Floer Cohomology and Birational Geometry.

Mark McLean
Stony Brook University

What is Floer Cohomology?

- Floer (co)homology is an infinite dimensional version of Morse (co)homology.
- So, what is Morse homology?
- A Morse function is a smooth function $f: M \longrightarrow \mathbb{R}$ with the property that there is an atlas of charts where f looks like a linear function or a non-degenerate quadratic function plus a constant in each such chart.
- A Morse function then gives a cellular decomposition of M.

Example:

$0-\mathrm{cell} \simeq$

- Hence we can calculate the homology of M using f as follows:
- The chain complex is the free \mathbb{Z}-module

$$
\mathbb{Z}\left\langle p_{1}, \cdots, p_{k}\right\rangle
$$

generated by critical points of f and graded by Morse index.

- Now we choose a generic Riemannian metric g on M.
- The differential is a $k \times k$ matrix whose coefficient corresponding to (p_{i}, p_{j}) is the number of gradient flowlines of f connecting p_{i} and p_{j} (counted with sign).

Here

$$
C_{0}=\mathbb{Z}\langle a\rangle, \quad C_{1}=\mathbb{Z}\langle b\rangle, \quad C_{2}=\mathbb{Z}\langle c, d\rangle
$$

We have

$$
\partial a=0, \quad \partial b=a-a=0, \quad \partial c=b, \quad \partial d=b
$$

Hence $H_{*}\left(S^{2}\right)= \begin{cases}\mathbb{Z} & \text { if } *=0,2 \\ 0 & \text { otherwise. }\end{cases}$

Floer Cohomology

- Floer Cohomology is an infinite dimensional version of Morse homology.
- I will describe an example, Hamiltonian Floer Cohomology $H F^{*}(H)$ of a Hamiltonian H on a symplectic manifold M.
- Our infinite dimensional 'manifold' is the free loopspace of a symplectic manifold M. I.e. the space of maps from S^{1} to M.
- The 'Morse function' in this case is a function called the action functional, whose critical points correspond to periodic solutions of Hamilton's equations.
- A 'gradient flowline' connecting such critical points is a map from a cylinder to M whose ends limit to these periodic solutions and which satisfies a Cauchy-Riemann like PDE.

The Floer differential counts such cylinders connecting periodic solutions γ_{-}and γ_{+}of Hamilton's equations.

Cohomological McKay Correspondence.

- Let $G \subset S U(n)$ be a finite subgroup and consider the quotient \mathbb{C}^{n} / G.
- A resolution of \mathbb{C}^{n} / G is a proper birational morphism

$$
\pi: Y \longrightarrow \mathbb{C}^{n} / G
$$

from a smooth variety Y.

- It is crepant if $c_{1}(Y)=0$.

Cohomological McKay Correspondence.

- Let \mathbb{K} be a field.
- Conjecture (Reid).

Cohomological McKay Correspondence over \mathbb{K}.
For any crepant resolution Y as above, there is a basis of $H^{*}(Y ; \mathbb{K})$ consisting of conjugacy classes of G.

- Theorem (Batyrev 1998): This is true when $\mathbb{K}=\mathbb{Q}$.
- One way of proving this theorem is via an Euler characteristic style argument called motivic integration developed by Kontsevich.

Floer Theoretic Proof

- Suppose the resolution Y is Kähler (and hence a symplectic manifold).
- Consider the Hamiltonian $H=\pi^{*} r^{4}$ on our crepant resolution Y where r is the radial coordinate on \mathbb{C}^{n} / G.
- There is a natural map $C^{*}(Y) \longrightarrow C F^{*}(H)$ between the chain complexes for $H^{*}(Y ; \mathbb{K})$ and $H F^{*}(H)$ respectively and we define $H F_{+}^{*}(H)$ to be the cone of this chain map.

Floer Theoretic Proof

- Theorem (M., Ritter). Suppose \mathbb{K} is a field of characteristic $>|G|$ and G acts freely away from 0 . Then

1. $H F_{+}^{*}(H)$ is isomorphic to $H^{*}(Y ; \mathbb{K})$ and
2. $H F_{+}^{*}(H)$ is generated by conjugacy classes of G.

- Corollary. The cohomological McKay correspondence holds over \mathbb{K}.

Brief Idea of Proof

- To show that $H F_{+}^{*}(H)=H^{*}(Y ; \mathbb{K})$, one shows $H F^{*}(H)=0$ and we do this by deforming H inside a compact subset making all the 1-periodic orbits have arbitrarily large index.
- To show $H F_{+}^{*}(H)$ is generated by conjugacy classes of G, one exploits the fact that the corresponding Floer cochain complex is filtered by action (our 'Morse function').
- Such a filtration gives a spectral sequence which can be used to compute $H F_{+}^{*}(H)$ in terms of conjugacy classes of G.

Birational Calabi-Yau Manifolds

- By a Calabi-Yau manifold I will mean a smooth projective variety with trivial first Chern class.
- Two Calabi-Yau manifolds are birational if they are isomorphic outside a codimension 1-subvariety of each.
- Question: What properties do such Calabi-Yau manifolds have in common?
- Lemma. If X and \widehat{X} are birational Calabi-Yau manifolds then there are codimension 2 subvarieties $V \subset X$ and $\widehat{V} \subset \widehat{X}$ so that $X-V \cong \widehat{X}-\widehat{V}$.
- Corollary. We have a canonical isomorphism $H_{2}(X) \cong H_{2}(\widehat{X})$.
- Theorem (Batyrev). Birational Calabi-Yau manifolds have the same Betti numbers.
- Again, there is a proof using Motivic integration.
- However there are examples of birational Calabi-Yau manifolds whose cohomology rings are different.

Quantum Cup Product

- Define the Novikov Ring
$\Lambda_{\mathbb{K}}^{\omega}=\left\{\sum_{i \in \mathbb{N}} a_{i} t^{\beta_{i}} \mid a_{i} \in \mathbb{K}, \beta_{i} \in H_{2}(X ; \mathbb{Z}), \omega\left(\beta_{i}\right) \rightarrow \infty\right\}$ where ω is the symplectic form on our Calabi-Yau manifold X.
- Choose a homogenous basis $A_{1}, \cdots, A_{k} \in H^{*}(X ; \mathbb{K})$ together with the dual basis $\widehat{A}_{1}, \cdots, \widehat{A}_{k} \in H^{*}(X ; \mathbb{K})$ with respect to the cup product pairing $(\eta, \nu) \rightarrow \int_{X} \eta \cup \nu$.

Quantum Cup Product

- We define small quantum cohomology $Q H^{*}\left(X ; \Lambda_{\mathbb{K}}^{\omega}\right)$ to be the unique $\Lambda_{\mathbb{K}}^{\omega}$-algebra structure on $H^{*}\left(X ; \Lambda_{\mathbb{K}}^{\omega}\right)$ whose product $\star x$ satisfies:

$$
A_{i} \star X A_{j}=\sum_{\beta \in H_{2}(X ; \mathbb{Z})} \sum_{m=1}^{k} G W_{0,3}^{X, \beta}\left(A_{i}, A_{j}, A_{m}\right) \widehat{A}_{m} t^{\beta}
$$

where $G W_{0,3}^{X, \beta}\left(A_{i}, A_{j}, A_{m}\right)$ is the number of holomorphic maps $\mathbb{P}^{1} \longrightarrow X$ representing β passing through cycles Poincaré dual to A_{i}, A_{j} and A_{k}.

- If we only considered the constant terms (i.e. coefficients of t^{0}), then this would be the usual cup product.
- There is also big quantum cohomology which involves counts of curves passing through arbitrary numbers of cycles.
- Conjecture (Morrison, Ruan). Any two birational Calabi-Yau manifolds have the same (small or big) quantum cohomology groups up to analytic continuation.
- Theorem (Li-Ruan). This is true in dimension 3.
- Theorem (Iwao, Lee, Lin, Qu, Wang). This is true if the birational transform is a composition of ordinary flops.
- Let X and \widehat{X} be birational Calabi-Yau manifolds.
- Let ω and $\widehat{\omega}$ be Kähler forms on X and \widehat{X} and $\Lambda_{\mathbb{K}}^{\omega}, \Lambda_{\mathbb{K}}^{\widehat{\omega}}$ the corresponding Novikov rings.
- Using the identification $H_{2}(X)=H_{2}(\widehat{X})$, we can take the intersection $\Lambda_{\mathbb{K}}^{\omega, \widehat{\omega}}=\Lambda_{\mathbb{K}}^{\omega} \cap \Lambda_{\mathbb{K}}^{\widehat{\omega}}$.
- Theorem (M.) There exists a graded $\Lambda_{\mathbb{K}}^{\omega, \widehat{\omega}}$-algebra Z together with algebra isomorphisms:

$$
Z \otimes_{\Lambda_{\mathbb{K}}^{\omega}, \bar{\omega}} \Lambda_{\mathbb{K}}^{\omega} \cong Q H^{*}\left(X ; \Lambda_{\mathbb{K}}^{\omega}\right), \quad Z \otimes_{\Lambda_{\mathbb{K}}^{\omega}, \widehat{\omega}} \Lambda_{\mathbb{K}}^{\widehat{\omega}} \cong Q H^{*}\left(\widehat{X} ; \Lambda_{\mathbb{K}}^{\widehat{\omega}}\right)
$$

- The key idea here is to use Hamiltonian Floer cohomology
- This has a natural product called the pair of pants product
- For any Hamiltonian H on X, we have that $H F^{*}(H) \cong Q H^{*}(X ; \mathbb{K})$ and similarly for \widehat{X}.
- Therefore it is sufficient to find appropriate Hamiltonians H and \widehat{H} on X and \widehat{H} together with an isomorphism $H F^{*}(H) \cong H F^{*}(\widehat{H})$.

Basic Idea of the Proof.

- Recall we have two birational CY manifolds X and \widehat{X} so that $X-V \cong \widehat{X}-\widehat{V}$ for some codimension ≥ 2 subvarieties V and \widehat{V}.
- Choose a common affine subvariety $A \subset X-V, A \subset \widehat{X}-\widehat{V}$.
- Next we use the fact that Hamiltonian Floer cohomology is isomorphic as an algebra to small quantum cohomology.

Basic Idea of the Proof

- We now put two Hamiltonians H and \widehat{H} on X and \widehat{X} respectively with graphs as follows:

Basic Idea of the Proof

- Now suppose that we can ignore the constant orbits near $X-A$ and $\widehat{X}-\widehat{A}$ respectively.
- Then generators of our Floer complexes are identical.
- Since V and \widehat{V} are of codimension 2, the Floer trajectories joining these generators avoid V and \widehat{V} and hence or identical. Hence our Hamiltonian Floer algebras are identical.

Basic Idea of the Proof

- Now one issue is that you cannot just ignore a family of constant orbits.
- One must take a direct limit of these Hamiltonians H and \widehat{H} that get bigger and bigger and restrict to certain subcomplexes.
- With this setup, you can ignore the constant orbits near $X-A$ and $\widehat{X}-A$ respectively. Here, we also need to use the Calabi-Yau condition.

