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Main Results

▶ Let P be a closed symplectic manifold.

▶ Let π : P −→ CP1 be a smooth submersion, whose fibers are
symplectic submanifolds and let (X , ω) be a fiber.

▶ Theorem 1: (Abouzaid, M., Smith). We have an additive
isomorphism

H∗(P;Z) ∼= H∗(X ;Z)⊗ H∗(CP1;Z).

▶ Theorem 2: (Abouzaid, M., Smith). More generally, we have
an additive isomorphism

H∗(P;E) ∼= H∗(X ;E)⊗H∗(pt;E) H
∗(CP1;E)

for any complex oriented cohomology theory E (such as
complex cobordism MU).



Main Results

▶ Lalonde, McDuff and Polterovich proved that such a splitting
holds with Z coefficients for monotone symplectic manifolds.

▶ McDuff proved this splitting with Q coefficients in general.

▶ Both theorems are new in the case where π : P −→ CP1 is a
morphism of smooth projective varieties (which was proven
with Q-coefficients by Deligne).



Examples

▶ Theorem 1 holds for Hamiltonian fibrations over CP1, but it
does not hold for all symplectic fibrations over CP1 (such as
the Hopf surface S1 × S3 → S2). One needs a symplectic
form on the total space P.

▶ Also Theorem 2 does not hold for all generalized cohomology
theories.

▶ For example the Hirzebruch surface F1 = CP2#CP2 is a CP1

bundle over CP1. But H∗(F1,KO) is not isomorphic to
H∗(CP1)⊗H∗(pt;KO) H

∗(CP1) where KO is real K -theory
(Bahri and Bendersky).



Alternative Description of P .

▶ The fibration π can be described in a different way by the
clutching construction.

▶ Take a loop ϕ : S1 −→ Ham(X , ω) of Hamiltonian
symplectomorphisms of a closed symplectic manifold (X , ω).

▶ Define
P = Pϕ := (D× X )(1) ⊔ (D× X )(2)/ ∼

where D ⊂ C is the closed disk and ∼ identifies
(z , x) ∈ (∂D× X )(1) with (z , ϕ(z)(x)) ∈ (∂D× X )(2).

▶ π : P −→ CP1 is the natural projection map to
CP1 = D(1) ⊔D(2)/ ∼ where ∼ identifies ∂D(1) with ∂D(2) via
the identity map.



Hamiltonian Loops

▶ For any loop ϕ : S1 −→ Ham(X , ω), define the sweepout map

δϕ : H∗(X ;Z) −→ H∗+1(X ;Z)

to be the map sending a cycle α to ϕ∗([S
1]× α).

α

ϕ∗
([
S1

]
× α

)
▶ Corollary (Abouzaid, M., Smith). The sweepout map

vanishes.



Proof of Corollary

Recall that we have a Serre spectral sequence computing H∗(Pϕ)
with E 2 page:

Hp+1(X ) 0 Hp+1(X )

Hp(X ) 0 Hp(X )

Hp−1(X ) 0 Hp−1(X )

δϕ

δϕ

By Theorem 1, we know that this spectral sequence degenerates
and so δϕ = 0. A similar argument using Theorem 2 shows that the
sweepout map vanishes for any complex oriented homology theory.



Main Argument

▶ We will first give an outline of the proof of Theorem 1 under
the assumption that our moduli spaces are smooth closed
manifolds and where all evaluation maps are submersions.

▶ It is sufficient for us to construct a section
s : H∗(Pϕ) −→ H∗(X ) of the natural fiber restriction map
H∗(Pϕ) −→ H∗(X ).

▶ This section will then give us our isomorphism:

H∗(X )⊗H∗(CP1)
∼=−→ H∗(X )⊕H∗(Pϕ,Pϕ −X )

s⊕q∗−→ H∗(Pϕ)

where q is the natural quotient map.



▶ Let S = Bl(0,0)(CP1 × CP1) be the blowup at (0, 0).

▶ Now construct a Hamiltonian fibration πS : P̃ −→ S with fiber
(X , ω) so that:

1. The restriction of πS to the exceptional divisor of S is the
fibration π : Pϕ −→ CP1.

2. The restriction of πS to CP1 × {∞} ⊂ S is the trivial fibration
P∞ := CP1 × X .

3. Also P̃ restricted to the proper transform of {0} × CP1 is the
trivial fibration CP1 × X which we will write as (CP1 × X )hor .



Pϕ−1

Pϕ

(CP1 × X )hor

CP1

S

P̃

0

P∞ ∼= CP1 × X

∞



▶ Choose an almost complex structure making πS holomorphic
and which is a product near P∞ and (CP1 × X )hor .

▶ We let Mh be the moduli space of genus 0
pseudo-holomorphic maps to P̃ with two marked points
representing [CP1 × pt] ∈ H2(P∞) ⊂ H2(P̃) so that one
marked point maps to (CP1 × X )hor and the other is free.

▶ Let ev : Mh −→ P̃ × (CP1 × X )hor be the evaluation map.

▶ Define M• := ev−1(P• × (CP1 × X )hor ) for • = ϕ or ∞
(in other words, the restriction of Mh to Pϕ ∪ Pϕ−1 and P∞
respectively).



Pϕ−1

Pϕ

(CP1 × X )hor

CP1

S

P̃

0

P∞ ∼= CP1 × X

∞

Pseudoholorphic curves in Mh

Mϕ

M∞



▶ We then have pushpull maps:

Ψ• : H
∗((CP1 × X )hor )

ev∗−→ H∗(M•)
−∩[M•]−→

Hdim(P•)−∗(M•)
ev∗−→ Hdim(P•)−∗(P•) ∼= H∗(P•)

for • = ϕ or ∞.

▶ Similarly we have a pushpull map

Ψh : H∗((CP1 × X )hor ) −→ H∗(P̃)

associated to Mh.



Our map s is constructed, and shown to be a section, by staring at
the following commutative diagram:

H∗(P∞)

H∗(X ) H∗((S2 × X )hor ) H∗(P̃) H∗(X )

H∗(Pϕ)

pr∗
Ψh

res

Ψϕ

res
res

Ψ∞=(prX )∗
resres

s

id

where prX : (S2 × X )hor is the projection map to 0× X ⊂ P∞.

QED



Problems

▶ Now, we have a problem, which is that the (virtual)
fundamental class [M•], • = ϕ, ∞, h is usually defined over
Q (since our moduli spaces are usually not nice smooth
manifolds).

▶ How do we deal with Z ?

▶ First of all, it is sufficient for us to prove our theorem over
Z/pkZ for every prime power pk .

▶ The key idea (of Abouzaid and Blumberg) is to use Morava
K -theory which ‘approximates’ Z/pkZ-cohomology and which
also gives our moduli spaces a virtual fundamental class.



▶ In order to construct such a fundamental class, we need an
appropriate topological description of our moduli space.

▶ Definition: A global Kuranishi chart is a tuple (G , T ,E , s)
where

1. G is a compact Lie group,
2. T is a manifold (called the thickening) admitting a G -action

with finite stabilizers,
3. E is a G -vector bundle and
4. s is a G -equivariant section whose zero locus is compact.

▶ Definition: Such a chart describes a metric space M if M is
homeomorphic to s−1(0)/G (here, M will be our moduli
space).

▶ Theorem: (we will explain this later). There are global
Kuranishi charts as above describing our moduli spaces with
TT and E complex G -vector bundles.



▶ Given a global Kuranishi chart (G , T ,E , s) describing M, how
do we put a fundamental class on M ∼= s−1(0)/G?

▶ This will be a map vfc : H∗(M;K) −→ K∗ := H∗(pt;K) where
H∗(−,K) is an appropriate generalized cohomology theory.

▶ Define H∗(A|B;K) := H∗(A,A− B;K).

▶ We will write H∗(A) = H∗(A;K) to avoid clutter.



Sketch of vfc construction.

▶ ASSUMPTION:

1. G -equivariant Thom isomorphism holds:

H∗
G (E |T )

Thom−→ H∗+e
G (T )

where e = dim(E ).
2. G -equivariant Poincaré duality holds

H∗
G (T )

PD−→ HG
d−k−∗(T , ∂T ),

d = dim(T ), k = dim(G ).

▶ These hold over Q.

▶ But not over Z since G might have non-trivial stabilizers.

▶ They do for Morava K -theories when TT and E are complex.



Sketch of vfc construction continued...

▶ For each G -equivariant relatively compact open neighborhood
U of s−1(0), we have a map

vfcU : H∗−vdim
G (U)

PD−→ H−e−∗(U, ∂U) (1)

s∗−→ H−e−∗(E |T )
Thom−→ H−∗(T ) −→ K−∗. (2)

where vdim := d − k − e.

▶ The virtual fundamental class is:

vfcK : H∗−vdim(M) −→ lim−→
U

H∗−vdim
G (U)

lim−→U
vfcU

−→ K−∗.

▶ Actually it is quite handy to work with vfcU sometimes.



What is Morava K -theory?

Proposition: For any prime power pk and any n ∈ N, there is a
generalized cohomology theory H∗(−,Kpk (n)) called Morava
K -theory satisfying the following properties:

1. The coefficient ring is
Kpk (n)∗ := H∗(pt,Kpk (n)) = (Z/pkZ)[vn, v−1

n ] with
|vn| = 2(pn − 1).

2. Any stably complex vector bundle is Kpk (n)-oriented and so
the G -equivariant Thom isomorphism theorem holds.

3. (Cheng): G -equivairant Poincaré duality holds for manifolds
admitting a G -equivariant stable almost complex structure.



▶ As a result, we can construct virtual fundamental classes in
Morava K -theory.

▶ For any CW complex Y , the Atiyah-Hirzebruch spectral
sequence (AHSS) tells us that there is a spectral sequence
converging to H∗(Y ;K) whose E2-page is Hp(Y ;Hq(pt;K)),
for any generalized cohomology theory H∗(−,K).

▶ Now if our CW complex Y is finite dimensional and the
parameter n is large, then AHSS for H∗(Y ;Kpk (n)) must
degenerate for degree reasons. Therefore
H∗(Y ;Kpk (n))

∼= H∗(Y ;Z/pkZ)[vn, v−1
n ].

▶ Using all these facts, we can prove our splitting theorem
H∗(P;Z/pkZ) ∼= H∗(Y ;Z/pkZ)⊗ H∗(CP1;Z/pkZ) for all
prime powers pk and hence over Z too.



Moduli Spaces of Curves

▶ How do we construct a global Kuranishi chart for the moduli
space of genus 0 curves?

▶ Let (M, ω) be a closed symplectic manifold and J an ω-tame
almost complex structure and β ∈ H2(M).

▶ Recall M(0,0)(J, β) is the space of J-holomorphic maps
Σ −→ M where Σ is a genus zero nodal curve representing β
up to equivalence:

Σ M

Σ′

∼=



▶ First Problem: The domain Σ isn’t fixed. In order to do
analysis, one really should identify this domain with something
‘standard’.

▶ One typical way of doing this is adding marked points to Σ,
until the domain becomes stable. This then identifies Σ with
an element of M0,n.

▶ Another way, suggested by Siebert, is to choose a basis of
holomorphic sections of an ample line bundle on Σ. These
sections then identify Σ with a curve mapping to projective
space. We will use this approach.



Framed Curves

▶ Fix a Hermitian line bundle L −→ M whose curvature is
−2iπΩ where Ω is a symplectic form taming J.

▶ Definition: A framed curve is a triple (u,Σ,F ) where
u : Σ −→ M is a smooth map from a nodal curve to M
representing β and F = (f0, · · · , fd) is an orthonormal basis of
H0(u∗L). We also require Ω to have positive degree on each
irreducible component of Σ.

▶ Given any such framed curve, there is a natural degree d map

ϕF : Σ −→ CPd , ϕF (σ) = [f0(σ), · · · , fd(σ)].



Framed Curves

▶ Therefore, the domains Σ of framed curves (u,Σ,F ) are
identified with the fibers of the universal curve C over the
automorphism free locus F ⊂ M(0,0)(CPd , d).

▶ As a result, a framed curve is equivalent to a smooth map
u : C|x −→ X from a fiber C|x over x ∈ F .

▶ There is a natural Gromov topology on the space of framed
curves coming from the Hausdorff distance metric on the set
of graphs of such curves, viewed as subsets of M × C.



▶ Second problem: The linearized Cauchy-Riemann equation is
not surjective.

▶ To solve this, we need to find a natural vector space to surject
onto the cokernel.

▶ Natural candidates are holomorphic sections of pullbacks of
vector bundles over X × C.



▶ Choose large integer k ≫ 1. And let L be an ample line
bundle on our universal curve C.

▶ For each framed curve (u,Σ,F ) let ιF : Σ ↪→ C be the natural
domain inclusion map.

▶ Definition. We will define the thickened moduli space T to
be the moduli space of tuples (u,Σ,F , η) where

1. (u,Σ,F ) is a framed curve.

2. and η ∈ H0(Hom(ι∗FTC, u∗TX )⊗ ι∗FLk)⊗ H0(ι∗FLk).

satisfying
∂Ju + ⟨η⟩ ◦ dιF = 0

where ⟨, ⟩ : H0(Hom(ι∗FTC, u∗TX )⊗ ι∗FLk)⊗ H0(ι∗FLk) −→
C∞(ι∗FTC, u∗TX ) is the natural pairing.



▶ There is a bundle E over T whose fiber over (u,Σ,F , η) is

H0(Hom(ι∗FTC,TX )⊗ ι∗FLk)⊗ H0(ι∗FLk).

▶ This bundle has a canonical section s sending (u,Σ,F , η) to η.

▶ There is also a natural U(d + 1) action on T given by
changing the framing F .

▶ (U(d + 1), T ,E , s) is our global Kuranishi chart.



▶ Hömanders theorem can be used to show that ⟨η⟩ can
approximate any dirac delta section of Hom(ι∗FTC, u∗TX ).

▶ This then can be used to show that the fibers of E surject
onto the cokernel of the linearized Cauchy-Riemann operator.

▶ This ensures that T is a manifold.

▶ A ‘Gromov trick’ allows us to describe our moduli space as
the space of holomorphic curves in a bundle over X × C (i.e.
we can get rid of obstruction bundles).

▶ G -equivariant smoothing theory of Lashof can be used to
make T smooth after ‘stabilizing’ our global Kuranishi chart.



Splitting of Complex Oriented Cohomology.

▶ We will now work in the category of spectra.

▶ Our generalized cohomology theory is equal to
H∗(X ;E) = π∗(F (X ,E)) where F (X ,E) is the space of maps
from X to a ring spectrum E. Homology is
H∗(X ;E) := π∗(X ∧ E).



Sweepout map.

▶ Let
Φ : S1 × X −→ X , Φ(t, x) = ϕ(t)(x)

be our loop of Hamiltonian diffeomorphisms and let

prX : S1 × X −→ X , prX (t, x) = x

be the projection map.

▶ Then since they agree on 1× X , we have an induced map of
spectra:

ηϕ = (Φ− prX ) : S
1 ∧ X+ ∧ S −→ X+ ∧ S

called the stable sweepout map where S is the sphere
spectrum.

▶ This induces the usual sweepout map on homology after
smashing with E.



Sweepout map continued.

▶ Lemma: There is a bijection between null homotopies of the
map:

ηϕ ∧ E : S1 ∧ X+ ∧ S −→ X+ ∧ E

and E-module homotopies

(Pϕ)+ ∧ E ∼= (X+ ∧ E) ∨ (Σ2X+ ∧ E).

▶ It is therefore enough to show that the stable sweepout map
vanishes in order to prove Theorem 2:

▶ Recall: Theorem 2:

H∗(P;E) ∼= H∗(X ;E)⊗H∗(pt;E) H
∗(S2;E)

for any complex oriented cohomology theory E (such as
complex cobordism).



Vanishing of stable sweepout map

▶ Lemma: If ηϕ ∧MU vanishes, then so does ηϕ ∧ E for any
complex oriented cohomology theory E.

▶ Proof: We have a map ι : MU −→ E and so
ηϕ ∧ E = (id ∧ ι) ◦ (ηϕ ∧MU).

▶ Lemma: ηϕ ∧MU vanishes iff ηϕ ∧MU(p) vanishes for each
prime p.



▶ Fact: There is a p-local spectrum BP so that:

1. the p-localization MU(p) is a finite wedge sum of copies of
shifts of BP and

2. the natural map BP −→
∏∞

n=1 LKp(n)BP into a product of
localizations is the inclusion of a wedge summand.

▶ Therefore it is sufficient to show that ηϕ ∧ LKp(n)BP vanishes.

▶ This follows from the fact that ηϕ ∧ Kp(n) vanishes (using our
moduli spaces of curves Mh, Mϕ, M∞ as above).

▶ QED for Theorem 2.


