
Computing Symplectic Cohomology of Affine
Varieties

(using Spectral Sequences)

http://www.math.stonybrook.edu/˜markmclean/talks/spectralsequence-shorterversion.pdf



Related Projects (in progress)
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I Ganatra, Pomerleano

I Sheridan, Borman

I Hülya Argüz

I Joint work with Tehrani, Zinger.



I “The words ‘spectral sequence’ strike fear into the hearts of
many hardened mathematicians. These notes will attempt to
demonstrate that spectral sequences are not so scary, and also
very powerful.” - M. Hutchings

I “A spectral sequence is an algebraic object, like an exact
sequence, but more complicated” - J. F. Adams.

I “After my article was published, John Harper sent me email
and said that when he was a graduate student back in the
1960s, he personally asked Leray about the term ‘spectral’
and in particular asked whether it had something to do with
the spectrum of an operator. Leray began his reply by saying,
”Non”; unfortunately, before he could continue, some
professors approached and interrupted the conversation.”
-Source: Timothy Chow/ Mathoverflow.net
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A spectral sequence is a sequence of bigraded chain complexes.
This is page 0.
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A spectral sequence is a sequence of bigraded chain complexes.
This is page 1.
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A spectral sequence is a sequence of bigraded chain complexes.
This is page 2.
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A spectral sequence is a sequence of bigraded chain complexes.
This is page 3.
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The total degree is the sum of the degrees. Diagonal lines have
been drawn to highlight groups of the same total degree.
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The total degree is the sum of the degrees. Diagonal lines have
been drawn to highlight groups of the same total degree.
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The total degree is the sum of the degrees. Diagonal lines have
been drawn to highlight groups of the same total degree.
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The total degree is the sum of the degrees. Diagonal lines have
been drawn to highlight groups of the same total degree.
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I The differential d on E ∗,∗r has degree (r , 1− r). In other
words, we have maps:

d |Ep,q
r

= dp,q
r : Ep,q

r −→ Ep+r ,q+1−r
r .

I Note that dp,q
r has total degree 1 since

(p + r) + (q + 1− r) = p + q + 1.

I Also E ∗,∗r+1 is the homology of the previous page E ∗,∗r . In other
words,

Ep,q
r+1 = ker(dp,q

r )/im(dp−r ,q−1+r
r−1 ).
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Here the differential has degree (0, 1− 0).
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Here the differential has degree (1, 1− 1).
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Here the differential has degree (2, 1− 2).
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Here the differential has degree (3, 1− 3).
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What is the E∞ page?

I It is the set of elements which ‘survive’ forever.

I In our case, all the pages Ep,q
r for r > 0 will be finite

dimensional and they decrease in dimension as r increases.

I Therefore, for each p, q there is a constant Cp,q so that
Ep,q
r+1 = Ep,q

r for all r ≥ Cp,q. Hence we can define Ep,q
∞ to be

Ep,q
r for r = Cp,q.
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I Definition: We say that a spectral sequence (Ep,q
r ) converges

to a graded group H∗ if there is a filtration

H∗ ⊃ · · ·F−1 ⊃ F0 ⊃ F1 ⊃ F2 ⊃ · · ·

so that
Ep,q
∞ = Fp ∩ Hp+q/Fp+1 ∩ Hp+q.

I In our case the filtration will be nice enough so that if the
above spectral sequence converges then Hn = ⊕pE

p,n−p
∞ .
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Here H3+2 = H5 is non-zero.



”... the behavior of this spectral sequence ... is a bit like an
Elizabethan drama, full of action, in which the business of each
character is to kill at least one other character, so that at the end
of the play one has the stage strewn with corpses and only one
actor left alive (namely the one who has to speak the last few
lines)” - J. F. Adams.



A Spectral Sequence for Symplectic Cohomology.

I We will construct a spectral sequence converging to SH∗(A)
(symplectic cohomology of A) where A is a smooth affine
variety of dimension n with c1(A) = 0 (there is also a similar
spectral sequence when c1(A) is torsion but we will not focus
on that).

I Choose a non-zero section κA of the canonical bundle
KA ≡ ∧nT ∗A of A.

I Such a section (up to homotopy) gives SH∗(A) a Z-grading.
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I Definition: A smooth normal crossing divisor in a smooth
projective variety X is a finite union of transversely
intersecting smooth complex hypersurfaces (Di )i∈S .

I Theorem (Hironaka) Every smooth affine variety A is
isomorphic to X − ∪i∈SDi for some X , (Di )i∈S as above.
From now on fix this notation.

I For any I ⊂ S , define DI ≡ ∩i∈IDi . Here, D∅ = X .

D1

D2

D12

A

X = D∅X = D∅

E.g. A = C2

X = CP1 × CP1

D1 = CP1 × {∞}
D2 = {∞} × CP1

D12 = {∞} × {∞}
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I We’ll assume κA is a meromorphic section of the canonical
bundle of X which is non-zero along A.

I We define the discrepancy ai of Di to be the order of κ−1A (0)
minus the order of κ−1A (∞) along Di . I.e. κA = zai1 in some
chart z1, · · · , zn satisfying Di = {z1 = 0}.

I Choose an ample line bundle L on X and a holomorphic
section sA of L so that sA restricted to A is non-zero and
D = s−1A (0).

I We define the wrapping number wi of Di to be minus the
order of s−1A (0) along Di .
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I Definition: For each I ⊂ S let NDI be a small tubular
neighborhood of DI so that NDI ∩ DI ′ is a tubular
neighborhood of DI∪I ′ for all I ′ ⊂ S . Also ∂NDI should
intersect DI ′ transversally for all I ′ ⊂ S .

I Define ŇDI ≡ NDI − ∪i∈SDi . This as a bundle over
V̌I ≡ DI − ∪i∈S−IDi with fiber a product of punctured disks.

D1

D2

D12

A = ŇD∅ŇD1
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Theorem (M - in progress):
There is a spectral sequence converging to SH∗(A) with E1 page

Ep,q
1 =

⊕
{(ki )∈NS :

∑
i kiwi=p}

Hp+q−2(
∑

i ki (ai+1))(ŇDI(ki )
)

where NS is the set of tuples of non-negative integers indexed by S
and I(ki ) = {i ∈ S : ki 6= 0}.



I There is a similar spectral sequence for SH∗>0(A) where we
sum over everything except the term corresponding to
(0) ∈ NS .

I If c1 is torsion then κA is a section of K⊗rA and the
discrepancies ai are now defined to be the order of κ−1A (0)
minus the order of κ−1A (∞) along Di divided by r . The
associated spectral sequence is identical but the pages could
potentially have entries with non-integer p, q since ai may not
be an integer. The differentials have the same gradings.

I The future work of Diogo-Lisi and Ganatra-Pomerleano
hopefully should give better descriptions of the differentials in
some cases.
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Other Grading Conventions

I There are other grading conventions.

I You might need to replace (p, q) with (−p, n − q) for
symplectic homology and your spectral sequence differentials
will go in the other direction.



Sanity Check

I X = CPn, D1 = CPn−1 and A = Cn.

I w1 = −1 and a1 = −n − 1.

I H∗(ŇD1) =

{
Z if ∗ = 0 or 2n − 1
0 otherwise.

.

I H∗(ŇD∅) = H∗(A) =

{
Z if ∗ = 0
0 otherwise .

.
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Case: n = 3

SH∗(A) = 0

Ep,q
2 = 0 for all p, q



Example

I Let X be a smooth degree 5 hypersurface in CP3 and let D1

be the intersection of X with a generic degree 1 hypersurface
and A = X − D1.

I w1 = −1 and a1 = 1.

I H∗(ŇD1) =


Z if ∗ = 0 or 3
Z12 if ∗ = 1 or 2

0 otherwise.
.

I H∗(ŇD∅) = H∗(A) =


Z if ∗ = 0
Z64 if ∗ = 2

0 otherwise .
.

I Computations using ideas from Milnor’s paper “On simply
connected 4-manifolds”. See also
https://amathew.wordpress.com/2012/03/05/the-
cohomology-of-projective-hypersurfaces/
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I H∗(ŇD1) =


Z if ∗ = 0 or 3
Z12 if ∗ = 1 or 2

0 otherwise.
.
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Z64

Z
Z12
Z12
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Z

Z
Z12
Z12
Z

Z
Z12
Z12
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Z12
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Therefore


Z if ∗ = 0
Z64 if ∗ = 2
Z if ∗ > 3 and ∗ = 0 or 3 mod 4
Z12 if ∗ > 3 and ∗ = 1 or 2 mod 4

0 otherwise.

SH∗(A) =



Example with two divisors

I X be a smooth degree 6 hypersurface in CP3, D1,D2 are
generic degree 1 hypersurfaces and A = X − D1 − D2.

I w1 = w2 = −1 and a1 = a2 = 1.

I H∗(ŇD12) =


Z6 if ∗ = 0 or 2
Z12 if ∗ = 1

0 otherwise.
.

I H∗(ŇD1) = H∗(ŇD2) =


Z if ∗ = 0
Z26 if ∗ = 1
Z25 if ∗ = 2

0 otherwise.

.

I H∗(ŇD∅) = H∗(A) =


Z if ∗ = 0 or 1

Z150 if ∗ = 2
0 otherwise .

.
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Z if ∗ = 0
Z26 if ∗ = 1
Z25 if ∗ = 2

0 otherwise.

.
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Z
Z

Z150

Z2
Z52
Z50

Z8
Z64
Z56

Z14
Z76
Z62

Z20
Z88
Z68

Z26
Z100
Z74

Z32
Z112
Z80

Z38
Z124
Z86

Z44
Z136
Z92

Z50
Z148
Z98

Therefore



Z if ∗ = 0 or 1
Z150 if ∗ = 2

Z2+3(∗−4)/2 if ∗ > 3 and ∗ = 0 mod 4

Z52+3(∗−5) if ∗ > 3 and ∗ = 1 mod 4

Z50+3(∗−6)/2 if ∗ > 3 and ∗ = 2 mod 4
0 otherwise.

SH∗(A) =



Weinstein Conjecture

I Weinstein conjecture: Every contact form has a Reeb orbit.

I Definition: A cooriented contact manifold (C , ξ) satisfies the
Weinstein conjecture if every contact form α compatible with
ξ has a Reeb orbit.

I Which contact manifolds satisfy the Weinstein conjecture?
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I Recall that positive symplectic cohomology SH∗>0(M) of a
Liouville domain M has a chain complex freely generated by
two copies of each Reeb orbit on ∂M. In other words, we do
not consider critical points of the Hamiltonian in the interior.

I Definition: M satisfies the algebraic Weinstein conjecture
if SH∗>0(M) 6= 0.

I Lemma: If M satisfies the algebraic Weinstein conjecture
then ∂M satisfies the Weinstein conjecture.

I Question: Which smooth affine varieties satisfy the algebraic
Weinstein conjecture?
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I X = smooth projective variety and A = X − ∪iDi where
(Di )i∈S is a smooth normal crossing divisor.

I Theorem: Suppose that the discrepancy ai of Di is ≤ −1 for
all i ∈ S . Then A satisfies the algebraic Weinstein conjecture.

I Proof of the main Theorem:
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E ∗,∗1

E ∗,∗1

E ∗,∗1

E ∗,∗1

E ∗,∗1

E ∗,∗1

E ∗,∗1

00

This is the lowest non-zero
E1 term on the lowest diagonal.

This term exists since ai ≤ −1, ∀i
and it survives to the E∞ page
since all differentials connecting this
term have source or target 0.
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Additional Structure

I For many important varieties (e.g log Calabi-Yau varieties),
the spectral sequence does not help us compute SH∗(A) as
the differentials may not be 0. Also we wish to compute
SH∗(A) as an algebra with the pair of pants product.

I A spectral sequence E ∗,∗∗ is a spectral sequence of algebras
if each page E ∗,∗r is a differential bigraded algebra so that the
product structure on E ∗,∗r+1 is induced by the product structure
on E ∗,∗r for each r .

I Convergence is defined in the same way, except that the
filtration has to respect the product structure on the algebra
H∗.
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I Assume: ŇDI ′ ⊂ ŇDI for all I ⊂ I ′.

I Let ιI ′,I : ŇDI ′ → ŇDI be the natural inclusion map.

I For all I , J ⊂ S , define:

PIJ : H∗(ŇDI )⊗ H∗(ŇDJ) −→ H∗(ŇDI∪J)

a⊗ b −→ ι∗I∪J,Ia ∪ ι∗I∪J,Jb.

D1

D2

D12

A = ŇD∅ŇD1

ŇD2

ŇD12
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Conjecture/Theorem? (Ganatra-Pomerleano, work in progress)
The spectral sequence above is in fact a spectral sequence of
algebras converging to SH∗(A) with the pair of pants product. The
product structure

Ep,q
1 ⊗ Ep′,q′

1 −→ Ep+p′,q+q′

1

on the E1 page

Ep,q
1 =

⊕
{(ki )∈NS :

∑
i kiwi=p}

Hp+q−2(
∑

i ki (ai+1))(ŇDI(ki )
).

is induced by the maps PIJ above.



I Definition. An isolated family of Reeb orbits B of (C , α)
of length l is a subset B ⊂ C consisting of Reeb orbits of
length l so that there is a neighborhood N of B so that there
are no Reeb orbits in N of length in [l − ε, l + ε] for some
small ε > 0.

I Definition (c.f. Kirwan 1985): A minimally degenerate
subset of length l is a closed subset B ⊂ C so that there is a
function f : C −→ (0,∞) and a submanifold N ⊂ C (possibly
with boundary) satisfying

1. B ⊂ N,
2. B is an isolated family of Reeb orbits of length l ,
3. N is a Morse-Bott submanifold of (C , f α),
4. f −1(1) = B and 1 is the maximum of f .

I Definition : A minimally degenerate contact pair is a
contact pair (C , α) so that every periodic orbit is contained
inside a minimally degenerate subset.
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I Proposition (not proven yet): Suppose that the boundary
of (M, θ) is a minimally degenerate contact pair and let

(B j
k)k∈N,j∈Ik be the set of all of the minimally degenerate

subsets so that

1. they are connected,
2. Ik is a finite set for all k ∈ N,

3. the length of B j
k is the length of B j′

k for all j , j ′ ∈ Ik and these
lengths tend to infinity as k →∞ and

4. the length of B j
k is less than the length of B j′

k+1 for all k ∈ N,
j ∈ Ik and j ′ ∈ Ik+1.

Then there is spectral sequence converging to SHp+q(M)
with E 1 page

Ep,q
1 =

⊕
j∈Ip

Ȟn−p−q+CZ(Bp)(B j
p,LB j

p
)

where L
B j
p

is a certain local coefficient system.



I Our spectral sequence will be obtained by constructing an
appropriate minimally degenerate contact form on the
boundary of our Liouville domain.

I In order to find a such a boundary, we need to construct a
symplectically nice neighborhood of the divisor in question
(resolution divisor or compactifying divisor).

I This requires a purely symplectic notion of divisor. See
1011.2542 and work of M-Tehrani-Zinger.

I The corresponding minimally degenerate subsets are
submanifolds with boundary and corners associated to the
strata of the compactification divisor.
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1. Let (M, ω) be a symplectic 2n-manifold.

2. Definition: A symplectic SNC divisor is a finite collection
(Di )i∈S of transversally intersecting submanifolds so that

DI := ∩i∈IDi

is symplectic for all i ∈ I and so that the symplectic
orientation ω2n−2|I ||DI

of DI coincides with its associated
intersection orientation coming from ∩i∈IDi .



I A regularization of a symplectic SNC divisor (Di )i∈S inside
(X , ω) consists of tubular fibrations (πI )I⊂S of (DI )I⊂S with
symplectic fibers so that

1. πI1∪I2 = πI1 ◦ πI2 on their common domain of definition for all
I1, I2 ⊂ S and

2. the fibers of πI are symplectomorphic to a product
∏

i∈I D(ε)
of ε disks and the associated symplectic connection has parallel
transport maps rotating these disks giving us a U(1)|I |

structure group.
3. There should also be a particular almost complex structure but

we won’t need this.

D1

D2

π1
π2

π12 = π1 ◦ π2



I Theorem M (2011), M-Tehrani-Zinger (2014): Every
symplectic SNC divisor is isotopic through symplectic SNC
divisors to one which admits a regularization.

I The proof first involves proving the Theorem in the linear case
first and then using a Moser argument to extend this linear
argument to the general non-linear case.
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Construction of Spectral Sequence (extremely vague
sketch)

I Let X be our projective variety compactifying our affine
variety A by a smooth normal crossing divisor D.

I Deform D so that it admits a regularization as above.

I Construct a natural Liouville vector field W compatible with
this regularization.

I If (ri )i∈S are the natural radial coordinates then our contact
hypersurface transverse to W is a regular level set of∑

i∈S f (ri ).
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