and then a limiting argument
produces a family of curves isomorphic to C passing through
every point of a real hypersurface and hence through every
point of A (since the space of such curves has even real
dimension).
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Other Floer Cohomology Groups

1. Floer homology HF∗(φ) of a symplectomorphism
φ : M −→ M. The chain complex here is generated by fixed
points of φ and the differential counts holomorphic strips
u : R× [0, 1] −→ M satisfying φ(u(s, 1)) = u(s, 0) for all
s ∈ R.

2. Full contact homology CH∗(C , ξ) of a 2n − 1-contact
manifold (C , ξ) indexed by Conley-Zehnder index +(n − 3).
Chain complex is the free supercommutative algebra
generated by Reeb orbits of a compatible contact form λ. The
differential is:

γ1 γ2 γ3

γ
Number of holomorphic

in the symplectization is

the γ coefficient of ∂(γ1γ2γ3).
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Floer homology of a symplectomorphism

I (M, θ) = Liouville domain and rM is the cylindrical coordinate
near ∂M.

I Let φ : M −→ M be an exact symplectomorphism (I.e.
φ∗θ = θ+ dFφ) so that φ = id near ∂M and Fφ = 0 near ∂M.

I A positive slope perturbation of φ is a C∞ small
perturbation to φ̌ so that φ is the time 1 flow of the
Hamiltonian δrM near ∂M where δ > 0 is small (I.e. φ̌ is the
time δ Reeb flow near ∂M).
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I Assume that φ is a graded symplectomorphism (enabling us to
give fixed points a grading).

I Choose a generic positive slope perturbation φ̌ of φ.

I The chain complex for HF∗(φ,+) is the free group generated
by fixed points of φ̌.

I Fix almost complex structures (Jt)t∈[0,1] which are cylindrical
near ∂M. The differential counts smooth maps
u : R× [0, 1] −→ M connecting these fixed points satisfying

1. ∂su(s, t) + Jt∂tu(s, t) = 0.
2. φ(u(s, 1)) = u(s, 0) for all s ∈ R.
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I Let f : Cn+1 −→ C be a polynomial with at most one isolated
singularity at 0 and no other singularities.

I Choose 0 < δ � ε� 1 and let B(ε) ⊂ Cn+1 be the closed
ball of radius ε. Then
(Mz , θz) ≡ (f −1(z) ∩ B(ε), 1

2

∑
i xidyi − yidxi ) is a Liouville

domain for all |z | < δ called the Milnor fiber of f .

f −1(0)

B(ε)

f −1(z)

Mz = f −1(z) ∩ B(ε)
= Milnor fiber

I The monodromy map φf : Mδ −→ Mδ around the loop
εe it , t ∈ [0, 2π] can be deformed to an exact
symplectomorphism as above. It has a grading induced from
Cn+1.
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I Defintion: A log resolution of (Cn+1, f −1(0)) is a proper map
π : Y −→ C so that

1. π|Y−π−1(f−1(0)) is a biholomorphism onto its image.
2. π−1(f −1(0)) is a smooth normal crossing divisor (Di )i∈S .

I The hypersurfaces (Di )i∈S are called resolution divisors and
the hypersurfaces (Di )i∈Ŝ , Ŝ ⊂ S satisfying π(Di ) = {0} are
called exceptional divisors.

f −1(0)π
D3

D2

D1 = π−1(f −1(0)− 0)

Exceptional divisors

I Goal: compute (parts of) HF∗(φf ,+) from a log resolution.
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Simple example

I f (z0, · · · , zn) = z0.

I The Milnor fiber is the ball of radius ε in Cn.

I The monodromy map φf is the identity map, but the grading
is non-trivial.

I HF∗(φ
m
f ) =

{
Z if ∗ = n + 2m
0 otherwise

.
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I Define
Λ(φmf ) :=

∑∞
j=0(−1)jTr((φf )m∗ : Hj(Mf ;Z) −→ Hj(Mf ;Z)).

I The multiplicity mi of f along Di is the order of (f ◦ π)−1(0)
along Di .

I Define Do
i ≡ Di − ∪j∈S−iDj for all i ∈ S .

I Theorem (A’Campo)

Λ(φmf ) =
∑

{i∈Ŝ : mi | m}

miχ(Do
i ), ∀m > 0.
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I Definition Let sY be a meromorphic section of an ample line
bundle on Y with a pole of order wi along Di for all i ∈ Ŝ and
which is non-zero and holomorphic away from π−1(0). The
wrapping number of Di is defined to be wi .

I Definition Choose a holomorphic coordinate chart
x1, · · · , xn+1 centered at some point of Di . The discrepancy
ai of Di is the order of the Jacobian of π(x1, · · · , xn) along Di .
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I Definition A multiplicity m separating resolution
π : Y −→ Cn+1 is a log resolution as above so that
mi + mj > m for all i , j ∈ S satisfying Dij 6= 0. I.e. the sum of
the multiplicities of adjacent resolution divisors is greater than
m.



I Definition For each i ∈ S let NDi be a small tubular
neighborhood of Di with boundary transverse to all of the
strata of ∪iDi . Define D̃i ≡ f −1(δ) ∩ NDi for δ > 0
sufficiently small.

This is homotopic to an mi -fold cover of Do
i .

f −1(δ)

D1

D2
D3

D̃3

ND3



I Theorem (M - 98% done):
Fix m > 0, and let π : Y −→ Cn+1 be a multiplicity m
separating resolution. Then there is a spectral sequence
converging to HF∗(φ

m
f ) with E 1 page

E 1
p,q =

⊕
{
i∈Ŝ :

mi |m
m
mi

wi=p

}Hn+p+q−2m
(

ai+1

mi

)(D̃i )

I The Euler characteristic of the right hand side is naturally
equal to (−1)n times the right hand side of A’Campo’s
formula above. Similarly the left hand side of A’Campo’s
formula is (−1)nχ(HF∗(φ

m
f )).
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Simplest Example, m=1.

I Suppose f (z1, · · · , zn+1) = z1 and m = 1.

I Multiplicity 1 separating resolution is 1-point blowup at 0.

D1 = f −1(0) Bl0

D1

D2

I m1 = 1,m2 = 1,w2 = 1 and a2 = n − 1.

I Our spectral sequence degenerates and we get:

HF∗(φf ) =

{
Z if ∗ = n
0 otherwise.
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Simplest Example, m=2, n=2.

I Suppose n = 2, f (z1, z2) = z1 and m = 2.

I Multiplicity 1 separating resolution is 1-point blowup at 0
followed by an additional blowup along the intersection of the
exceptional divisor with the proper transform.

D1 = f −1(0) Bl0

D1

D2

BlD1∩D2

D1

D2

D3

I w2 = 2,w3 = 3, m2 = 1,m3 = 2, a1 = 1, a2 = 2 and
H∗(D̃

o
2 ) = H∗(pt) and H∗(D̃

o
3 ) = H∗(S

1).
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Case: n = 2

HF∗(φ
2
f ) =

{
Z if ∗ = 4
0 otherwise.

}



Example 2, x2 + y 3, m = 1, 2, 3, 4, 5

x2 + y3 = 0

D1 D2
D3

D4

m2 = 2
a2 = 1

w2 = 5

m3 = 3
a3 = 2
w3 = 8

m4 = 6 a4 = 4

m1 = 1

w3 = 14

H∗(D̃
o
2 ) = H∗(S

1) H∗(D̃
o
3 ) = H∗(S

1)

H∗(D̃
o
3 ) = ⊕2

i=1H∗(S
1)

1. HF∗(φ
m
f ) = 0 if m = 1, 5,

2. HF∗(φ
2
f ) = H∗−2(S1),

3. HF∗(φ
3
f ) = H∗−4(S1) and

4. HF∗(φ
4
f ) = H∗−6(S1).



f (x , y) = x2 + y 3

Having said that, we cannot use the spectral sequence to compute
HF∗(φ

6
f ) since our E 1 page is:
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I But, φ7
f is fine.

x2 + y3 = 0

D1

D2

D3

D4

m2 = 2

m3 = 3

m4 = 6

m1 = 1

D5

m5 = 7

a5 = 5

I HF∗(φ
7
f ) = H∗−11(S1).



I Theorem 2 Fix m > 0. Let π : Y −→ Cn+1 be a multiplicity
m separating resolution with exceptional divisors (Di )i∈Ŝ of
multiplicity (mi )i∈Ŝ and discrepancy (ai )i∈Ŝ . Define

Sm ≡ {i ∈ Ŝ : mi |m}. Then

inf{α : HFα(φmf ,+) 6= 0} = inf

{
2m

(
ai + 1

mi

)
− n : i ∈ Sm

}
.

In particular, HF∗(φ
m
f ,+) vanishes if and only if mi does not

divide m for each i ∈ Ŝ .



Proof

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗

E 1
∗,∗E 1

∗,∗

This is the lowest non-zero
E 1 term on the lowest diagonal.

This term exists since dim(⊕p,qE
1
p,q) <∞

and it survives to the E∞ page
since all differentials connecting this
term have source or target 0.



Multiplicity

I Definition The multiplicity mult0f of f at 0 is defined to be
the degree of the lowest homogeneous term of f .

I E.g. mult0(x2 + y3) = 2.

I Lemma: mult0f = min
i∈Ŝmi .

E.g.

x2 + y3 = 0

D1 D2
D3

D4

m2 = 2 m3 = 3

m4 = 6

m1 = 1

Here mult0(x2 + y3) = min(m2,m3,m4) = 2.
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Corollary of Theorem 2: mult0(f ) = infm HF∗(φ
m
f ,+) 6= 0.

This proves a conjecture by Seidel.

E.g.
If f = x2 + y3 then HF∗(φf ,+) = 0 but
HF∗(φ

2
f ,+) = H∗−2(S1) 6= 0.



Log Canonical Threshold

I The log canonical threshold of f at 0 is defined as

lct0(f ) ≡ sup

{
s > 0 :

1

|f |2s
is locally integrable near 0

}
.

I Introduced by work of Atiyah.

I If f ∈ Z[x0, · · · , xn] then lct0(f ) is related to the rate of
growth of the number of solutions of f in Z/pmZ as m→∞
(Igusa).

I A version of this invariant can be used as a criterion for the
existence of Kähler Einstein metrics (Tian).

I Used for proving vanishing theorems in algebraic geometry
(helpful in birational geometry).

I A version of lct has been used to prove certain Fano manifolds
are non-rational (Corti, de Fernex, Ein, Mustata).
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I Lemma: Let π : Y −→ Cn+1 be a log resolution for
(Cn+1, f −1(0)) with exceptional divisors (Di )i∈Ŝ of
multiplicity (mi )i∈Ŝ and discrepancy (ai )i∈Ŝ . Then

lct0(f ) = min

{
β : β =

ai + 1

mi
for some i or β = 1

}
.

.

I proof idea: 1
|f |2s is integrable near 0 iff its pullback to Y is

integrable near π−1(0) with respect to the pullback measure.
Use a change of variables formula.

I Corollary: lct0(f ) is a rational number.
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E.g.

x2 + y3 = 0

D1 D2
D3

D4

m2 = 2 m3 = 3

m4 = 6

m1 = 1
a2 = 1

a4 = 4

a3 = 2

lct0(x2 + y2) = min
(

1+1
2 , 2+1

3 , 4+1
6

)
= 5

6 .



Aside: Counting Solutions Mod pm

I Suppose f ∈ Z[z0, · · · , zn] and let Nk be the number of
solutions of f = 0 mod pk (p is a fixed prime).

I Theorem (Igusa). Zp(f ) :=
∑

k∈N p−knNkz
k is a

meromorphic function whose nearest pole is at −lct0(f ).
(Proof uses p-adic integration).

I This means that we know the radius of convergence of Zp(f )
which can be used to estimate the growth of Nk .
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I E.g. (ratio test):

lim
p−(k+1)nNk+1

p−knNk
|z | = lim

Nk+1

pnNk
< 1 iff |z | < lct0(f ).

I Hence ∃ C1,C2 such that

C1

(
pn

lct0(f )

)k

< Nk < C2

(
pn

lct0(f )

)k

∀k .
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∀k .



I Reminder: Theorem 2 gives us the formula:

inf{α : HFα(φmf ,+) 6= 0} = inf

{
2m

(
ai + 1

mi

)
− n : i ∈ Sm

}
.

Hence:

I Corollary of Theorem 2:
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α + n

2m
: HFα(φmf ) 6= 0 or

α + n
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I Lemma (Varchenko) For all sufficiently small ε > 0,
Lf ≡ f −1(0) ∩ S(ε) is a contact submanifold of the ε-sphere
S(ε) ⊂ Cn+1.

I Definition: The embedded link of f at zero is the contact
submanifold Lf ⊂ S(ε).

I f1 and f2 have contactomorphic embedded links if there is
a coorientation preserving contactomorphism S(ε) −→ S(ε)
sending Lf1 to Lf2 .

I Theorem If f1 and f2 have contactomorphic embedded links
then HF∗(φ

m
f1

) = HF∗(φ
m
f2

), ∀ m > 0.
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I Zariski Conjecture: Let f1, f2 : Cn+1 −→ C have isolated
singularities at 0 and suppose that there is a diffeomorphism
S(ε) −→ S(ε) sending Lf1 to Lf2 then is the multiplicity of f1
equal to the multiplicity of f2?

I Question: What about log canonical Threshold? (See N.
Budur 2012).

I Corollary: Suppose f1 and f2 have contactomorphic
embedded links, then they have the same multiplicity and log
canonical threshold at 0.

I For instance, if f1, f2 ∈ Z[z0, · · · , zn] then the number N1
k , N2

k

of solutions of f1 = 0 and f2 = 0 mod pk respectively satisfy

C1N
1
k < N2

k < C2N
2
k

for some constants C1,C2.
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Full Contact Homology

Full contact homology CH∗(C , ξ) of a 2n − 1-contact manifold
(C , ξ) indexed by Conley-Zehnder index +(n − 3). Chain complex
is the free supercommutative algebra generated by Reeb orbits of a
compatible contact form λ. The differential is:

γ1 γ2 γ3

γ
Number of holomorphic

in the symplectization is

the γ coefficient of ∂(γ1γ2γ3).



I An isolated singularity A ⊂ CN is the germ at 0 of an affine
variety A ≡ {z ∈ Cn : f1 = · · · = fl = 0} with an isolated

singularity at 0, or is smooth at 0 (I.e. the matrix
(
∂fi
∂zj

)
i ,j

has

constant rank on U − {0} where U is a neighborhood of 0).

I Lemma (Varchenko): LA ≡ A ∩ S(ε) is a contact manifold
with contact structure ξA ≡ TLA ∩ J0TLA where
J0 : TCN −→ TCN is the standard complex structure.

I We call (LA, ξA) the link of A at 0.
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I A resolution of A at 0 is a proper morphism π : Y −→ A so
that

1. Y is smooth.
2. π|π−1(U−{0}) is a biholomorphism onto its image for some

small neighborhood U of 0,
3. π−1(0) is a smooth normal crossing divisor (Di )i∈S .

The divisors (Di )i∈S are called exceptional divisors.

A

π

D1

D2
D3

Y



I An isolated singularity A is numerically Gorenstein if
c1(LA, ξA) = 0. It is numerically Q-Gorenstein if c1(LA, ξA)
is torsion.

I The discrepancy ai of an exceptional divisor Di of a
numerically Q-Gorenstein singularity is defined as follows:
Let Ãε ≡ π−1(A ∩ B(ε)) where B(ε) is the closed ε ball. Then
∂Ãε = LA. Also one can show that c1(Ãε;Q) ∈ H2(Ãε;Q) lifts
to a unique class in H2(Ãε, LA;Q). The Lefschetz dual of this
class is a unique sum

∑
i ai [Di ] ∈ Hn−2(Ãε;Q). We define the

discrepancy of Di to be ai .

π
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Let Ãε ≡ π−1(A ∩ B(ε)) where B(ε) is the closed ε ball. Then
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I Let π : Y −→ A be a resolution. Suppose that we have an
ample line bundle and a meromorphic section which is
non-zero away from π−1(0) and has a non-trivial pole of order
wi along Di for each i ∈ S . Then the wrapping number wi

of Di is the order of this pole along Di .



I Let NDI be a small tubular neighborhood of DI whose
boundary is transverse to the strata of ∪iDi and so that
NDI ∩ DI ′ is a tubular neighborhood of NDI∪I ′ for all
I , I ′ ⊂ S . Define ŇDI ≡ NDI − ∪i∈S−IDi .

I This is a fiber bundle over DI −∪i∈S−IDi with fiber (D− 0)|I |.

I Hence for each tuple (bi )i∈I of integers, there is a U(1) action
on ŇDI preserving the fibers so that β ∈ U(1) sends a point

(xi )i∈I ∈ (D− 0)|I | to (βbi xi )i∈I . Let ND
/(bi )
I be the

corresponding quotient.
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Conjecture.
Let π : Y −→ A be a resolution of an isolated numerically
Q-Gorenstein singularity A with exceptional divisors (Di )i∈S .
Define

Ap,q ≡
⊕

{(ki )∈NS :
∑

i kiwi=p}
Hp+q−2

∑
i kiai

(ND
/(ki )
I(ki )

;Q)

where I(ki ) ≡ {i ∈ S : ki 6= 0}.
Then there is a spectral sequence converging to CH∗(LA, ξA) with
E 1 page equal to the free supercommutative algebra generated by
the bigraded vector space A∗,∗. I.e.

E 1
∗,∗ =

⊕
n≥0

Symn
Q (A∗,∗) .



I Definition: A is a log canonical singularity if ai ≥ −1 for
all i ∈ S .

I The minimal discrepancy md0(A) of log canonical singularity
is miniai . This measures how ‘singular’ A is at 0 (the higher
the number, the less singular). We define md0(A) ≡ −∞ if A
is not log canonical.

I Shokurov Conjecture A is smooth at 0 if md0(A) is n − 1.

I Work of de Fernex and Yu-Chao proves this conjecture when
the tangent cone of A at 0 has a reduced component.
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I Theorem (assuming spectral sequence conjecture.) If A
is log canonical and numerically Q-Gorenstein then the
smallest degree for which CH∗(LA, ξA)/Q〈id〉 is non-zero is
2md0(A). Here Q〈id〉 is the subvector space spanned by the
identity element.

I Proof idea: Find the largest p satisfying E 1
p,q 6= 0 where

q = 2md0(A)− p. This cannot kill or be killed by any
differential d r

p,q, r > 0.
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I Question: Can CH∗(LA, ξA) detect whether A is log canonical
or not? (I.e. whether md0(A) = −∞ or not)?

I This would reprove the theorem (M - 2014) that (LA, ξA)
detects smoothness of A at 0 assuming Shokurov’s conjecture.
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Construction of the Spectral Sequence.

I All of the above spectral sequences are Morse-Bott spectral
sequences. What are they?

I Let (C , α) be a manifold with contact form. A Morse-Bott
submanifold is a submanifold of C consisting of periodic
Reeb orbits of α which is non-degenerate in the normal
direction (I.e. the 1-eigenspace of the linearized return map is
tangent to our submanifold).

I We say that (C , α) is Morse-Bott if every Reeb orbit sits
inside a Morse-Bott submanifold.
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I Now suppose that we have a Liouville domain (M, θ). Recall
that the chain complex for SH∗(M, θ) consists of critical
points of some Morse function in the interior of M plus two
copies of each Reeb orbit after perturbing the Liouville form
generically so that the contact form is non-degenerate.

I This chain complex has a natural increasing filtration given by
the length of these Reeb orbits and where the critical points
are at the bottom of this filtration. We will call this the
action filtration.
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I Let (M̂, θ) be the completion of (M, θ).

I A Hamiltonian H on M̂ is admissible if it is equal to λrM
near infinity where rM is the cylindrical coordinate.

I Define CF≤b∗ (H) to be the Hamiltonian Floer chain complex
consisting of 1-periodic orbits of H of action ≤ b (I.e
−
∫
S1 γ

∗θ −
∫
S1 H(γ(t))dt < b).

I Define CF
[a,b]
∗ (H) := CF≤b∗ (H)/CF≤a∗ (H) and let HF

[a,b]
∗ (H)

be the homology of this chain complex.
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I Define SH
[a,b]
∗ (M, θ) := lim−→H

HF
[a,b]
∗ (H) where our direct limit

is taken over admissible Hamiltonians H satisfying H|M < 0.

M ∂M
[1,∞)× ∂M.

H



I Lemma: Let ai ∈ R, i ∈ N be an increasing sequence tending
to infinity where ai is not the length or a Reeb orbit or 0.
There is a spectral sequence converging to SH∗(M, θ) with E 1

page

E 1
p,q = SH

[ap ,ap+1]
p+q (M, θ).

I Lemma: Suppose that the set of Reeb orbits of length in
[ap, ap+1] is a finite union of connected Morse-Bott families

(B j
p)j∈Ip of Reeb orbits all of the same length. Then

SH
[ap ,ap+1]
p+q (M, θ) = ⊕j∈IpH

p+q−CZ(Bp)(Bp,LB j
p
) where L

B j
p

is

a certain local coefficient system.
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I By the two lemmas above:

Proposition: Suppose that (M, θ) has a Morse-Bott

boundary and let (B j
k)k∈N,j∈Ik be the set of all of the

Morse-Bott submanifolds so that

1. they are connected,
2. Ik is a finite set for all k ∈ N,

3. the length of B j
k is the length of B j′

k for all j , j ′ ∈ Ik and these
lengths tend to infinity as k →∞ and

4. the length of B j
k is less than the length of B j′

k+1 for all k ∈ N,
j ∈ Ik and j ′ ∈ Ik+1.

Then there is spectral sequence converging to SHp+q(M) with
E 1 page

E 1
p,q =

⊕
j∈Ip

Hp+q−CZ(Bp)(B j
p,LB j

p
)

where L
B j
p

is a certain local coefficient system.



I Definition. An isolated family of Reeb orbits B of (C , α)
of length l is a subset B ⊂ C consisting of Reeb orbits of
length l so that there is a neighborhood N of B so that there
are no Reeb orbits in N of length in [l − ε, l + ε] for some
small ε > 0.

I Definition (c.f. Kirwan 1985): A minimally degenerate
subset of length l is a closed subset B ⊂ C so that there is a
function f : C −→ (0,∞) and a submanifold N ⊂ C (possibly
with boundary) satisfying

1. B ⊂ N,
2. B is an isolated family of Reeb orbits of length l ,
3. N is a Morse-Bott submanifold of (C , f α),
4. f −1(1) = B and 1 is the maximum of f .

I Definition : A minimally degenerate contact pair a
contact pair (C , α) so that every periodic orbit is contained
inside a minimally degenerate subset.
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I We have a similar spectral sequence in this case (this isn’t
proven yet, really).

Proposition: Suppose that the boundary of (M, θ) is a

minimally degenerate contact pair and let (B j
k)k∈N,j∈Ik be the

set of all of the minimally degenerate subsets so that

1. they are connected,
2. Ik is a finite set for all k ∈ N,

3. the length of B j
k is the length of B j′

k for all j , j ′ ∈ Ik and these
lengths tend to infinity as k →∞ and

4. the length of B j
k is less than the length of B j′

k+1 for all k ∈ N,
j ∈ Ik and j ′ ∈ Ik+1.

Then there is spectral sequence converging to SHp+q(M) with
E 1 page

E 1
p,q =

⊕
j∈Ip

Hp+q−CZ(Bp)(B j
p,LB j

p
)

where L
B j
p

is a certain local coefficient system.



I Our spectral sequence will be obtained by constructing an
appropriate minimally degenerate contact form on the
boundary of our Liouville domain.

I In order to find a such a boundary, we need to construct a
symplectically nice neighborhood of the divisor in question
(resolution divisor or compactifying divisor).

I We need a purely symplectic notion of divisor. See 1011.2542
and work of M-Tehrani-Zinger.
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I Let (X , ω) be a symplectic manifold. Let (Di )i∈S be
transversally intersecting codimension 2 symplectic
submanifolds so that DI ≡ ∩i∈IDi is symplectic form all
I ⊂ S .

I Definition: The symplectic orientation of DI is the
orientation on DI induced by the symplectic structure.



I Since (X , ω) is oriented by ωn, there is a natural 1-1
correspondence between orientations on the normal bundle
NXDI = ⊕i∈INDi |DI

and orientations on DI .

I Definition: Since Di has a natural orientation, we get that
NXDi has an induced orientation for all i ∈ I and hence DI

has an induced orientation called the intersection
orientation of DI for all I ⊂ S .

I We say that (Di )i∈S is a symplectic SNC divisor if the
symplectic orientation of DI is equal to the intersection
orientation of DI for all I ⊂ S .
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I Example:
Let M be a Kähler manifold with Kähler form ω. Let (Di )i∈S
be smooth transversally intersecting complex hypersurfaces.
Then (Di )i∈S is a symplectic SNC divisor.

I Non-example Let M = T ∗R2 with the standard symplectic
form. Let D1 be the graph of the 1-form xdy and let D2 be
the graph of ydx . Then D1,D2 are transversely intersecting
but they intersect negatively and hence cannot be a
symplectic SNC divisor.

I Non-example 2. There is a 3-dimensional example of three
codimension two linear hypersurfaces D1,D2,D3 in R6 in
which the intersection orientation is equal to the symplectic
orientation for I = {1, 2}, {2, 3}, {1, 2, 3} but not for
I = {1, 3}.
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I We wish to deform any symplectic SNC divisor so that it looks
nice. What does nice mean?

I Definition: Let π : E −→ B be a fiber bundle and let ωE be
a symplectic form on E making the fibers symplectic. Then
the associated symplectic connection is the Ehresmann
connection induced by vectors symplectically orthogonal to
the fibers.

I Definition: Let S ⊂W be a submanifold of a manifold W . A
tubular fibration is a smooth fibration P : US −→ S where
US ⊂W is a neighborhood of S in W so that the differential
of P along S is the identity map.
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I A regularization of a symplectic SNC divisor (Di )i∈S inside
(X , ω) consists of tubular fibrations (πI )I⊂S of (DI )I⊂S with
symplectic fibers so that

1. πI1∪I2 = πI1 ◦ πI2 on their common domain of definition for all
I1, I2 ⊂ S and

2. the fibers of πI are symplectomorphic to a product
∏

i∈I D(ε)
of ε disks and the associated symplectic connection has parallel
transport maps rotating these disks giving us a U(1)|I |

structure group.
3. There should also be a particular almost complex structure but

we won’t need this.

D1

D2

π1
π2

π12 = π1 ◦ π2



I Theorem M (2011), M-Tehrani-Zinger (2014): Every
symplectic SNC divisor is isotopic through symplectic SNC
divisors to one which admits a regularization.

I The proof first involves proving the Theorem in the linear case
first and then using a Moser argument to extend this linear
argument to the general non-linear case.
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Proof idea in the Linear Case

I Let Di ⊂ Cn be equal to Ci−1 × 0× Cn−i and let ω be a
linear symplectic form on Cn so that (Di )

n
i=1 is a symplectic

SNC divisor. Let Ďi ⊂ Cn be the complementary subspace
0× C× 0 where C is the ith C factor.

I Let pi : Cn −→ Di , p̌i : Cn −→ Ďi be the natural projection
maps. Let ρ : [0, 1] −→ R be equal to:

1

1

I Then ωt := (1− ρ(t))ω + Cρ(t)p̌∗i (ω|Ďi
) + ρ(t)p∗i (ω|Di

) is a
smooth family of symplectic forms making (Di )

n
i=1 into a

symplectic SNC divisor for C � 0.

I Repeat this process for all i until ω =
∑

i Ci p̌
∗
i (ω|Ďi

) for large
Ci > 0 (this has a regularization).
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I Lemma: If two symplectic SNC divisors are isotopic to each
other through symplectic SNC divisors then their complements
are naturally symplectomorphic (note that there may not be a
symplectomorphism sending one divisor to the other though).



I We now need to know which divisors have a natural (concave
or convex) contact neighborhood.

I In algebraic geometry, if we have an effective ample divisor
representing a Kähler form then it has a natural concave
contact neighborhood. Conversely if we have an anti-effective
ample divisor then it has a convex contact neighborhood.
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I Let L be an ample line bundle on some smooth
quasi-projective variety Y . Choose a Hermitian metric | · | on
L so that −i times its curvature form is a Kähler form ω.

I Suppose that L admits a holomorphic section s so that
s−1(0) = ∪iDi is an SNC divisor.

I Then the set

(M, θ) := ({x ∈ Y : ln(|s(x)|) ≥ C},−dc ln(|s(x)|)

is a Liouville submanifold for all large enough C .

I Y −M is a neighborhood of ∪iDi with concave boundary.
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I There is a similar construction when s has poles along Di and
no zeros, and then we get a convex neighborhood of ∪iDi .

I We need a symplectic version of this (anti-)ampleness
condition so that we can mimic the above construction of a
neighborhood with concave (or convex) boundary. We will do
this by defining a purely symplectic notion of wrapping
number.
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I Definition: An exact symplectic SNC divisor ((Di )i∈S , θ)
in (X , ω) is a symplectic SNC divisor (Di )i∈S and a 1-form
θ ∈ Ω1(X − ∪iDi ) satisfying dθ = ω.

I Definition: Let ((Di )i∈S , θ) be an exact symplectic SNC
divisor. Let Di ⊂ X be a small symplectic disk intersecting Di

once at 0 positively and not intersecting Dj for all j 6= i with
polar coordinates (r , ϑ). The wrapping number of Di is the
unique wi ∈ R so that wi

2πdϑ ∈ Ω1(Di − 0) is cohomologous to
(θ − 1

2 r
2)|Di−0.

D1

D2

D12

A

X = D∅X = D∅
+ive

+ive
D1

D2
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Alternative Definition of Wrapping Number

I Let U be a neighborhood of ∪iDi which deformation retracts
on to ∪iDi . Then H2n−2(U) is freely generated by [Di ].

I Let ρ : U −→ R be equal to 1 near ∪iDi and have compact
support.

I Then wi are the unique numbers so that
-
∑

i wi [Di ] ∈ H2n−2(U) is the Lefschetz dual of

Ω ∈ Ω2
c(U), Ω =

{
d(ρθ) outside ∪i Di

ω near ∪i Di
.
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I Let ri : X −→ R be the the distance from Di with respect to
some metric. A function f : X − ∪iDi −→ R is compatible
with (Di )i∈S if

f = σ +
∑
i

ci log(r2
i )

for some constants (ci )i∈S and a smooth function
σ : X −→ R.

I This is our ‘symplectic version’ of ln(|s|) mentioned earlier (s
was our holomorphic section and | · | our Hermitian metric.).
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I Proposition M. Let (Di )i∈S , wi , θ be as above. Suppose that
all of the wrapping numbers wi are negative. Then there is a
smooth function g : X − ∪iDi −→ R so that df (Xθ+dg ) > 0
near ∪iDi . In particular (f −1(−C ), θ + dg) is a concave
contact boundary of a small neighborhood of ∪iDi for C � 1.

I Also (f −1(−C ,∞), θ) is a Liouville submanifold for all C � 1.



I Proposition The contactomorphism type of
(f −1(−C ), θ + dg) does not depend on the choice of f or g
although it does depend on the choice of 1-form θ.

I Definition: We will call this contact manifold the
contact boundary of ((Di )i∈S , θ).

I Similarly if all the wrapping numbers are positive we can
choose g so that df (Xθ+dg ) < 0 near Di . Hence f −1(C ) is
convex contact boundary of a neighborhood of ∪iDi also
called the contact boundary of ((Di )i∈S , θ).
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I Proposition: If there is a smooth family of exact symplectic
SNC divisors, ((Dt

i )i∈S , θt) t ∈ [0, 1] so that the wrapping
numbers of Dt

i are all positive or all negative, then the contact
boundaries of (Dt

i )i∈S are all naturally contactomorphic.

I Hence the contact boundary of ∪iDi is an invariant up to
isotopy.



I Now suppose that our symplectic SNC divisor (Di )i∈S admits
a regularization (πI )I⊂S (recall, these are tubular fibrations of
DI ) and that the wrapping numbers wi of ((Di )i∈S , θ) are
negative.

I Since the tubular fibrations π{i} have a natural U(1) structure
group, we have radial coordinates ri : Dom(π{i}) −→ R.

I Let f =
∑

i ln(ρ(ri )) where ρ is:

1

ε

Then f is compatible with (Di )i∈S .

I We can choose g so that θ + dg restricted to each fiber∏
i∈I (D− 0) of DI is

∑
i (r

2
i + wi

2π )dϑi where (ri , ϑi ) are polar
coordinates on the ith D factor.



I Now suppose that our symplectic SNC divisor (Di )i∈S admits
a regularization (πI )I⊂S (recall, these are tubular fibrations of
DI ) and that the wrapping numbers wi of ((Di )i∈S , θ) are
negative.

I Since the tubular fibrations π{i} have a natural U(1) structure
group, we have radial coordinates ri : Dom(π{i}) −→ R.

I Let f =
∑

i ln(ρ(ri )) where ρ is:

1

ε

Then f is compatible with (Di )i∈S .

I We can choose g so that θ + dg restricted to each fiber∏
i∈I (D− 0) of DI is

∑
i (r

2
i + wi

2π )dϑi where (ri , ϑi ) are polar
coordinates on the ith D factor.



I Now suppose that our symplectic SNC divisor (Di )i∈S admits
a regularization (πI )I⊂S (recall, these are tubular fibrations of
DI ) and that the wrapping numbers wi of ((Di )i∈S , θ) are
negative.

I Since the tubular fibrations π{i} have a natural U(1) structure
group, we have radial coordinates ri : Dom(π{i}) −→ R.

I Let f =
∑

i ln(ρ(ri )) where ρ is:

1

ε

Then f is compatible with (Di )i∈S .

I We can choose g so that θ + dg restricted to each fiber∏
i∈I (D− 0) of DI is

∑
i (r

2
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2π )dϑi where (ri , ϑi ) are polar
coordinates on the ith D factor.
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I We have df (Xθ+dg ) > 0 near ∪iDi and so
(f −1(−C ), αC := θ + dg |f −1(C)) is a contact boundary of
∪iDi called a regular contact boundary of ∪iDi .

I The contact form αC is minimally degenerate.

I For each I ⊂ S and each (ki )i∈I ∈ NI
>0 there is a minimally

degenerate subset B(ki )i∈I of length −
∑

i li (2πwi + ε) and all
Reeb orbits are contained in one such subset.

I B(ki )i∈I is diffeomorphic to a U(1)|I | fibration over

DI − ∪i∈S−iDom(πi ) and is homotopic to ŇDI .



I We have df (Xθ+dg ) > 0 near ∪iDi and so
(f −1(−C ), αC := θ + dg |f −1(C)) is a contact boundary of
∪iDi called a regular contact boundary of ∪iDi .

I The contact form αC is minimally degenerate.

I For each I ⊂ S and each (ki )i∈I ∈ NI
>0 there is a minimally

degenerate subset B(ki )i∈I of length −
∑

i li (2πwi + ε) and all
Reeb orbits are contained in one such subset.

I B(ki )i∈I is diffeomorphic to a U(1)|I | fibration over

DI − ∪i∈S−iDom(πi ) and is homotopic to ŇDI .
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what about Conley-Zehnder index?

I Now suppose that c1(X − ∪iDi ) = 0. Then we can choose a
(not necessarily unique) representative

∑
i ai [Di ] ∈ H2n−2(X )

Poincaré dual to c1(X ).

I ai is called the discrepancy of Di .

I It coincides with the definition of discrepancy earlier when X
was projective.

I The Conley-Zehnder index of B(ki )i∈S is

−2
∑

i ki (ai + 1)− n − |I |2 .
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Poincaré dual to c1(X ).

I ai is called the discrepancy of Di .

I It coincides with the definition of discrepancy earlier when X
was projective.

I The Conley-Zehnder index of B(ki )i∈S is

−2
∑

i ki (ai + 1)− n − |I |2 .



what about Conley-Zehnder index?

I Now suppose that c1(X − ∪iDi ) = 0. Then we can choose a
(not necessarily unique) representative

∑
i ai [Di ] ∈ H2n−2(X )

Poincaré dual to c1(X ).

I ai is called the discrepancy of Di .

I It coincides with the definition of discrepancy earlier when X
was projective.

I The Conley-Zehnder index of B(ki )i∈S is

−2
∑

i ki (ai + 1)− n − |I |2 .



what about Conley-Zehnder index?

I Now suppose that c1(X − ∪iDi ) = 0. Then we can choose a
(not necessarily unique) representative

∑
i ai [Di ] ∈ H2n−2(X )
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I Main idea:
1. Deform the symplectic SNC divisor so that it has a

regularization.
2. This does not change the contact boundary of such a divisor

up to contactomorphism.
3. Then construct the regular contact boundary using this

regularization as above.

I We will now use this technique for affine varieties.



Recall that we wish to prove the following:

There is a spectral sequence converging to SH∗(A) with E 1 page

E 1
p,q =

⊕
{(ki )∈NS :

∑
i kiwi=−p}

Hn−p−q−2(
∑

i ki (ai+1))(ŇDI(ki )
)

where NS is the set of tuples of non-negative integers indexed by S
and I(ki ) = {i ∈ S : ki 6= 0}.

D1

D2

D12

A = ŇD∅ŇD1

ŇD2

ŇD12



Proof Sketch:

1. First of all we compactify our affine variety A to a smooth
projective variety X so that X − A is an SNC divisor (Di )i∈S .

2. Since SH∗(A) is a biholomorphic invariant we can compute it
with respect to any Stein structure. We choose the Stein
structure with plurisubharmonic function φ ≡ −dc log(‖s‖)
where s is a section of an ample line bundle on X so that
s−1(0) = ∪iDi and ‖ · ‖ is a positive metric. The critical set
of φ is compact.

3. Therefore in order to compute SH∗(A) we need to compute
SH∗(M, θ) where (M, θ) ≡ (φ−1(−∞,C ],−dcφ) for some
C � 1.
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4. Lemma: The wrapping numbers of the exact symplectic SNC
divisor ((Di )i∈S ,−dcφ) are equal to the wrapping numbers
defined in the first lecture using s (I.e. minus the order of
s−1(0) along Di ). Also (∂M, θ) is contactomorphic to the
contact boundary of the symplectic SNC divisor (Di )i∈S .

5. Now we isotope ((Di )i∈S ,−dcφ) through exact symplectic
SNC divisors so that it admits a regularization and hence has
a regular contact boundary.

6. Since this regular contact boundary is contactomorphic to
φ−1(C ) we can deform our Liouville domain (M, θ) so that it
is minimally degenerate as described earlier.

7. The spectral sequence is then the associated Morse-Bott
spectral sequence.
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