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Abstract For moduli space of stable parabolic bundles on a compact Riemann
surface, we derive an explicit formula for the curvature of its canonical line bundle
with respect to Quillen’s metric and interprete it as a local index theorem for the
family of ∂̄-operators in the associated parabolic endomorphism bundles. The formula
consists of two terms: one standard (proportional to the canonical Kähler form on the
moduli space), and one nonstandard, called a cuspidal defect, that is defined by means
of special values of the Eisenstein–Maass series. The cuspidal defect is explicitly
expressed through the curvature forms of certain natural line bundles on the moduli
space related to the parabolic structure. We also compare our result with Witten’s
volume computation.
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1 Introduction

Local index theorems for families of ∂̄-operators provide local (i.e., valid on the
level of differential forms) expressions for the Chern classes (forms) of the corre-
sponding index bundles. Historically first examples of such results belong to Quillen
[13] and Belavin–Knizhnik [3]. Quillen considered the case of Cauchy–Riemann, or
∂̄-operators, in a vector bundle on a Riemann surface. He observed that when the
natural L2-metric in the determinant index bundle is divided by the determinant of
the Laplace operator det ∂̄∗∂̄ , its curvature becomes proportional to a natural Kähler
form on the parameter space. Belavin and Knizhnik extended Quillen’s result to the
families of ∂̄-operators on compact Riemann surfaces. Both papers rely on heat kernel
expansion techniques.

The pioneering work of Quillen and Belavin–Knizhnik initiated an extensive treat-
ment of various forms of local index theorems in the literature. For example, in our
papers [21] and [22] we rederived and refined these results using deformation theory
(in particular, Teichmüller theory). A similar approach was also used in [7]. Our tech-
nique proved to be applicable to the families of ∂̄-operators on punctured Riemann
surfaces [15,16], giving the first example of a local index theorem for families with
non-compact fibres. In this case the spectrum of the Laplace operator contains an
absolutely continuous part, so that the standard heat kernel definition of the regular-
ized determinant (that enters Quillen’s metric) is not applicable. Instead, we define it as
a special value of the Selberg zeta function. The curvature (or the first Chern form) of
the determinant bundle then splits into two terms: one being proportional to the Weil–
Petersson Kähler form on the moduli space of punctured Riemann surfaces and the
other being the Kähler form of a new Kähler metric defined in terms of Eisenstein–
Maass series (the so-called cuspidal defect arising from the absolutely continuous
spectrum of the Laplacian). Details can be found in [15,16]. Further refinements of
these results were obtained by Weng et al. [12,18] in terms of Deligne pairings and
Arakelov geometry, and by Wolpert [20] in terms of complex differential geometry.

The present paper is a long overdue sequel to [22]. Here we combine the methods
developed in [22] and [15,16] to treat another example—a local index theorem for the
family of ∂̄-operators acting in the endomorphism bundles associated with the stable
parabolic bundles on a compact Riemann surface.1

To be more precise, let E be a stable parabolic vector bundle of rank k on a com-
pact Riemann surface X , with given weights and multiplicities at the marked points
P1, . . . , Pn . According to the Mehta–Seshadri theorem [8], the bundle E is associated
with an irreducible unitary representation of the fundamental group of the non-compact
Riemann surface X0 = X\{P1, . . . , Pn}. Put X0 ∼= Γ \H, where H is the Poincaré
model of the Lobatchevsky plane, and Γ is a torsion-free Fuchsian group. Then there
exists an irreducible representation ρ : Γ → U (k) such that the spectrum of ρ(Si ),
where Si is a parabolic generator of Γ about the marked point Pi , i = 1, . . . , n,

1 For families of stable parabolic bundles with nonzero rational weights a version of local index theorem was
obtained in [4]. In the situation considered in [4] the corresponding Laplace operators have no continuous
spectrum, and no cuspidal defect appears in this case; the resulting formula is very similar to the original
Quillen’s one.
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is given by the exponents of weights at Pi , and such that E ∼= Eρ , where Eρ is a
proper extension of the quotient bundle Eρ0 = Γ \(H × C

k) → Γ \H ∼= X0 to the
compact surface X . The Hermitian metric in the bundle End Eρ0 (induced by the stan-
dard Hermitian metric in End C

k) and the complete hyperbolic metric on X0 define
the Hodge ∗-operator in the vector spaces of End E0-valued (p, q)-forms on X0. The
Laplace operator in the bundle End E0 is defined by ∆ = ∂̄∗∂̄ , where ∂̄ = ∂̄End E0

and ∂̄∗ = − ∗ ∂̄∗; it is a self-adjoint operator in the Hilbert space of L2-sections of
End E0 on X0. The isomorphism End E0 ∼= End Eρ0 identifies the Laplace operator
∆ with the Laplace operator on H acting in the space of End C

k-valued functions on
H automorphic with respect to Γ with the unitary representation Ad ρ that are square
integrable on the fundamental domain of Γ . We define its regularized determinant as

det∆ = ∂

∂s

∣
∣
∣
∣
s=1

Z(s, Γ ; Ad ρ),

where Z(s, Γ ; Ad ρ) is the Selberg zeta function corresponding to ∆ (see Sect. 2 for
precise definitions and references).

The moduli space N of stable parabolic vector bundles of rank k on X is a com-
plex manifold.2 The holomorphic tangent space T{E}N at the point {E} ∈ N cor-
responding to the stable parabolic bundle E is naturally isomorphic to the space
H 0,1(X0,End E0) of square integrable harmonic End E0-valued (0, 1)-forms on X0.
The moduli space N carries a natural Kähler metric given by the Hodge inner product
in the tangent spaces. We denote by ‖ · ‖2 the corresponding Hermitian metric in the
canonical line bundle λ = det N (see Sect. 3).

Our main result—Theorem 1 of Sect. 5—is an explicit computation of the curvature
form of Quillen’s metric ‖ · ‖2

Q = ‖ · ‖2(det∆)−1 in the canonical line bundle λ on
N . In addition to the term proportional to the Kähler form on N , it contains an extra
term, the so-called cuspidal defect, that is due to the absolutely continuous spectrum
of ∆. It is explicitly defined in terms of the values at s = 1 of the Eisenstein–Maass
series for the group Γ (see Sect. 5 for the precise formulation). We also interpret
the cuspidal defect in terms of the curvature forms of natural line bundles on the
moduli space N associated with the parabolic structures. This result simplifies for
the moduli space N0 of parabolic bundles with fixed determinant, well-defined when
the parabolic structure is integral (see Corollary 1 of Sect. 5). In particular, it gives an
alternative approach to computing volumes of moduli spaces of parabolic bundles. We
also compare our computations with Witten’s formula [19] for the symplectic volume
of N in the simplest situation of a pointed torus.

The content of the paper is as follows. In Sects. 2 and 3 we collect the necessary
facts about stable parabolic bundles on compact Riemann surfaces and their moduli
spaces, as well as about the spectral theory of automorphic Laplacians. In Sect. 4 we
derive the necessary variational formulas, introduce certain natural line bundles on
moduli spaces and compute their curvatures. At last, in Sect. 5 we prove the main
result—Theorem 1.

2 More precisely, a smooth quasiprojective variety. Its natural compactification—the moduli space of semi-
stable parabolic bundles—is a normal projective variety that is smooth for a generic weight system; cf. [8].
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2 Preliminaries

2.1 Parabolic bundles

Let X be a compact Riemann surface of genus g with a finite set S = {P1, . . . , Pn} of
marked points such that 2g+n−2 > 0. According to [8], a holomorphic vector bundle
E on X of rank k is called a parabolic bundle if it carries a parabolic structure—a flag
EP = F1 EP ⊃ F2 EP ⊃ · · · ⊃ Fr EP in the fibre EP and weights 0 ≤ α1 < α2 <

· · · < αr < 1 for each P ∈ S. The integers k1 = dim F1 EP − dim F2 EP , . . . , kr =
dim Fr EP , are called the multiplicities of the weights α1, . . . , αr . A morphism f :
E → E ′ of parabolic vector bundles is a morphism of holomorphic vector bundles
such that for every P ∈ S, f (Fi EP ) ⊂ Fj+1 E ′

P whenever αi > α′
j . A subbundle

F ⊂ E is a parabolic subbundle if for every P ∈ S the parabolic structure in F is a
restriction of the parabolic structure in E . The parabolic degree of a parabolic bundle
E is defined as

par deg E = deg E +
∑

P∈S

r(P)
∑

l=1

kl(P)αl(P),

where deg E is the degree of the underlying holomorphic vector bundle E . A parabolic
bundle E of parabolic degree 0 is said to be stable [8] if par deg F < 0 for every par-
abolic subbundle F of E . A theorem of Mehta–Seshadri [8] generalizes the celebrated
theorem of Narasimhan–Seshadri [11] about stable vector bundles on a compact Rie-
mann surface to the case of parabolic bundles. It states that stable parabolic bundles are
precisely those associated with irreducible unitary representations of the fundamental
group of the non-compact Riemann surface X0 = X\S.

A precise formulation is the following. By the uniformization theorem, X0 ∼= Γ \H,
where H = {z = x + √−1 y ∈ C | y > 0} is a Poincaré model of the Lobatchevsky
(hyperbolic) plane, and Γ is a torsion-free Fuchsian group generated by hyperbolic
transformations A1, B1, . . . , Ag, Bg and parabolic transformations S1, . . . , Sn satis-
fying the single relation

A1 B1 A−1
1 B−1

1 . . . Ag Bg A−1
g B−1

g S1 . . . Sn = 1.

Let x1, . . . , xn be the fixed points of the elements S1, . . . , Sn (also called parabolic
cusps), and let H be the union of H with the set of all parabolic cusps of Γ . There
is a natural projection H → Γ \H such that X ∼= Γ \H. The images of the cusps
x1, . . . , xn ∈ R ∪ {∞} are the marked points P1, . . . , Pn (see, e.g., [14, Chap. 1]).
Let C

k be the complex vector space with the standard Hermitian inner product and
the orthonormal basis, and let U (k) be the group of k × k unitary matrices. A unitary
representationρ : Γ → U (k) is called admissible with respect to a given set of weights
and multiplicities at P1, . . . , Pn , if for each i = 1, . . . , n, we have ρ(Si ) = Ui DiU

−1
i

with unitary Ui ∈ U (k) and diagonal Di = e2π
√−1Ai , Ai = (αi

1, . . . , α
i
ri
), where

each αi
l = αl(Pi ) is repeated ki

l = kl(Pi ) times, l = 1, . . . , ri = r(Pi ). Admissible
matricesρ(Si ) are parametrized by the flag varieties Fi = U (k)/U (ki

1)×· · ·×U (ki
ri
),
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i = 1, . . . , n. The group Γ acts on the trivial bundle H × C
k on H by the rule

(z, v) → (γ z, ρ(γ )v), where z ∈ H, v ∈ C
k and γ ∈ Γ . Take the sheaf of its

bounded at the cusps (Γ, ρ)-invariant sections. The direct image of this sheaf under the
projection H → X is a locally free sheaf of rank k on X . The parabolic structure at the
images of cusps is defined by the matrices ρ(Si ). This gives a parabolic vector bundle
Eρ on the Riemann surface X of parabolic degree 0. Loosely speaking, the bundle
Eρ is an extension to X of the quotient bundle Eρ0

∼= Γ \(H × C
k) → Γ \H ∼= X0. It

is easy to describe the bundle Eρ explicitly in terms of the transition functions as in
[11, Remark 6.2].

Theorem (Mehta–Seshadri) A parabolic vector bundle E of rank k and par deg E = 0
is stable if and only if it is isomorphic to a bundle Eρ , where ρ : Γ → U (k) is an
irreducible representation of the group Γ admissible with respect to the set of weights
and multiplicities of the parabolic structure of E. Moreover, stable parabolic bundles
Eρ1 and Eρ2 are isomorphic if and only if representations ρ1 and ρ2 are equivalent.

Remark 1 The original proof in [8] was of algebro-geometric nature and worked only
for rational weight systems. Following Donaldson’s ideas [6], a more straightforward
differential-geometric proof valid for arbitrary real weights was given in [2].

The standard Hermitian metric in C
k defines aΓ -invariant metric in the trivial vector

bundle H × C
k → H. It extends as a (pseudo)metric hE to the bundle E = Eρ that

degenerates in the fibres over the points P1, . . . , Pn . Explicitly, choose σi ∈ SL(2,R)

such that σi∞ = xi and σ−1
i Siσi = (

1 ±1
0 1

)

, and let ζ = e2π
√−1 σ−1

i z be a local
coordinate at Pi ∈ X ∼= Γ \H. Then in terms of the trivialization of E defined by k

local sections—the columns of the matrix Ui e2π
√−1σ−1

i zAi —the metric hE is given

by the diagonal matrix |ζ |2Ai = (|ζ |2αi
1 , . . . , |ζ |2αi

ri ), where each |ζ |2αi
l is repeated ki

l
times, l = 1, . . . , ri . The restriction of hE to the bundle E0 = Eρ0 , which we denote
by hE0 , is non-degenerate.

2.2 The endomorphism bundle

Let End E0 be the bundle of endomorphisms of the vector bundle E0 on X0. Its fibers
have the structure of the Lie algebra gl(k,C)with the bracket [ , ] and the Killing form
tr. Together with the exterior multiplication in the space C•(X0) of smooth differential
forms on X0, these operations induce the mappings

[ , ] : C p(X0,End E0)⊗ Cq(X0,End E0) → C p+q(X0,End E0)

and

∧ : C p(X0,End E0)⊗ Cq(X0,End E0) → C p+q(X0),

where C p(X0,End E0) is the space of smooth End E0-valued p-forms on X0. For
E0 = Eρ0 , the bundle End E0 ∼= Γ \(H × End C

k) is the quotient bundle with respect
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to the adjoint representation Ad ρ of the group Γ in End C
k . Explicitly, Ad ρ(γ )a =

ρ(γ )aρ(γ )−1, where γ ∈ Γ and a ∈ End C
k , and realized as a k2 × k2 matrix,

Ad ρ(γ ) = (ρ(γ ) ⊗ (ρ(γ )−1)t ) = (ρ(γ ) ⊗ ρ(γ )). In particular, if u1, u2 ∈ C
k

are eigenvectors of ρ(γ ) with eigenvalues e
√−1θ1 and e

√−1θ2 , then v = u1 ⊗ ū2 ∈
End C

k—a k × k matrix with the elements vlm = u1l ū2m—is an eigenvector for
Ad ρ(γ ) with eigenvalue e

√−1(θ1−θ2).
The Hermitian metric hE0 in the bundle E0 naturally induces a Hermitian metric

in the bundle End E0 that we denote by hEnd E0 . The bundle End E0 has a canonical
section—the identity isomorphism I of E0, and decomposes into the orthogonal sum
End E0 = ad E0 ⊕ C with respect to the metric hEnd E0 . Here ad E0 is the adjoint
bundle (that is, the bundle of traceless endomorphisms of E0), and C is understood as
a trivial line bundle on X0 spanned on the non-vanishing section I .

Remark 2 Since End E0 is associated with the unitary representation Ad ρ of Γ , it
can be extended to X as a parabolic bundle End E = End Eρ of parabolic degree 0.
However, we will not use this extension—we are going to work with L2-sections of
End E0 instead.

2.3 The Laplace operator

Let E be a stable parabolic vector bundle on X and let E0 be the restriction of
E to X0 = X\S ∼= Γ \H. We use the hyperbolic (or Poincaré) metric on X0
descended from H and the Hermitian metric hEnd E0 in End E0 to define the Hodge
∗-operator in the vector spaces C p,q(X0,End E0) for p, q =0, 1. Let C p,q

c (X0,End E0)

denote the subspace of compactly supported End E0-valued (p, q)-forms on X0. The
completion of this space with respect to the Hodge inner product yields the Hilbert
space Hp,q(X0,End E0). The Laplace operator in C0,0

c (X0,End E0) is, by defini-
ton, ∆ = ∂̄∗∂̄ , where ∂̄ and its adjoint ∂̄∗ = − ∗ ∂̄∗ are understood as operators
from C0,0

c (X0,End E0) to C0,1
c (X0,End E0) and from C0,1

c (X0,End E0) to C0,0
c (X0,

End E0) respectively. The Laplace operator admits a unique extension as a non-
negative, self-adjoint operator in the Hilbert space H0,0(X0,End E0), which we also
denote by ∆. Since the bundle E is stable, the kernel ker∆ = ker ∂̄ of the operator
∆ is one-dimensional and is generated by the section I . Denote by H0,0

0 (X0,End E0)

the orthogonal complement of ker∆ in H0,0(X0,End E0) and by ∆0—the restric-
tion of the operator ∆ to H0,0

0 (X0,End E0). Then ker ∂̄∗ = H 0,1(X0,End E0) is the
subspace of harmonic (0, 1)-forms in the Hilbert space H0,1(X0,End E0). The corre-
sponding orthogonal projection

P : H0,1(X0,End E0) → H 0,1(X0,End E0)

is given by

P = I − ∂̄∆−1
0 ∂̄∗,

where I stands now for the identity operator in H0,1(X0,End E0).
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When E = Eρ , the spaces C p,q(X0,End E0) are naturally identified with the vector
spaces of smooth End C

k-valued automorphic forms on H with the transformation law

f (γ z)γ ′(z)pγ ′(z)q = Ad ρ(γ ) f (z), z ∈ H, γ ∈ Γ.

The Hodge inner product is then

〈 f1, f2〉 =
∫

X

f1 ∧ ∗ f2 = 2p+q
∫∫

F

tr( f1(z) f2(z)
∗)y p+q−2dxdy, (2.1)

where f ∗ = f̄ t is the Hermitian conjugate of f ∈ End C
k , and F denotes a fun-

damental domain for the group Γ in H. Then the Hilbert space Hp,q(X0,End E0)

can be naturally identified with the Hilbert space Hp,q(H, Γ ; Ad ρ) of (Γ,Ad ρ)-
automorphic forms on H. We have

∂̄ = ∂

∂ z̄
= 1

2

(
∂

∂x
+ √−1

∂

∂y

)

, ∂̄∗ = −2y2 ∂

∂z
= −y2

(
∂

∂x
− √−1

∂

∂y

)

,

so that the Laplace operator has the form

∆ = −2y2 ∂2

∂z∂ z̄
= − y2

2

(
∂2

∂x2 + ∂2

∂y2

)

.

The spectral decomposition of the Laplace operator in the Hilbert space H0,0(H, Γ ;
Ad ρ) has been studied in detail in [17].3 The spectrum of ∆ has both discrete and
absolutely continuous parts. The latter covers the interval

[ 1
8 ,∞

)

with the multiplicity

n
∑

i=1

ri∑

l=1

(ki
l )

2 = nk2 −
n

∑

i=1

dimR Fi .

The eigenfunctions of the continuous spectrum are given by the analytically continued
Eisenstein–Maass series for the group Γ with the unitary representation Ad ρ. To be
more specific, consider the subspaces Vi = ker(Ad ρ(Si )− I ) in End C

k , i = 1, . . . , n.
The Eisenstein–Maass series corresponding to the cusp xi and a vectorv ∈ Vi is defined
for Re s > 1 by the following absolutely convergent series

Ei (z, v; s) =
∑

γ∈Γi \Γ
Im(σ−1

i γ z)s Ad ρ(γ )−1v, i = 1, . . . , n.

Here Γi is the stabilizer of the cusp xi in Γ—the cyclic subgroup generated by Si ,
and σi ∈ SL(2,R) is as in Sect. 2.1. Since v∗ ∈ Vi for v ∈ Vi and the representation
ρ is unitary, Ei (z, v; s)∗ = Ei (z, v∗, s̄). The Eisenstein–Maass series Ei (z, v; s) is

3 The operator usually considered in the spectral theory is 2∆.
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(Γ,Ad ρ)-automorphic—that is, Ei (γ z, v; s) = Ad ρ(γ )Ei (z, v; s). It satisfies the
differential equation

∆Ei (z, v; s) = s(1 − s)

2
Ei (z, v; s), (2.2)

and admits a meromorphic continuation to the whole complex s-plane. Since the
representation ρ : Γ → U (k) is irreducible, it follows from (2.2) that for every
v ∈ Vi satisfying tr v = 0 the Eisenstein–Maass series Ei (z, v; s) is regular at s = 1.
Equation (2.2) together with the property

Ei (σ j (z + 1), v; s) = Ad ρ(S j )Ei (σ j z, v; s)

yield the following asymptotic expansion of Ei (z, v; 1) with tr v = 0 at the cusps:

Ei (σ j z, v; 1) = δi j y · v + ci j (v)+ O(e−πy) as y → ∞, (2.3)

where all ci j (v), i, j = 1, . . . , n, belong to End C
k and satisfy tr ci j (v) = 0.

Denote by G(z, z′) the Green’s function of the Laplace operator∆ in End E0—the
integral kernel of the operator ∆−1

0 . It is an End End C
k-valued function on H × H

with the transformation law

G(γ1z, γ2z′) = Ad ρ(γ1)G(z, z′)Ad ρ(γ2)
−1,

where γ1, γ2 ∈ Γ and z, z′ ∈ H. The Green’s function is smooth when z �= γ z′,
γ ∈ Γ , and when z′ → z it has a logarithmic singularity:

G(z, z′) = − 1

π
log |z − z′| · I + O(1), z′ → z,

where I is now the identity element in End End C
k . The Green’s function Q(z, z′) of

the operator ∆ in the trivial bundle H × End C
k is given by the explicit formula

Q(z, z′) = − 1

π
log

∣
∣
∣
∣

z − z′

z̄ − z′

∣
∣
∣
∣
· I.

Set

ψ(z) = ∂

∂z′ (G(z, z′)− Q(z, z′))
∣
∣
z′=z . (2.4)

The following results will be used in Sect. 5.

Lemma 1 The function ψ : H → End End C
k is smooth and satisfies the transfor-

mation law

ψ(γ z)γ ′(z) = Ad ρ(γ )ψ(z)Ad ρ(γ )−1, γ ∈ Γ ;
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in other words, ψ ∈ C1,0(X0,End End E0). Moreover, put

Ci = lim
y→∞ψ(σi z)σ

′
i (z), i = 1, . . . , n.

Then we have

Ci = (Ui ⊗ Ūi )Ti (U
−1
i ⊗ Ū−1

i ),

where Ui is a unitary matrix that diagonalize ρ(Si ), ρ(Si ) = Ui DiU
−1
i , and Ti is the

diagonal k2 × k2-matrix with elements

(Ti )lm = −sgn(αi
l − αi

m)
√−1

(
1

2
− |αi

l − αi
m |

)

, l,m = 1, . . . , ri ,

each repeated ki
l ki

m times (we assume sgn(0) = 1).

Proof The resolvent kernel of the operator ∆ in the trivial bundle H × End C
k , or,

equivalently, the integral kernel of the operator (∆ + 1
2 s(s − 1))−1, is Qs(z, z′) =

Q(0)
s (z, z′) · I , where Q(0)

s (z, z′) is the resolvent kernel of ∆ in the trivial line bundle
H × C (see, e.g., [16]).4 In particular, Q1(z, z′) = Q(z, z′). The resolvent kernel
Gs(z, z′) of the Laplace operator in the bundle End Eρ is given by the series

Gs(z, z′) =
∑

γ∈Γ
Qs(z, γ z′)Ad ρ(γ ),

that converges absolutely and uniformly on compact subsets of H × H for Re s > 1.
We have

G(z, z′) = lim
s→1

(

Gs(z, z′)− 1

s(s − 1)
· 1

πk(2g − 2 + n)
· I

)

,

so that ψ(z) given by (2.4) is a smooth End End E0-valued (1,0)-form on X0, or,
equivalently, ψ ∈ C1,0(X0,End End E0). Now, similar to Lemma 1 in [16] we have

ψ(σi z)σ
′
i (z) =

∞
∑

m=−∞
m �=0

∂

∂z′ Q(z, z′ + m)Ad ρ(Sm
i )+ o(1) as y → ∞.

Using the simple explicit formula

∂

∂z′ Q(z, z′) = 1

2π

(
1

z − z′ − 1

z̄ − z′

)

· I

4 The Laplace operator in [16] is 1
2∆.
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we obtain that

Ci = lim
y→∞ψ(σi z)σ

′
i (z) = 1

2π
lim

y→∞

∞
∑

m=−∞
m �=0

(
1

m + 2
√−1y

− 1

m

)

Ad ρ(Sm
i ).

Choose a basis in C
k such that ρ(Si ) is given by the diagonal matrix Di . Using the

elementary formulas

∞
∑

m=1

2z

z2 − m2 = π cot π z − 1

z
, z ∈ C\Z,

and

∞
∑

m=1

sin(2πmα)

m
= π

(
1

2
− α

)

, 0 < α < 1,

with an odd extension to −1 < α < 0, we easily get the second statement of the lemma.
��

For each pair of harmonic forms µ, ν ∈ H 0,1(X0,End E0) we define a smooth
L2-section fµν̄ ∈ H0,0

0 (X0, ad E0) by the formula

fµν̄ = ∆−1
0 (∗[∗µ, ν]).

Lemma 2 The section fµν̄ has the following asymptotics at the cusps:

fµν̄(σi z) = Fi
µν̄ + o(1) as y → ∞, i = 1, . . . , n,

where Fi
µν̄ ∈ End C

k and tr Fi
µν̄ = 0. Moreover, for any v ∈ Vi with tr v = 0 we have

tr(Fi
µν̄v) = 2

∫

X0

∗[∗µ, ν] ∧ ∗Ei ( · , v∗; 1)

= 4
∫∫

F

tr([µ(z), ν(z)∗]Ei (z, v, 1))dxdy,

whereas tr(Fi
µν̄v) = 0 for v /∈ Vi .

Proof We repeat the main steps of the proof of Lemma 2 in Sect. 1 of [16]. We
have Ad ρ(Si )v = e2

√−1πβv with some β ∈ (−1, 1). Put g(z) = tr( fµν̄(σi z)v).
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The function g(z) has the property g(z + 1) = e2
√−1πβg(z), so it admits the Fourier

expansion

g(z) =
∞
∑

m=−∞
am(y)e

2π
√−1(m+β)x , z ∈ H.

Automorphic formsµ(z), ν(z) are exponentially decreasing at the cusps, and the func-
tion g(z) is square integrable on F with respect to the hyperbolic area form. From the

equation∆g = tr(∗[∗µ, ν]v) it then follows that the functions
d2am

dy2 − 4π2(m + β)2

for all m ∈ Z are exponentially decreasing as y → ∞. Thus, when β �= 0, the function
g(z) decays exponentially as y → ∞. When β = 0, the coefficient a0(y) = a0 is a
constant, and g(z)− a0 exponentially decays as y → ∞. To get the integral formula
for a0, consider a canonical fundamental domain F for Γ with exactly n cusps at
the points x1, . . . , xn , and take FY = {z ∈ F | Im(σ−1

i z) ≤ Y, i = 1, . . . , n}. Using
Green’s formula and asymptotics (2.3), we get

2
∫∫

F

tr([µ(z), ν(z)∗]Ei (z, v, 1))dxdy =
∫∫

F

tr(∆0 fµν̄(z)Ei (z, v, 1))
dxdy

y2

= lim
Y→∞

1

2

∫

∂FY

tr

{

Ei (z, v; 1)

(
∂ fµν̄
∂y

dx − ∂ fµν̄
∂x

dy

)

− fµν̄

(
∂

∂y
Ei (z, v; 1)dx − ∂

∂x
Ei (z, v; 1)dy

)}

= a0

2
,

where we used the differential equation (2.2) for s = 1. Note that by definition
a0 = tr(Fi

µν̄v), which completes the proof.

3 The moduli space of parabolic bundles

3.1 The complex structure

According to the Mehta–Seshadri theorem, the moduli space N of stable parabolic
bundles of rank k on X = Γ \H with given weights and multiplicities at the marked
points P1, . . . , Pn ∈ X is isomorphic to the space Hom(Γ,U (k))0/U (k) of equiva-
lence classes of irreducible admissible representations of Γ (where the unitary group
U (k) acts by conjugation). This is a complex manifold of dimension

d = k2(g − 1)+ 1 +
n

∑

i=1

dimC Fi .

If the parabolic structure is integral (i.e.
∑r(P)

l=1 kl(P)αl(P)∈Z for each P ∈ S) one can
consider unimodular irreducible admissible representations of Γ . The representation
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space N0 = Hom(Γ, SU (k))0/SU (k) is then a complex submanifold of N of
dimension d0 = d − g. The correspondence E → ∧k E defines a holomorphic
mapping N → JdegE , where JdegE is the component of the Picard group Pic(X)
parametrizing line bundles of degree deg E on X . The fibers of this mapping—the
moduli spaces of stable parabolic vector bundles on X with fixed determinant—are
all isomorphic to N0 as complex manifolds.

As in [10], the holomorphic tangent space T{E}N at the point {E} ∈ N correspond-
ing to the stable parabolic bundle E is identified with the space H 0,1(X0,End E0)

of square integrable harmonic (0, 1)-forms on X0 with values in End E0. The corre-
sponding holomorphic cotangent space T ∗{E}N is identified with the space H 1,0(X0,

End E0) of square integrable harmonic (1, 0)-forms on X0 with values in End E0, and
the pairing

H 0,1(X0,End E0)⊗ H 1,0(X0,End E0) → C

is given by

(ν, θ) →
∫

X0

ν ∧ θ, ν ∈ H 0,1(X0,End E0), θ ∈ H 1,0(X0,End E0).

Let ρ : Γ → U (k) be an admissible irreducible representation. Exactly as in [22],
we can show that, for each ν ∈ H 0,1(X0,End E0) sufficiently close to zero, there
exists a unique mapping f ν : H → GL(k,C) with the following properties:

(i) f ν satisfies the equation

∂ f ν

∂ z̄
= f ν(z)ν(z), z ∈ H;

(ii) det f ν(z0) = 1 at some fixed z0 ∈ H (say, z0 = √−1);
(iii) ρν(γ ) = f ν(γ z)ρ(γ ) f ν(z)−1 is independent of z and is an admissible irre-

ducible unitary representation of Γ ;
(iv) f ν is regular at the cusps, that is,

f ν(xi ) = lim
z→∞ f ν(σi z) < ∞, i = 1, . . . , n.

Let ν1, . . . , νd be a basis for H 0,1(X0,End Eρ0 ), and let ν = ε1ν1 + · · · + εdνd ,
where εi ∈ C, i = 1, . . . , d, are sufficiently small. The mapping (ε1, . . . , εd) →
{Eρ

ν } provides a coordinate chart on N in the neighborhood of the point {Eρ}. These
coordinates transform holomorphically and endow N with the structure of a complex
manifold (they are similar to Bers’ coordinates on Teichmüller spaces). The differ-
ential of such coordinate transformation is a linear mapping H 0,1(X0,End Eρ0 ) →
H 0,1(X0,End Eρ

ν

0 ) explicitly given by the formula

µ → Pν(Ad f ν(µ)), µ ∈ H 0,1(X0,End Eρ0 ). (3.1)
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Here Pν : H0,1(X0,End Eρ
ν

0 ) → H 0,1(X0,End Eρ
ν

0 ) is the orthogonal projection,

and Ad f ν is understood as a fiberwise linear mapping End Eρ0 → End Eρ
ν

0 , where
Ad f ν(µ) = f ν · µ · ( f ν)−1. When the parabolic structure is integral, the holomor-
phic tangent space T{Eρ }N0 at the point {Eρ} ∈ N0 is identified with the subspace
H 0,1(X0, ad Eρ0 ) ↪→ H 0,1(X0,End Eρ0 ). Note that there is an orthogonal decom-
position

H 0,1(X0,End Eρ0 )
∼= H 0,1(X0, ad Eρ0 )⊕ H 0,1(X0)⊗ I.

If the basisν1, . . . , νd forH 0,1(X0,End Eρ0 ) is chosen in such a way thatν1, . . . , νd0 ∈
H 0,1(X0, ad Eρ0 ) and νd0+1, . . . , νd ∈ H 0,1(X0)⊗ I , then in the local coordinates
(ε1, . . . , εd) the submanifold N0 ⊂ N is given by the equations εd0+1 = · · · = εd =0.

The moduli space N carries a Hermitian metric given by the inner product (2.1) in
the fibers of T N . This metric is analogous to the Weil–Petersson metric on Teichmüler
space, and for the moduli spaces of stable bundles of fixed rank and degree was
introduced in [1,9]. This metric is Kähler and we will denote its Kähler (symplectic)
form by Ω:

Ω

(
∂

∂ε(µ)
,

∂

∂ε(ν)

)

=
√−1

2
〈µ, ν〉.

Here
∂

∂ε(µ)
and

∂

∂ε(ν)
are the holomorphic and antiholomorphic tangent vectors at

{E} ∈ N corresponding to µ, ν ∈ H 0,1(X0,End E0) respectively.

3.2 Families of endomorphism bundles

It follows from the general deformation theory that the moduli space N admits an
open covering N = ∪α∈AUα such that for every α ∈ A there exists a family of
endomorphism bundles on X0 × Uα: a holomorphic vector bundle Eα → X0 × Uα
with the Hermitian metric hEα such that Eα|X0×{E} ∼= End E0 as Hermitian vector
bundles for any {E} ∈ Uα . If we consider only traceless endomorphisms, we get a
family of the adjoint bundles Fα for which Fα|X0×{E} ∼= ad E0 for {E} ∈ Uα , and
Eα = Fα ⊕ C, where C is understood as the trivial line bundle on X0 × Uα .

The direct image π∗Eα of Eα under the projection π : X0 × Uα → Uα is iso-
morphic to the restriction T N |Uα of the tangent bundle T N to Uα . Correspondingly,
T ∗N |Uα ∼= π∗(Eα ⊗ T ∗

V

∣
∣

X0×Uα
), where T ∗

V is the vertical (along the fibers of the pro-
jection π ) cotangent bundle on X0 × Uα . If an open covering is chosen properly, then
for every Uα there exist d holomorphic sectionsω1, . . . , ωd of Eα⊗T ∗

V on X0×Uα that
are linearly independent over each fiber X0×{E}, {E} ∈ Uα . This means, in particular,
that over each point {E} = {Eρ} ∈ Uα the sections ω1|X0×{Eρ } , . . . , ωd |X0×{Eρ } of
End Eρ0 ⊗ T ∗ X0 form a basis for the vector space H 1,0(X0,End Eρ0 ) and for every
ν ∈ H 0,1(X0,End Eρ0 ) each of the forms
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Ad( f εν)−1(ωi |X0×{Eρ }) ∈ C1,0(X0,End Eρ0 ), i = 1, . . . , d,

is holomorphic in ε ∈ C at ε = 0.
For the integral parabolic structure put Vα = Uα ∩ N0. Then we have

π∗(Fα|X0×Vα )
∼= T N0|Vα and π∗(Fα ⊗ T ∗

V

∣
∣

X0×Vα
) ∼= T ∗N0|Vα . The sections

ω1, . . . , ωd of the bundle Eα ⊗ T ∗
V can be chosen in such a way that ω1, . . . , ωd0

take values in the subbundle Fα ⊗ T ∗
V ↪→ Eα ⊗ T ∗

V .

Remark 3 To the best of our knowledge, it is not completely clear whether there
always exists a universal endomorphism bundle E → X0 × N such that E |X0×{E} ∼=
End E0 for every {E} ∈ N . For a generic weight system the existence of the universal
endomorphism bundle follows e.g. from [5], Proposition 3.2.

4 Variational formulas

4.1 Lie derivatives

By definition, a family of forms of type (p, q), p, q = 0, 1, on X0 × Uα is a smooth
section of the bundle Eα ⊗ ∧pT ∗

V ⊗ ∧q T
∗
V → X0 × Uα , where T ∗

V and T
∗
V are the

holomorphic and antiholomorphic vertical cotangent bundles on X0×Uα respectively.
Let {Eρ

εν } for sufficiently small ε ∈ C be a complex curve in N with the tangent
vector ∂/∂ε(ν) at the point {Eρ} ∈ Uα , where ν ∈ H 0,1(X0,End Eρ0 ), and let

ωε ∈ C p,q(X0,End Eρ
εν

0 ) be a family of forms of type (p, q) over this curve. The Lie
derivatives of the family ωε in the directions ∂/∂ε(ν) and ∂/∂ε(ν) are defined by the
standard formulas

Lνω = ∂

∂ε

∣
∣
∣
∣
ε=0

Ad( f εν)−1(ωε), L ν̄ω = ∂

∂ε̄

∣
∣
∣
∣
ε=0

Ad( f εν)−1(ωε).

The Lie derivatives of smooth families of linear operators

Aε : Hp,q(X0,End Eρ
εν

0 ) → Hp′,q ′
(X0,End Eρ

εν

0 )

are defined by the formulas

Lν A = ∂

∂ε

∣
∣
∣
∣
ε=0

Ad( f εν)−1 ◦ Aε ◦ Ad f εν,

L ν̄ A = ∂

∂ε̄

∣
∣
∣
∣
ε=0

Ad( f εν)−1 ◦ Aε ◦ Ad f εν .

These are linear operators from Hp,q(X0,End Eρ0 ) to Hp′,q ′
(X0,End Eρ0 ). The Lie

derivatives obey the Leibniz rules; in particular,

Lν(Aω) = (Lν A)ω + A(Lνω), L ν̄ (Aω) = (L ν̄ A)ω + A(L ν̄ω).
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Repeating verbatim the computations in [22], we get the formulas

LνhEα (ξ, η) = L ν̄hEα (ξ, η) = 0, (4.1)

LµL ν̄hEα (ξ, η) = −hEα ([ fµν̄, ξ ], η) (4.2)

for all µ, ν ∈ H 0,1(X0,End Eρ0 ) and all bounded ξ, η ∈ C0(X0,End Eρ0 ); here
fµν̄ = ∆−1

0 (∗[∗µ, ν]) as in Lemma 2. Furthermore,

Lν ∂̄ = ad ν, L ν̄ ∂̄ = 0,
Lν ∂̄∗ = 0, L ν̄ ∂̄∗ = − ∗ ad ∗ν.

so that for the operators ∆ = ∂̄∗∂̄ and P = I − ∂̄∆−1
0 ∂̄∗ we get

Lν∆ = ∂̄∗ ad ν and L ν̄ P = ∂̄∆−1
0 ∗ ad ν ∗ P. (4.3)

For the family µεν = Pεν(Ad f ενµ) which corresponds, under the identification
T{Eρεν }N ∼= H 0,1(X0,End Eρ

εν

0 ), to the tangent vector field ∂/∂ε(µ) to the (com-

plex) curve {Eρ
εν } ∈ N , we get

L ν̄µ = ∂̄ fµν̄ . (4.4)

The determinant of the Kähler metric on N is a Hermitian metric in the canonical
line bundle det T ∗N = ∧d T ∗N . Its curvature (1, 1)-form Θ is given by

Θ

(
∂

∂ε(µ)
,

∂

∂ε(ν)

)

= − Tr((ad fµν̄ I + (Lµ∂̄)∆
−1
0 (L ν̄ ∂̄

∗))P), (4.5)

where Tr is the operator trace in the Hilbert space H0,1(X0,End E0), ad fµν̄ is a linear
operator in C0,1(X0,End E0) understood as

ad fµν̄(ξ) = [ fµν̄, ξ ], ξ ∈ C0,1(X0,End E0),

I is the identity operator in H0,1(X0,End E0), and

P : H0,1(X0,End E0) → H 0,1(X0,End E0)

is the orthogonal projection.

4.2 Eisenstein–Maass series and closed (1, 1)-forms

Let E ∼= Eρ be a stable parabolic vector bundle on X . For each marked point Pi ∈ X
and each vector v ∈ Vi = ker(Ad ρ(Si )− I ) with tr v = 0, i = 1, . . . , n, we define a
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(1, 1)-form Ωi,v in a neighborhood of the point {E} ∈ N as follows. Choose a basis
ϕ1, . . . , ϕd ∈ H 0,1(X0,End Eρ0 ) and put ϕ = ε1ϕ1 + · · · + εdϕd with small enough
ε1, . . . , εd ∈ C. The parameters ε1, . . . , εd provide local coordinates near the point
{E} ∈ N by means of the mapping

(ε1, . . . , εd) → {Eρ
ϕ } ∈ N

(see Sect. 3.1 for details).
For any µ, ν ∈ H 0,1(X0,End Eρ0 ) consider two families of harmonic (0,1)-forms

µϕ, νϕ ∈ H 0,1(X0,End Eρ
ϕ

0 ), whereµϕ = Pϕ(Ad f ϕ(µ)) and νϕ= Pϕ(Ad f ϕ(ν)).
At the point {E} ∈ N the form Ωi,v is defined by the formula

Ωi,v

(
∂

∂ε(µ)
,

∂

∂ε(ν)

)

=
√−1

2
〈∗[∗µ, ν], Ei ( · , v∗; 1)〉

= √−1
∫∫

F

tr
([µ(z), ν(z)∗]Ei (z, v; 1)

)

dxdy.

It extends to the neighborhood of {E} ∈ N by replacing µ, ν with µϕ, νϕ , and v ∈ Vi

with vϕ = f ϕv ∈ V ϕ
i = ker(Ad ρϕ(Si )− I ). Note that by Lemma 2 we also have

Ωi,v

(
∂

∂ε(µ)
,

∂

∂ε(ν)

)

=
√−1

4
tr(Fi

µν̄v). (4.6)

Lemma 3 The (1, 1)-forms Ωi,v are closed and satisfy the condition Ω i,v=Ωi,v∗ .

Proof To get the equality dΩi,v = 0 it is sufficient to show that

∂

∂ε(µ)
〈∗[∗ν, λ], Ei ( · , v; 1)〉 = ∂

∂ε(ν)
〈∗[∗µ, λ], Ei ( · , v; 1)〉

for all µ, ν, λ ∈ H 0,1(X0,End E0). It can be verified exactly as in Lemma 3 of [16]
using formulas (4.3), (4.4) and the equality

LµEi ( · , v; 1) = ∆−1
0 (∂̄∗ adµ Ei ( · , v; 1)),

which follows from (4.3). To verify the complex conjugation property, we observe
that, since fµν̄(z)∗ = fνµ̄(z), we have (Fi

µν̄)
∗ = Fi

νµ̄, and from the cyclic invariance

of the trace we get tr(Fi
µν̄v) = tr(Fi

µν̄v)
∗ = tr(Fi

νµ̄v
∗). ��

Let u j , j = 1, . . . , kl = ki
l , be an orthonormal basis for the eigenspace of ρ(Si ) in

C
k corresponding to the eigenvalue e2π

√−1αi
l , and put
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v j = u j ⊗ ū j − I/k ∈ End C
k, tr v j = 0.

Since v∗
j = v j , the (1, 1)-forms Ωi,v j are real. Moreover, because

∑kl
j=1 u j ⊗ ū j

represents an orthogonal projection to the eigenspace corresponding to the eigenvalue
e2π

√−1αi
l of ρ(Si ), the (1, 1)-forms

Ωil =
kl∑

j=1

Ωi,v j

do not depend on the choice of the basis {u j }kl
j=1 and are well-defined on the moduli

space N .

4.3 Holomorphic line bundles

Here we realize closed, real (1, 1)-formsΩil as the curvature forms (more precisely, as
the first Chern forms) of certain natural line bundles on the moduli space N . Namely,
for each Pi ∈ S and l = 1, . . . , ri , let λil be the holomorphic line bundle on N whose
fiber over the point {E} ∈ N is the complex line det Wil , where Wil = Fl EPi /Fl+1 EPi

is the complex vector space of dimension dim Wil = kl = ki
l . We introduce a Hermitian

metric ‖·‖il in the line bundle λil as follows. By the Mehta–Seshadri theorem we have
E ∼= Eρ , where ρ is an irreducible admissible representation of the group Γ . As in
the previous section, let u1, . . . , ukl be orthonormal eigenvectors of the unitary matrix

ρ(Si ) corresponding to the eigenvalue e2π
√−1αi

l . Then the Hermitian metric ‖ · ‖il is
defined by the standard Hermitian norm of the vector u = u1 ∧ · · · ∧ ukl ∈ ∧kl C

k ,

‖u‖2
il = det{(u j , ul)}kl

j,m=1 = 1.

Lemma 4 Let c1(λil , ‖ · ‖il) denote the first Chern form of the line bundle λil with
respect to the metric ‖ · ‖il . Then

c1(λil , ‖ · ‖il) = 2

π
Ωil , i = 1, . . . , n, l = 1, . . . , ri .

Proof For µ, ν ∈ H 0,1(X0,End E0) let ϕ = ε1µ+ ε2ν, and put

�µν̄(z) = ∂2

∂ε1∂ε̄2

∣
∣
∣
∣
ε1=ε2=0

(

f ϕ(z)∗ f ϕ(z)
) ∈ C0(X0,End E0).

As in [22], we obtain

∆�µν̄ = − ∗ [∗µ, ν],

so that �µν̄ = − fµν̄ + cI . Normalizing the mapping f ϕ as in Sect. 4.1, we get
tr�µν̄(z0) = 0, so that c = 0. Put
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uϕj = lim
z→xi

f ϕ(z)u j = f ϕ(xi )u j , j = 1, . . . , kl .

Now for uϕ = uϕ1 ∧ · · · ∧ uϕkl
we have

‖uϕ‖2
il = det{( f ϕ(xi )

∗ f ϕ(xi )u j , ul)}kl
j,m=1,

and using the fact that trFi
µν̄ = 0 we derive

∂2

∂ε1∂ε̄2

∣
∣
∣
∣
ε1=ε2=0

log ‖uϕ‖2
il = − lim

z→xi

kl∑

j=1

( fµν̄(z)u j , u j )

= −
kl∑

j=1

tr(Fi
µν̄v j ),

so that the desired statement follows now from (4.6). ��
Remark 4 For the moduli space of punctured Riemann surfaces similar results were
obtained in [18,20]. Here we use the approach of [20].

5 Local index theorems

5.1 The first variation of the Selberg zeta function

Recall (see [17, Chap. 5]) that the Selberg zeta function Z(s, Γ ;χ) for the Fuchsian
group Γ with the unitary representation χ is defined for Re s > 1 as the following
absolutely convergent product

Z(s, Γ ;χ) =
∏

{γ }

∞
∏

k=0

det(I − χ(γ )N (γ )−s−k),

where {γ } runs over the set of all primitive conjugacy classes of hyperbolic elements
of Γ , and N (γ ) > 1 is the norm of the element γ ∈ Γ , i.e., γ is conjugate to the

diagonal matrix
(

N (γ )1/2 0
0 N (γ )−1/2

)

in SL(2,R). The logarithmic derivative of the

Selberg zeta function for Re s > 1 is given by the integral

1

2s − 1

d

ds
log Z(s, Γ ;χ) = 1

2

∫∫

F

∑

γ hyperbolic

tr χ(γ )Qs(z, γ z)
dxdy

y2 , (5.1)

where the sum is taken over all hyperbolic elements inΓ (see, e.g., [17, Theorem 4.3.4,
part 2]). The function Z(s, Γ ;χ) is positive for s ∈ (1,∞) and admits a meromorphic
continuation to the whole s-plane.
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If χ = Ad ρ, where ρ is an admissible irreducible representation, then
Z(s, Γ ; Ad ρ) has a simple zero at s = 1, and as in [16] we define the regularized
determinant of the Laplace operator ∆ in H0,0(X0,End Eρ0 ) by the formula

det∆ = ∂

∂s

∣
∣
∣
∣
s=1

Z(s, Γ,Ad ρ) = lim
s→ 1

1

s − 1
Z(s, Γ,Ad ρ).

As a function of ρ ∈ Hom(Γ,U (k))0/U (k) ∼= N , the determinant det∆ is smooth
and positive. Denote by ∂N and ∂̄N the (1, 0)- and (0, 1)-components of the de Rham
differential on N respectively.

Lemma 5 Let µ ∈ H 0,1(X0,End E0). Then at the point {E} ∈ N

∂N log det∆

(
∂

∂ε(µ)

)

= −√−1
∫

X0

adµ ∧ ψ,

where adµ = [µ, · ] is understood as an element in H 0,1(X0,End End E0), and
ψ ∈ C1,0(X0,End End E0) is given by (2.4).

Proof We prove this lemma starting with the formula

∂

∂ε(µ)
log det∆ = lim

s→1+ Lµ log Z(s, Γ ; Ad ρ),

and repeating the proof of Theorem 1 in [15] (see also Lemma 3 in Sect. 3 in [16])
with obvious adjustments for Z(s, Γ ; Ad ρ).

5.2 Local index theorem in Quillen’s form

Let Ω̃ be the (1, 1)-form on N defined at each point {E} ∈ N by

Ω̃

(
∂

∂ε(µ)
,

∂

∂ε(ν)

)

=
√−1

2

∫

X0

adµ ∧ ad ∗ν, (5.2)

where µ, ν ∈ H 0,1(X0,End E0).

Theorem 1 Let c1(λ, ‖·‖Q) denote the first Chern form of the determinant line bundle
λ = det ind ∂̄ ∼= det T ∗N with respect to Quillen’s metric ‖ · ‖2

Q = ‖ · ‖2(det∆)−1.
Then

c1(λ, ‖ · ‖Q) = − 1

2π2 Ω̃ + δ,

where

δ = − 2

π

n
∑

i=1

ri∑

l,m=1

sgn(αi
l − αi

m)(1 − 2|αi
l − αi

m |)ki
mΩil

is the cuspidal defect.
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Proof We need to prove that

∂̄N ∂N log det∆ = Θ −
√−1

π
Ω̃ − 4

√−1
n

∑

i=1

ri∑

l,m=1

sgn(αi
l − αi

m)

× (1 − 2|αi
l − αi

m |)ki
mΩil ,

where the formsΘ andΩil were introduced in Sects. 4.1 and 4.2 respectively. It repeats
almost verbatim the computation of the second derivative of log det∆ in Theorem 2 of
[22] and uses the variational formulas of Sect. 4.1. The only difference makes a non-
vanishing boundary term that appears after using (4.4) and applying Stokes’ theorem
to the integral

∫

X0
ad L ν̄µ ∧ µ:

∫

X0

ad L ν̄µ ∧ ψ = −
∫

X0

ad fµν̄ ∧ ∂̄ψ + lim
Y→∞

∫

∂FY

ad fµν̄ ∧ ψ.

The first term in this formula is treated exactly as in [22], whereas for the second term
we get

lim
Y→∞

∫

∂FY

ad fµν̄ ∧ ψ = lim
Y→∞

∫

∂FY

tr(( fµν̄(z)⊗ I − I ⊗ f t
µν̄(z))ψ(z))dz

= c1 + · · · + cn,

where ci is the constant term of the Fourier expansion of

tr(( fµν̄(σi z)⊗ I − I ⊗ f t
µν̄(σi z))ψ(σi z))σ

′
i (z)

at the cusp xi , i = 1, . . . , n. From Lemmas 1 and 2, using the unitarity of Ui and the
definition of Ωil , we get

ci = tr((Fi
µν̄ ⊗ I − I ⊗ (Fi

µν̄)
t )Ci )

= −4
ri∑

l,m=1

sgn(αi
l − αi

m)(1 − 2|αi
l − αi

m |)ki
mΩil .

��
Remark 5 By Lemma 4, the cuspidal defect can be rewritten as follows:

δ = −
n

∑

i=1

ri∑

l,m=1

sgn(αi
l − αi

m)(1 − 2|αi
l − αi

m |)ki
mc1(λil , ‖ · ‖il).

Now suppose that the parabolic structure is integral. The elementary formula tr(ad a·
ad b) = 2k tr(ab)− 2 tr a tr b, where a, b ∈ End C

k , leads to the following result.
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Corollary 1 Let c1(λ0, ‖ · ‖Q) denote the first Chern form of the line bundle λ0 �
T ∗N0—the restriction of the determinant line bundle λ to the submanifold N0 ⊂ N .
Then

c1(λ0, ‖ · ‖Q) = − k

π2 Ω0 + δ0,

whereΩ0 and δ0 are the restrictions of the symplectic formΩ and the cuspidal defect
δ to N0 respectively.

5.3 Local index theorem in Atiyah–Singer’s form

Here we assume the existence of the universal endomorphism bundle E → X × N ,
so that E |X×{E} ∼= End E for any point {E} ∈ N . According to [5], a universal bundle
does exist for generic weight systems. The metric hEnd E0 defined fiberwise on the
restriction E0 → X0 × N (see Sect. 2.1) extends to a (pseudo)metric hE on E that
degenerates over the marked points P1, . . . , Pn ∈ X . As in [22], using the variational
formulas from Sect. 4.1, we can explicitly compute the curvature form related to hE ,
and the corresponding Chern character form ch(E , hE ) is well defined as a current on
X × N . As a result, we can reformulate Theorem 1 in the Atiyah–Singer form with a
cuspidal defect (cf. [16]).

Theorem 2 Let c1(λ, ‖·‖Q) denote the first Chern form of the determinant line bundle
λ = det ind ∂̄ ∼= det T ∗N relative to Quillen’s metric ‖ · ‖2

Q = ‖ · ‖2(det∆)−1. Then

c1(λ, ‖ · ‖Q) = π∗(ch2(E , hE ))+ δ,

where ch2(E , hE ) is the (2, 2)-component of the Chern character form of the universal
endomorphism bundle E relative to the metric hE , π∗ : C2,2(X × N ) → C1,1(N )

denotes integration along the fibers of the projection π : X × N → N , and

δ = − 2

π

n
∑

i=1

ri∑

l,m=1

sgn(αi
l − αi

m)(1 − 2|αi
l − αi

m |)ki
mΩil

is the cuspidal defect.

Proof Repeating the argument in [22], it is not difficult to show thatπ∗(ch2(E , hE )) =
− 1

2π2 Ω̃ , and the assertion immediately follows from Theorem 1. ��

5.4 A simple example

Consider stable parabolic bundles of rank 2 and parabolic degree 0 with a single marked
point. The parabolic structure is given by a complete flag C

2 ⊃ L ⊃ {0} at P ∈ X
(where L is a line in C

2) with multiplicities 0 < α1 < α2 < 1. For an integral parabolic
structure we have α1 + α2 = 1, so that α1 = α, α2 = 1 − α, where 0 < α < 1

2 .
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Such a parabolic structure is associated with an admissible SU (2)-representation ρ
of the fundamental group of X\P , where the matrix ρ(S) has eigenvalues e2π

√−1α

and e−2π
√−1α . Without loss of generality we can assume that ρ(S) is diagonal and

the cusp lying over the marked point P is ∞. The cuspidal defect in this case is

δ = −4(1 − 4α)

π
Ω12 = −2(1 − 4α) c1(λ12, ‖ · ‖12),

where λ12 is the line bundle on N with the Hermitian metric ‖·‖12, defined in Sect. 4.3.
In the simplest case of a pointed torus the moduli space N is just a complex

projective line, and λ12 is the tautological line bundle on N ∼= CP1. Since the bundles
λ0 ∼= T ∗

CP1 and λ12 have degrees −2 and −1 respectively, we get

∫

N
c1(λ0, ‖ · ‖Q) = −2 and

∫

N
c1(λ12, ‖ · ‖12) = −1.

By Corollary 1,

c1(λ0, ‖ · ‖Q) = − 2

π2 Ω0 − 2(1 − 4α)c1(λ12, ‖ · ‖12),

so that for the volume of N we have

Vol(N ) =
∫

N
Ω0 = 2π2(1 − 2α). (5.3)

Now let us recall a fascinating formula of Witten for the symplectic volume of the
moduli space of parabolic SU (2)-bundles [19, Formula 3.18]. In our notation it reads

Vol(N ) = 22g−1+nπ4g−4+n
∞
∑

m=1

∏n
i=1 sin(2παi m)

m2g−2+n
,

where g is the genus of the Riemann surface, n is the number of marked points on it,
and αi are the weights at the marked points. For the pointed torus it gives

Vol(N ) = 4π
∞
∑

m=1

sin(2παm)

m
= 2π2(1 − 2α),

in agreement with our formula (5.3). In fact, Theorem 1 suggests an alternative method
of computing symplectic volumes of moduli spaces of parabolic bundles (note that
Witten’ volume computation relies on the famous Verlinde formula).
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