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What is Floer Cohomology?

I Floer (co)homology is an infinite dimensional version of Morse
(co)homology.

I So, what is Morse homology?

I A Morse function is a smooth function f : M −→ R with the
property that there is an atlas of charts where f looks like a
linear function or a non-degenerate quadratic function plus a
constant in each such chart.

I A Morse function then gives a cellular decomposition of M.
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I Hence we can calculate the homology of M using f as follows:

I The chain complex is the free Z-module

Z〈p1, · · · , pk〉

generated by critical points of f and graded by Morse index.

I Now we choose a generic Riemannian metric g on M.

I The differential is a k × k matrix whose coefficient
corresponding to (pi , pj) is the number of gradient flowlines of
f connecting pi and pj (counted with sign).
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Here
C0 = Z〈a〉, C1 = Z〈b〉, C2 = Z〈c , d〉

We have

∂a = 0, ∂b = a− a = 0, ∂c = b, ∂d = b

Hence H∗(S
2) =

{
Z if ∗ = 0, 2
0 otherwise.



Floer Cohomology

I Floer Cohomology is an infinite dimensional version of Morse
homology.

I I will describe an example, Hamiltonian Floer Cohomology
HF ∗(H) of a Hamiltonian H on a symplectic manifold M.

I Our infinite dimensional ‘manifold’ is the free loopspace of a
symplectic manifold M. I.e. the space of maps from S1 to M.

I The ‘Morse function’ in this case is a function called the
action functional, whose critical points correspond to periodic
solutions of Hamilton’s equations.

I A ‘gradient flowline’ connecting such critical points is a map
from a cylinder to M whose ends limit to these periodic
solutions and which satisfies a Cauchy-Riemann like PDE.



The Floer differential counts such cylinders connecting periodic
solutions γ− and γ+ of Hamilton’s equations.

γ−
γ+

‘gradient flowline’



Cohomological McKay Correspondence.

I Let G ⊂ SU(n) be a finite subgroup and consider the quotient
Cn/G .

I A resolution of Cn/G is a proper birational morphism

π : Y −→ Cn/G

from a smooth variety Y .

I It is crepant if c1(Y ) = 0.



Cohomological McKay Correspondence.

I Let K be a field.

I Conjecture (Reid).
Cohomological McKay Correspondence over K.
For any crepant resolution Y as above, there is a basis of
H∗(Y ;K) consisting of conjugacy classes of G .

I Theorem (Batyrev 1998): This is true when K = Q.

I One way of proving this theorem is via an Euler characteristic
style argument called motivic integration developed by
Kontsevich.



Floer Theoretic Proof

I Suppose the resolution Y is Kähler (and hence a symplectic
manifold).

I Consider the Hamiltonian H = π∗r4 on our crepant resolution
Y where r is the radial coordinate on Cn/G .

I There is a natural map C ∗(Y ) −→ CF ∗(H) between the chain
complexes for H∗(Y ;K) and HF ∗(H) respectively and we
define HF ∗+(H) to be the cone of this chain map.



Floer Theoretic Proof

I Theorem (M., Ritter). Suppose K is a field of characteristic
> |G | and G acts freely away from 0. Then

1. HF ∗
+(H) is isomorphic to H∗(Y ;K) and

2. HF ∗
+(H) is generated by conjugacy classes of G .

I Corollary. The cohomological McKay correspondence holds
over K.



Brief Idea of Proof

I To show that HF ∗+(H) = H∗(Y ;K), one shows HF ∗(H) = 0
and we do this by deforming H inside a compact subset
making all the 1-periodic orbits have arbitrarily large index.

I To show HF ∗+(H) is generated by conjugacy classes of G , one
exploits the fact that the corresponding Floer cochain
complex is filtered by action (our ‘Morse function’).

I Such a filtration gives a spectral sequence which can be used
to compute HF ∗+(H) in terms of conjugacy classes of G .



Birational Calabi-Yau Manifolds

I By a Calabi-Yau manifold I will mean a smooth projective
variety with trivial first Chern class.

I Two Calabi-Yau manifolds are birational if they are isomorphic
outside a codimension 1-subvariety of each.

I Question: What properties do such Calabi-Yau manifolds
have in common?



I Lemma. If X and X̂ are birational Calabi-Yau manifolds then
there are codimension 2 subvarieties V ⊂ X and V̂ ⊂ X̂ so
that X − V ∼= X̂ − V̂ .

I Corollary. We have a canonical isomorphism H2(X ) ∼= H2(X̂ ).



I Theorem (Batyrev). Birational Calabi-Yau manifolds have
the same Betti numbers.

I Again, there is a proof using Motivic integration.

I However there are examples of birational Calabi-Yau manifolds
whose cohomology rings are different.



Quantum Cup Product

I Define the Novikov Ring

ΛωK =
{∑

i∈N ai t
βi | ai ∈ K, βi ∈ H2(X ;Z), ω(βi )→∞

}
where ω is the symplectic form on our Calabi-Yau manifold X .

I Choose a homogenous basis A1, · · · ,Ak ∈ H∗(X ;K) together
with the dual basis Â1, · · · , Âk ∈ H∗(X ;K) with respect to
the cup product pairing (η, ν)→

∫
X η ∪ ν.



Quantum Cup Product

I We define small quantum cohomology QH∗(X ; ΛωK) to be the
unique ΛωK-algebra structure on H∗(X ; ΛωK) whose product ?X
satisfies:

Ai ?X Aj =
∑

β∈H2(X ;Z)

k∑
m=1

GW X ,β
0,3 (Ai ,Aj ,Am)Âmt

β

where GW X ,β
0,3 (Ai ,Aj ,Am) is the number of holomorphic maps

P1 −→ X representing β passing through cycles Poincaré dual
to Ai , Aj and Ak .

I If we only considered the constant terms (i.e. coefficients of
t0), then this would be the usual cup product.

I There is also big quantum cohomology which involves counts
of curves passing through arbitrary numbers of cycles.



I Conjecture (Morrison, Ruan). Any two birational Calabi-Yau
manifolds have the same (small or big) quantum cohomology
groups up to analytic continuation.

I Theorem (Li-Ruan). This is true in dimension 3.

I Theorem (Iwao, Lee, Lin, Qu, Wang). This is true if the
birational transform is a composition of ordinary flops.



I Let X and X̂ be birational Calabi-Yau manifolds.

I Let ω and ω̂ be Kähler forms on X and X̂ and ΛωK, Λω̂K the
corresponding Novikov rings.

I Using the identification H2(X ) = H2(X̂ ), we can take the

intersection Λω,ω̂K = ΛωK ∩ Λω̂K.

I Theorem (M.) There exists a graded Λω,ω̂K -algebra Z together
with algebra isomorphisms:

Z ⊗
Λω,ω̂
K

ΛωK
∼= QH∗(X ; ΛωK), Z ⊗

Λω,ω̂
K

Λω̂K
∼= QH∗(X̂ ; Λω̂K).



I The key idea here is to use Hamiltonian Floer cohomology

I This has a natural product called the pair of pants product

I For any Hamiltonian H on X , we have that
HF ∗(H) ∼= QH∗(X ;K) and similarly for X̂ .

I Therefore it is sufficient to find appropriate Hamiltonians H
and Ĥ on X and Ĥ together with an isomorphism
HF ∗(H) ∼= HF ∗(Ĥ).



Basic Idea of the Proof.

I Recall we have two birational CY manifolds X and X̂ so that
X − V ∼= X̂ − V̂ for some codimension ≥ 2 subvarieties V
and V̂ .

I Choose a common affine subvariety A ⊂ X − V , A ⊂ X̂ − V̂ .

I Next we use the fact that Hamiltonian Floer cohomology is
isomorphic as an algebra to small quantum cohomology.



Basic Idea of the Proof
I We now put two Hamiltonians H and Ĥ on X and X̂

respectively with graphs as follows:

X X̂

A A

H Ĥ

Constant

X X̂

A A

H Ĥ

Constant



Basic Idea of the Proof

I Now suppose that we can ignore the constant orbits near
X − A and X̂ − Â respectively.

I Then generators of our Floer complexes are identical.

I Since V and V̂ are of codimension 2, the Floer trajectories
joining these generators avoid V and V̂ and hence or
identical. Hence our Hamiltonian Floer algebras are identical.

X X̂

A A

V V̂

Identical orbits

Identical Floer trajectories



Basic Idea of the Proof

I Now one issue is that you cannot just ignore a family of
constant orbits.

I One must take a direct limit of these Hamiltonians H and Ĥ
that get bigger and bigger and restrict to certain
subcomplexes.

I With this setup, you can ignore the constant orbits near
X − A and X̂ − A respectively. Here, we also need to use the
Calabi-Yau condition.


