Floer Cohomology and Birational Geometry.

Mark McLean Stony Brook University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is Floer Cohomology?

- Floer (co)homology is an infinite dimensional version of Morse (co)homology.
- So, what is Morse homology?
- A Morse function is a smooth function f : M → ℝ with the property that there is an atlas of charts where f looks like a linear function or a non-degenerate quadratic function plus a constant in each such chart.
- ► A Morse function then gives a cellular decomposition of *M*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example:

▲日 → ▲圖 → ▲ 田 → ▲ 田 →

æ

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

æ

Hence we can calculate the homology of *M* using *f* as follows:
 The chain complex is the free Z-module

$$\mathbb{Z}\langle p_1,\cdots,p_k\rangle$$

generated by critical points of f and graded by Morse index.

- Now we choose a generic Riemannian metric g on M.
- The differential is a k × k matrix whose coefficient corresponding to (p_i, p_j) is the number of gradient flowlines of f connecting p_i and p_j (counted with sign).

Here

$$C_0 = \mathbb{Z}\langle a \rangle, \ C_1 = \mathbb{Z}\langle b \rangle, \ C_2 = \mathbb{Z}\langle c, d \rangle$$

We have

$$\partial a = 0, \qquad \partial b = a - a = 0, \qquad \partial c = b, \qquad \partial d = b$$

Hence $H_*(S^2) = \begin{cases} \mathbb{Z} & \text{if } * = 0, 2\\ 0 & \text{otherwise.} \end{cases}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Floer Cohomology

- Floer Cohomology is an infinite dimensional version of Morse homology.
- I will describe an example, Hamiltonian Floer Cohomology HF*(H) of a Hamiltonian H on a symplectic manifold M.
- Our infinite dimensional 'manifold' is the *free loopspace* of a symplectic manifold *M*. I.e. the space of maps from S¹ to *M*.
- The 'Morse function' in this case is a function called the action functional, whose critical points correspond to periodic solutions of Hamilton's equations.
- A 'gradient flowline' connecting such critical points is a map from a cylinder to *M* whose ends limit to these periodic solutions and which satisfies a Cauchy-Riemann like PDE.

The Floer differential counts such cylinders connecting periodic solutions γ_{-} and γ_{+} of Hamilton's equations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cohomological McKay Correspondence.

- Let $G \subset SU(n)$ be a finite subgroup and consider the quotient \mathbb{C}^n/G .
- A resolution of \mathbb{C}^n/G is a proper birational morphism

$$\pi: Y \longrightarrow \mathbb{C}^n/G$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

from a smooth variety Y.

• It is crepant if $c_1(Y) = 0$.

Cohomological McKay Correspondence.

▶ Let 𝕂 be a field.

- Conjecture (Reid).
 Cohomological McKay Correspondence over K.
 For any crepant resolution Y as above, there is a basis of H*(Y; K) consisting of conjugacy classes of G.
- Theorem (Batyrev 1998): This is true when $\mathbb{K} = \mathbb{Q}$.
- One way of proving this theorem is via an Euler characteristic style argument called *motivic integration* developed by Kontsevich.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Floer Theoretic Proof

- Suppose the resolution Y is Kähler (and hence a symplectic manifold).
- Consider the Hamiltonian $H = \pi^* r^4$ on our crepant resolution Y where r is the radial coordinate on \mathbb{C}^n/G .
- ► There is a natural map C*(Y) → CF*(H) between the chain complexes for H*(Y; K) and HF*(H) respectively and we define HF^{*}₊(H) to be the cone of this chain map.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Floer Theoretic Proof

▶ **Theorem** (M., Ritter). Suppose \mathbb{K} is a field of characteristic > |G| and G acts freely away from 0. Then

- 1. $HF^*_+(H)$ is isomorphic to $H^*(Y; \mathbb{K})$ and
- 2. $HF_{+}^{*}(H)$ is generated by conjugacy classes of G.
- ► Corollary. The cohomological McKay correspondence holds over K.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Brief Idea of Proof

- To show that HF^{*}₊(H) = H^{*}(Y; K), one shows HF^{*}(H) = 0 and we do this by deforming H inside a compact subset making all the 1-periodic orbits have arbitrarily large index.
- To show HF^{*}₊(H) is generated by conjugacy classes of G, one exploits the fact that the corresponding Floer cochain complex is filtered by action (our 'Morse function').
- Such a filtration gives a spectral sequence which can be used to compute HF^{*}₊(H) in terms of conjugacy classes of G.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Birational Calabi-Yau Manifolds

- By a Calabi-Yau manifold I will mean a smooth projective variety with trivial first Chern class.
- Two Calabi-Yau manifolds are *birational* if they are isomorphic outside a codimension 1-subvariety of each.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question: What properties do such Calabi-Yau manifolds have in common? ▶ Lemma. If X and \widehat{X} are birational Calabi-Yau manifolds then there are codimension 2 subvarieties $V \subset X$ and $\widehat{V} \subset \widehat{X}$ so that $X - V \cong \widehat{X} - \widehat{V}$.

• **Corollary**. We have a canonical isomorphism $H_2(X) \cong H_2(\widehat{X})$.

- Theorem (Batyrev). Birational Calabi-Yau manifolds have the same Betti numbers.
- Again, there is a proof using Motivic integration.
- However there are examples of birational Calabi-Yau manifolds whose cohomology *rings* are different.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Quantum Cup Product

Define the Novikov Ring
Λ_K^ω = { ∑_{i∈N} a_it^{β_i} | a_i ∈ K, β_i ∈ H₂(X; Z), ω(β_i) → ∞} where ω is the symplectic form on our Calabi-Yau manifold X.

Choose a homogenous basis A₁, ..., A_k ∈ H^{*}(X; K) together with the dual basis Â₁, ..., Â_k ∈ H^{*}(X; K) with respect to

the cup product pairing $(\eta, \nu) \rightarrow \int_X \eta \cup \nu$.

Quantum Cup Product

We define small quantum cohomology QH*(X; Λ^ω_K) to be the unique Λ^ω_K-algebra structure on H*(X; Λ^ω_K) whose product *_X satisfies:

$$A_i \star_X A_j = \sum_{\beta \in H_2(X;\mathbb{Z})} \sum_{m=1}^k GW_{0,3}^{X,\beta}(A_i, A_j, A_m) \widehat{A}_m t^\beta$$

where $GW_{0,3}^{X,\beta}(A_i, A_j, A_m)$ is the number of holomorphic maps $\mathbb{P}^1 \longrightarrow X$ representing β passing through cycles Poincaré dual to A_i , A_j and A_k .

- If we only considered the constant terms (i.e. coefficients of t⁰), then this would be the usual cup product.
- There is also big quantum cohomology which involves counts of curves passing through arbitrary numbers of cycles.

- Conjecture (Morrison, Ruan). Any two birational Calabi-Yau manifolds have the same (small or big) quantum cohomology groups up to analytic continuation.
- **Theorem** (Li-Ruan). This is true in dimension 3.
- Theorem (Iwao, Lee, Lin, Qu, Wang). This is true if the birational transform is a composition of ordinary flops.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Let X and \hat{X} be birational Calabi-Yau manifolds.
- Let ω and ω be Kähler forms on X and X and Λ^ω_K, Λ^ω_K the corresponding Novikov rings.
- Using the identification H₂(X) = H₂(X̂), we can take the intersection Λ^{ω,ŵ}_K = Λ^ω_K ∩ Λ^ŵ_K.
- Theorem (M.) There exists a graded Λ^{ω,ω}_K -algebra Z together with algebra isomorphisms:

$$Z \otimes_{\Lambda^{\omega,\widehat{\omega}}_{\mathbb{K}}} \Lambda^{\omega}_{\mathbb{K}} \cong QH^{*}(X; \Lambda^{\omega}_{\mathbb{K}}), \quad Z \otimes_{\Lambda^{\omega,\widehat{\omega}}_{\mathbb{K}}} \Lambda^{\widehat{\omega}}_{\mathbb{K}} \cong QH^{*}(\widehat{X}; \Lambda^{\widehat{\omega}}_{\mathbb{K}}).$$

- The key idea here is to use Hamiltonian Floer cohomology
- This has a natural product called the pair of pants product
- For any Hamiltonian H on X, we have that HF*(H) ≅ QH*(X; K) and similarly for X̂.
- Therefore it is sufficient to find appropriate Hamiltonians H and Ĥ on X and Ĥ together with an isomorphism HF*(H) ≅ HF*(Ĥ).

Basic Idea of the Proof.

- ► Recall we have two birational CY manifolds X and X so that X - V ≅ X - V for some codimension ≥ 2 subvarieties V and V.
- Choose a common affine subvariety $A \subset X V$, $A \subset \widehat{X} \widehat{V}$.
- Next we use the fact that Hamiltonian Floer cohomology is isomorphic as an algebra to small quantum cohomology.

Basic Idea of the Proof

We now put two Hamiltonians H and H on X and X respectively with graphs as follows:

Basic Idea of the Proof

- Now suppose that we can ignore the constant orbits near X A and $\hat{X} \hat{A}$ respectively.
- Then generators of our Floer complexes are identical.
- Since V and V are of codimension 2, the Floer trajectories joining these generators avoid V and V and hence or identical. Hence our Hamiltonian Floer algebras are identical.

・ロト・日本・モト・モート ヨー うへぐ

Basic Idea of the Proof

- Now one issue is that you cannot just ignore a family of constant orbits.
- One must take a direct limit of these Hamiltonians H and H that get bigger and bigger and restrict to certain subcomplexes.
- ▶ With this setup, you can ignore the constant orbits near X − A and X − A respectively. Here, we also need to use the Calabi-Yau condition.