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Abstract: Using Polyakov’s functional integral approach and the Liouville action
functional defined in [ZT87c] and [TT03a], we formulate quantum Liouville theory on
a compact Riemann surface X of genus g > 1. For the partition function 〈X〉 and corre-
lation functions with the stress-energy tensor components 〈∏n

i=1 T (zi )
∏l

k=1 T̄ (w̄k)X〉,
we describe Feynman rules in the background field formalism by expanding correspond-
ing functional integrals around a classical solution, the hyperbolic metric on X . Extend-
ing analysis in [Tak93, Tak94, Tak96a, Tak96b], we define the regularization scheme for
any choice of the global coordinate on X . For the Schottky and quasi-Fuchsian global
coordinates, we rigorously prove that one- and two-point correlation functions satisfy
conformal Ward identities in all orders of the perturbation theory. Obtained results are
interpreted in terms of complex geometry of the projective line bundle Ec = λ

c/2
H over

the moduli space Mg , where c is the central charge and λH is the Hodge line bundle,
and provide the Friedan-Shenker [FS87] complex geometry approach to CFT with the
first non-trivial example besides rational models.
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1. Introduction

Classical Liouville theory is a Euclidean field theory associated with hyperbolic
Riemann surfaces. Complete conformal metrics ds2 on a Riemann surface X are classical
fields of the theory, and the so-called Liouville equation—the equation K (ds2) = −1,
where K (ds2) is a Gaussian curvature, is the corresponding Euler-Lagrange equation.
According to the uniformization theorem, it has a unique solution—the hyperbolic met-
ric on X . The quantized Liouville theory describes “quantum corrections” to hyperbolic
geometry of X by taking into account fluctuations around the hyperbolic metric. In
1981, Polyakov formulated a functional integral approach to bosonic string theory, and
made a fundamental discovery that quantum Liouville theory is a conformal anomaly
for non-critical strings [Pol81]. Thus in order to find correlation functions of vertex
operators of the bosonic string in any dimension D (and not only for D = 26), one
needs to know correlation functions of the Liouville vertex operators Vα(z) = eαϕ(z),
where ds2 = eϕ(z)|dz|2 is the Liouville field—a conformal metric on X . The funda-
mental property that classical fields and equation of motion of the Liouville theory are
conformally invariant, led Belavin, Polyakov and Zamolodchikov to their formulation of
the two-dimensional Conformal Field Theory (CFT) [BPZ84]. Though the problem of
computing correlation functions of the Liouville vertex operators, needed for non-critical
string theory, is still outstanding, in the works of Dorn and Otto [DO94], and of Zamo-
lodchikov and Zamolodchikov [ZZ96] the quantum Liouville theory was formulated as
a non-rational model of CFT with a continuous spectrum of conformal dimensions (see
the review [Tes01] for a complete account and references).

In [Pol82], Polyakov proposed a functional integral representation for correlation
functions of the Liouville vertex operators in the form needed for the non-critical string
theory. This so-called geometric approach to the quantum Liouville theory was formal-
ized and developed in [Tak93, Tak94, Tak96a, Tak96b]. In this formulation, correlation
functions of Liouville vertex operators on the Riemann sphere P

1 are defined by
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〈Vα1(z1) . . . Vαn (zn)〉 =
∫∫∫

C Mα(P1)

e− 1
2π�

Sα(ϕ) Dϕ, (1.1)

where � > 0 plays the role of Planck’s constant, C Mα(P1) is the space of all smooth
conformal metrics eϕ(z)|dz|2 on P

1 \ {z1, . . . , zn} which have conical singularities at the
insertion points

eϕ(z) � 1

|z − zi |2�αi
as z → zi , i = 1, . . . , n, (1.2)

and Sα(ϕ) is the Liouville action functional defined in [Tak96b]. Here �αi ≤ 1 and∑n
i=1 �αi > 2. When �αi = 1, which corresponds to the puncture vertex operator,

asymptotic (1.2) is replaced by eϕ(z) � |z−zi |−2(log |z−zi |)−2. According to [BPZ84],
conformal symmetry of the theory manifests itself through conformal Ward identities
for correlation functions with insertions of components of the stress-energy tensor. The
Ward identity for the (2, 0) component T (ϕ) = 1

�
(ϕzz − 1

2ϕ2
z ) has the form

〈T (z)Xα〉 =
n∑

i=1

(
�αi

(z − zi )2 +
∂zi

z − zi

)

〈Xα〉, (1.3)

where Xα = Vα1(z1) . . . Vαn (zn),

〈T (z)Xα〉 =
∫∫∫

C Mα(P1)

T (ϕ)(z)e− 1
2π�

Sα(ϕ) Dϕ, (1.4)

and �αi = αi (2 − �αi )/2 are conformal dimensions of the vertex operators Vαi . Note
that since 〈Xα〉 and 〈T (z)Xα〉 have been already defined by functional integrals (1.1) and
(1.4), the Ward identity (1.3) actually requires a proof.1 BPZ conformal Ward identities
were generalized to higher genus Riemann surfaces in [EO87].

At the classical level Eq. (1.3) (and a similar equation for compact Riemann surfaces)
represents a non-trivial relation between the accessory parameters of the Fuchsian uni-
formization of the Riemann surface X = P

1 \ {z1, . . . , zn} and the classical Liouville
action—the critical value of the Liouville action functional. It was proved in [ZT87b]
(and in [ZT87c] for the compact case; see also the discussion in [Tak89, Tak92]).

The background field formalism for puncture operators—a perturbative expansion in
� around the classical solution for the partition function and correlation functions with
insertions of the stress-energy tensor, was developed in [Tak93, Tak94]. The results,
summarized in [Tak96a], are the following.

• Rigorous definition of 〈Xα〉 and 〈∏n
i=1 T (zi )

∏l
k=1 T̄ (w̄k)Xα〉 in all orders of the per-

turbation theory, and the proof of the conformal Ward identity (1.3) at the one-loop
level. The latter follows from the formula for the first variation of the Selberg zeta
function Z(s) at s = 2 in [TZ91].

• The proof of conformal Ward identities with two insertions of the stress-energy tensor
at the classical level, based on results in [ZT87b, ZT87c]. Equivalence between the
Ward identity for 〈T (z)T̄ (w̄)Xα〉 at the one-loop level, and the local index theorem
for families of ∂̄-operators on punctured Riemann surfaces, proved in [TZ91].

1 This should be compared with the standard CFT approach to quantum Liouville theory, where Ward
identities are built into the construction of the Hilbert space of states which carries a representation of the
Virasoro algebra.
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• The asymptotic

〈T (z)T (w)Xα〉 = c/2

(z − w)4 + O(|z − w|−2) as w → z,

valid in all orders of the perturbation theory, where

c = 12

�
+ 1

is the central charge of quantum Liouville theory, given by the sum of classical con-
tribution 12

�
and one-loop correction 1.

The present paper is a long overdue sequel to [Tak96a]. We extend the results in
[Tak96a] to all orders of the perturbation theory, with precise formulations and com-
plete proofs. To emphasize the invariant geometric meaning of our results, and avoid any
additional analytic ramifications due to non-compactness, we concentrate on the case of
compact Riemann surfaces. The important case of the Riemann surfaces with punctures
will be considered elsewhere.

Namely, let X be a compact Riemann surface of genus g > 1. We define the partition
function 〈X〉 as the following functional integral

〈X〉 =
∫∫∫

C M (X)

e− 1
2π�

S(ϕ) Dϕ, (1.5)

where C M (X) is the set of all smooth conformal metrics on X , and S is the Liouville
action functional. It is known [TT03a] that the definition of S depends on the choice of a
global coordinate on X—a representation X � �\�, where � is a Kleinian group with
an invariant component �. For our purposes it is sufficient to consider the case when �

is either a Schottky group, or a quasi-Fuchsian group. Corresponding action functionals
were defined in [ZT87c] and [TT03a] respectively.

A comparison with (1.1) shows that 〈X〉 can be interpreted as a “correlation func-
tion of handle operators”. Ultimately, for every � > 0 we would like to define 〈X〉 as
a function on the corresponding Schottky space Sg , or Teichmüller space Tg , which
parameterizes marked Riemann surfaces of genus g > 1. However, we can only define
〈X〉 perturbatively as a “formal function”—a formal power series in � with coefficients
being smooth functions on Sg or Tg . This is done in the background field formalism by
considering the perturbation expansion of the functional integral (1.5) around a classical
solution. Corresponding UV-divergencies, following [Tak93], are regularized by using
a reparametrization-invariant definition of the propagator at coincident points.2 In this
regularization scheme only the classical contribution to the partition function 〈X〉 —a
term of order �

−1—depends on the choice of a global coordinate on X . All other terms
in the formal Taylor series expansion of 〈X〉 are well-defined functions on the moduli
space Mg of compact Riemann surfaces of genus g > 1.

Multi-point correlation functions 〈∏n
i=1 T (zi )

∏l
k=1 T̄ (w̄k)X〉 with insertions of the

stress-energy tensor are defined in a similar way. The UV-divergence arising from a
tadpole graph is regularized as in [Tak93, Tak96a], whereas divergencies arising from
graphs with self-loops are regularized in a way similar to the regularization of 〈X〉.
In this definition, only classical and one-loop contributions to one-point correlation

2 In the non-compact case one should also regularize IR-divergencies at the punctures.
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functions depend non-trivially on the choice of a global coordinate on X . All other
higher loop contributions to 〈T (z)X〉 and 〈T̄ (z̄)X〉 are correspondingly (2, 0) and (0, 2)

tensors on X . Similarly, all terms in the irreducible multi-point correlation functions
〈〈∏n

i=1 T (zi )
∏l

k=1 T̄ (w̄k)X〉〉 with n + l ≥ 2 are tensors of type (2, 0) and (0, 2) on X
in z1, . . . , zn and w1, . . . , wl , which are symmetric with respect to these two groups of
variables.

Our main results are given in Theorems 6.1, 7.1 and 8.1. Succinctly, partition and
correlation functions of the quantum Liouville theory, defined in Sect. 3, satisfy the
conformal Ward identities in all orders of the perturbation theory. As a corollary, the
quantum Liouville theory in the background field formalism is a conformal field theory
with the central charge c = 12

�
+ 1.

To present the first result (we refer to Theorem 6.1 for the invariant geometric for-
mulation), let X � �\� be a Riemann surface of genus g > 1 with a Schottky global
coordinate, µ be a harmonic Beltrami differential for �, and let Xεµ � �εµ\�εµ be the
corresponding holomorphic family of Riemann surfaces (see Sect. 4). Then

∂

∂ε

∣
∣
∣
∣
ε=0

log〈Xεµ〉 = − 1

π

∫∫

F

(
〈〈T (z)X〉〉 − 1

12 S(J−1)(z)
)

µ(z)d2z, (1.6)

where F is a fundamental domain for � in �, J : U → � is the covering map
of � by the upper half-plane U, and S( f ) stands for the Schwarzian derivative of a
holomorphic function f . Equation (1.6) is a precise analog of the BPZ conformal Ward
identity (1.3) for a compact Riemann surface X . We emphasize that both sides of (1.6)
are defined by corresponding functional integrals, and the equation is valid in all orders
of the perturbation expansion.

To state the second result (see Theorem 7.1 for the invariant formulation), let G(z, w)

be the propagator of the quantum Liouville theory—the kernel ofa resolvent opera-
tor 1

2 (�0 + 1
2 )−1, where �0 is the Laplace operator of the hyperbolic metric ds2 =

eϕcl (z)|dz|2 on X , acting on functions, and let R(z, w) = 4e−ϕcl (z)∂z̄DwG(z, w), where
Dw = ∂2

w −(∂wϕcl)(w)∂w (see Sect. 5). Then in all orders of the perturbation expansion,

∂2

∂ε1∂ε2

∣
∣
∣
∣
ε1=ε2=0

log〈Xε1µ+ε2ν〉

= 1

π2

∫∫

F

∫∫

F

(〈〈T (z)T (w)X〉〉 − 6
�

K (z, w) − π
6 DzDwG(z, w)

−π(2∂z R(z, w) + R(z, w)∂z)(〈〈T (z)X〉〉 − 1
12S(J−1)(z))

)
µ(z)ν(w)d2zd2w

= 1

π2

∫∫

F

∫∫

F

(〈〈T (z)T (w)X〉〉 − 6
�

K (z, w) − π
6 DzDwG(z, w))µ(z)ν(w)d2zd2w.

(1.7)

Here µ, ν are harmonic Beltrami differentials for �, and

K (z, w) =
∑

γ∈�

γ ′(w)2

(z − γw)4 .
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It follows from (1.7) that 〈〈T (z)T (w)X〉〉 is a meromorphic quadratic differential for �

in z and w, with the only fourth order pole at z = w, and that for w → z,

〈〈T (z)T (w)X〉〉 = c/2

(z − w)4 +

(
2

(z − w)2 − ∂z

z − w

)

〈〈T (z)X〉〉
+ regular terms as w → z, (1.8)

where c = 12
�

+1. Equation (1.7) is a precise analog of the BPZ conformal Ward identity
with two insertions of the (2, 0) component of the stress-energy tensor [BPZ84]. This
proves that the quantum Liouville theory in the background field formalism is a CFT
model with the central charge c.

Finally, the third result (see Theorem 8.1 and Corollary 8.2 for invariant formulations)
can be stated as

∂2

∂ε1∂ε̄2

∣
∣
∣
∣
ε1=ε2=0

log〈Xε1µ+ε2ν〉

= 1

π2

∫∫

F

∫∫

F

(〈〈T (z)T̄ (w̄)X〉〉 − π
6 DzDw̄G(z, w)

)
µ(z)ν(w)d2zd2w.

(1.9)

Equation (1.9), which is valid in all orders of the perturbation expansion, is a conformal
Ward identity with single insertions of (2, 0) and (0, 2) components of the stress-energy
tensor (the case not considered in [BPZ84]). In particular, 〈〈T (z)T̄ (w̄)X〉〉 is a holomor-
phic (2, 0) tensor on X in variable z and anti-holomorphic (0, 2) tensor in variable w. The
classical contribution to 〈〈T (z)T̄ (w̄)X〉〉 is a multiple of the Weil-Petersson metric on
Mg , and (1.9) at the classical level states that the classical Liouville action is its Kähler
potential [ZT87c]. At the one-loop level, as we show in Appendix A, (1.9) is another
way of presenting the Belavin-Knizhnik theorem [BK86]. Finally, in Remark 9.1 we
explain the sense in which the two-point correlation function 〈〈T (z)T̄ (w̄)X〉〉 defines a
family of Kähler metrics on Mg with Kähler potential π2(log〈X〉 + �

12 log〈X〉cl).
For the reader’s convenience, we make the paper relatively self-contained by pre-

senting the background material necessary for the computations. To keep the length of
the paper under control, we refer to [ZT87c, TT03a] for the construction of the Liou-
ville action functional, and to [Tak92, Tak93, Tak94, Tak96a, Tak96b] for the history
of the geometric approach and discussion of conformal Ward identities at classical and
one-loop levels.

Here is a more detailed content of the paper. Section 2 is devoted to the classical
Liouville theory. We briefly discuss Schottky, Fuchsian and quasi-Fuchsian uniformi-
zations of the compact Riemann surfaces, introduce the Liouville action functional and
the stress-energy tensor, and describe their main properties. In Sect. 3, we formulate the
quantum Liouville theory in the background field formalism. Specifically, in Sect. 3.1
we describe the Feynman rules and the regularization scheme for the perturbative expan-
sion of the partition function 〈X〉, and in Sect. 3.2 we describe the Feynman rules and
the regularization scheme for multi-point correlation functions with insertions of the
stress-energy tensor.

Section 4 is a “crash course” on deformation theory of compact Riemann surfaces.
In Sect. 4.1 we define the deformation space D(�), where � is either a Schottky or a
quasi-Fuchsian group, and describe a complex manifold structure on D(�). The Schottky
space Sg is a deformation space D(�), where � is a Schottky group, and the Teichmüller
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space Tg is a complex-analytic submanifold of D(�), where � is a Fuchsian group. In
Sect. 4.2 we define the formal function on D(�) as a formal power series in � whose
coefficients are smooth functions on D(�), and show that the partition function 〈X〉 and
the free energy FX = − log〈X〉 give rise to formal functions on Sg and Tg . In Sect. 4.3
we collect necessary variational formulas, from classical results of Ahlfors [Ahl61] and
Wolpert [Wol86] to the formulas in [ZT87c] and [TT03a]. To the reader without prior
knowledge of the deformation theory we recommend classical works [Ahl87, Ber70,
Ahl61], briefly summarized in [TT03a].

Section 5, where we study the propagator G(P, Q) of the quantum Liouville theory,
is crucial for our approach. The propagator G(P, Q) is defined as the integral kernel of
the resolvent operator 1

2 (�0 + 1
2 )−1, where �0 is the Laplace operator of the hyperbolic

metric on X acting on functions. In Sect. 5.1, using the Fuchsian global coordinate z on
X � �\U, we represent G(z, w) as the average over a Fuchsian group � of the propaga-
tor G(z, w) on the upper half-plane U (method of images), which is given by an explicit
formula. We determine the short-distance behavior of G(z, w), and define a regulariza-
tion of G(z, w) and of ∂z∂wG(z, w) at w = z by subtracting corresponding contributions
of the identity element of �. Thus defined G(z, z) gives rise to a smooth function on
X , whereas the corresponding H(z) = ∂z∂zG(z, z) is a smooth quadratic differential
for �, which behaves like “1/12π of the projective connection” under the changes of
global coordinates. We present an explicit formula P(z, w) = 4DzDw̄G(z, w) for the
integral kernel of the projection operator P onto the subspace of holomorphic quadratic
differentials on X . Though just being another form of the Ahlfors classical result, it plays
a fundamental role in the computations in Sects. 6–8. In Sect. 5.2 we prove variational
formulas for the propagator and its derivatives, collected in Lemmas 5.4 and 5.6.

In Sect. 6, we prove the conformal Ward identity with single insertion of the stress-
energy tensor—Theorem 6.1, by computing ∂ log〈X〉 in all orders of the perturbative
expansion. As we have already mentioned, at the classical level the corresponding result
was proved in [ZT87c] and [TT03a]. In Sect. 6.2, we compute ∂ log〈X〉 at the one-loop
level, and show that the result coincides with the representation of 〈〈T (z)X〉〉1−loop as a
sum of Feynman graphs. The computation uses the formula for ∂ log Z(2) from [TZ91,
Sect. 3], the explicit form of the kernel P(z, w), and the Stokes’ theorem. For higher loop
terms, the statement of Theorem 6.1 is valid “graph by graph”. The actual computation
splits into three cases, analyzed in Sect. 6.3 by repeated use of the Stokes’ theorem and
careful analysis of boundary contributions.

In Sects. 7 and 8 we prove Theorems 7.1 and 8.1—conformal Ward identities with
two insertions of the stress-energy tensor, which express the two-point correlation func-
tions 〈〈T (z)T (w)X〉〉 and 〈〈T (z)T̄ (w̄)X〉〉 in terms of the one-point correlation func-
tions 〈〈T (z)X〉〉 and 〈〈T̄ (z̄)X〉〉. By Theorem 6.1, the correlation function 〈〈T (z)X〉〉 is
a holomorphic quadratic differential for � which corresponds to an exact (1, 0)-form
on the Schottky space Sg , and Theorem 8.1 states that the (1, 1)-form ∂̄〈〈T (z)X〉〉 on
Sg corresponds to − 1

π
〈〈T (z)T̄ (w̄)X〉〉, which is a holomorphic quadratic differential

for � in variable z and an anti-holomorphic quadratic differential for � in variable w.
On the other hand, the two-point correlation function 〈〈T (z)T (w)X〉〉 is symmetric in
z and w, so it can not be represented by a (2, 0)-form on Sg . Theorem 7.1 expresses
〈〈T (z)T (w)X〉〉 as an application of a “symmetrized (1, 0)-differential” ∂s to 〈〈T (z)X〉〉.
It is defined in Sect. 4.3 as follows: if θ = ∑d

i=1 ai dti is a (1, 0)-form on Sg , then

∂sθ = ∑d
i, j=1

∂a j
∂ti

dti ⊗s dt j , where ⊗s stands for the symmetrized tensor product.
This explains why Theorem 7.1, which is a statement about second partial derivatives
of a certain formal function on Sg rather than a statement about differential forms,
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looks complicated when compared with Theorem 8.1. The actual proof of Theorems 7.1
and 8.1 is based on the computation of ∂〈〈T (z)X〉〉 and ∂̄〈〈T (z)X〉〉 in all orders of the
perturbative expansion. Again, at the classical level, the corresponding result was proved
in [ZT87c] and [TT03a], and the major computation is at the one-loop level. It is based
on Theorem 6.1, variational formulas in Sect. 5.2, the explicit formula for the kernel
P(z, w), and repeated application of the Stokes’ theorem.

In Sect. 9 we show that Theorem 7.1 at w → z agrees precisely with the BPZ confor-
mal Ward identity with two insertions of the (2, 0) component of the stress-energy tensor,
where c = 12

�
+ 1. This proves that the quantum Liouville theory in the background field

formalism is conformal with the central charge c. Using one result of Zograf [Zog89],
we interpret Theorems 6.1, 7.1 and 8.1 in terms of complex geometry of the projective
line bundle Ec = λ

c/2
H over the moduli space Mg , where λH is the Hodge line bundle.

This agrees with (and clarifies) the Friedan-Shenker “modular geometry” approach to
conformal field theory [FS87].

We conclude the paper with two appendices. In Appendix A, we show that the one-
loop contribution to Theorem 8.1 gives the Belavin-Knizhnik theorem [BK86] for the
case of Laplace operators acting on quadratic differentials on Riemann surfaces. In
Appendix B we show how to obtain the stress-energy tensor from the Liouville action
functional for the Schottky global coordinate. The corresponding result—Lemma B.1—
follows from the proof of Theorem 1 in [ZT87c].

2. Classical Liouville Theory

Let X be a compact Riemann surface of genus g > 1, and let {Uα}α∈A be a complex-
analytic atlas on X with charts Uα , local coordinates zα : Uα → C, and transition
functions fαβ : zβ(Uα ∩ Uβ) → zα(Uα ∩ Uβ). Denote by C M (X) the space (actually
a cone) of smooth conformal metrics on X . Every metric ds2 ∈ C M (X) is a collection{
eϕα |dzα|2}

α∈A, where the functions ϕα ∈ C∞(zα(Uα), R) satisfy

ϕα ◦ fαβ + log | f ′
αβ |2 = ϕβ on zβ(Uα ∩ Uβ). (2.1)

According to the uniformization theorem, X has a unique conformal metric of the con-
stant Gaussian curvature −1, called hyperbolic metric. The corresponding functions ϕα

on zα(Uα) satisfy the so-called Liouville equation,

∂2ϕα

∂zα∂ z̄α

= 1

2
eϕα . (2.2)

The Lagrangian formulation of the classical Liouville field theory is based on the
action functional S : C M (X) → R, characterized by the property that its unique
critical point is the hyperbolic metric on X , and the corresponding Euler-Lagrange
equation is the Liouville equation. Classical Liouville field theory is conformally invari-
ant. This fundamental property is a manifestation of the fact that the “Liouville field”
eϕ = {eϕα }α∈A, as it follows from the transformation law (2.1), is a (1, 1)-tensor on
X . For the two-dimensional classical field theory conformal invariance implies that the
corresponding stress-energy tensor is traceless (see [BPZ84]). In this section we recall
the definition of the action functional for the Liouville theory, introduce the stress-energy
tensor and describe its properties. In Appendix B we show how to derive the stress-energy
tensor from the action functional.
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2.1. Liouville action functional. It is well-known (see [ZT87c] and the discussion in
[TT03a]) that a rigorous definition of the Liouville action functional on a genus g > 1
Riemann surface is a nontrivial issue. This is due to the fact that the Liouville field eϕ is
a conformal metric on X rather than a function, so that a naive Dirichlet type functional
is not well-defined as an integral of a (1, 1)-form over X when g > 1. In [ZT87c], this
problem was solved by using a global coordinate on X given by the Schottky unifor-
mization. In [TT03a], we were able to tackle this problem when a Riemann surface X
is equipped with a global coordinate provided by the uniformization of X by a rather
general class of Kleinian groups. Here by a global coordinate on a Riemann surface
X we understand the complex-analytic covering J : � → X of X by a plane domain
� ⊂ Ĉ = C ∪ {∞}, such that the corresponding group of deck transformations � is a
Kleinian group with the invariant component �. For the purposes of this paper, it will be
sufficient to consider global coordinates on X given by the Schottky and quasi-Fuchsian
uniformizations.

2.1.1. Schottky uniformization. Marked Riemann surface is a compact Riemann surface
X of genus g > 1 equipped with a canonical system of generators a1, . . . , ag, b1, . . . , bg
of the fundamental group π1(X, x0) (defined up to an inner automorphism). Schottky
uniformization of a marked compact Riemann surface X of genus g is a complex-analytic
isomorphism X � �\�, where � is a marked Schottky group—a strictly loxodromic
freely generated Kleinian group with a choice of free generators γ1, . . . , γg ∈ PSL(2, C)

and with the domain of discontinuity �. As an abstract group, � � π1(X, x0)/N , where
N is the smallest normal subgroup in π1(X, x0) containing a1, . . . , ag , and marked gen-
erators γ1, . . . , γg correspond to the cosets b1N , . . . , bgN . The holomorphic covering
map JS : � → X provides a marked Riemann surface X with the Schottky global coor-
dinate. It is always assumed that � is normalized, i.e., the attracting and repelling fixed
points of γ1 are 0 and ∞, and the attracting fixed point of γ2 is 1. The space C M (X)

is identified with the affine subspace of C∞(�, R) consisting of functions ϕ satisfying
condition

ϕ ◦ γ + log |γ ′|2 = ϕ, γ ∈ �. (2.3)

According to [ZT87c] (see also [TT03a] for the cohomological interpretation), the Liou-
ville action functional S : C M (X) → R is defined by the following formula,

S(ϕ) = i

2

∫∫

F

ω[ϕ] +
i

2

g∑

k=2

∮

Ck

θ
γ −1

k
[ϕ] + 4π

g∑

k=2

log |c(γk)|2. (2.4)

Here

ω[ϕ] =
(
|ϕz |2 + eϕ

)
dz ∧ dz̄,

θγ −1 [ϕ] =
(

ϕ − 1

2
log |γ ′|2

)(
γ ′′

γ ′ dz − γ ′′

γ ′ dz̄

)

,

where the subscript z stands for the partial derivative, c(γ ) = c for γ = ( a b
c d ),

and F ⊂ � is a fundamental domain for the marked Schottky group �—a region
bounded by 2g non-intersecting smooth Jordan curves C1, C ′

1, . . . , Cg, C ′
g , satisfying

C ′
k = −γk(Ck), k = 1, . . . , g.
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The Liouville action functional satisfies the property

S(ϕ + χ) − S(ϕ) =
∫∫

X

(e−ϕ |χz|2 + eχ + Kχ − 1)eϕd2z, (2.5)

for all ds2 = eϕ |dz|2 ∈ C M (X) and χ ∈ C∞(X, R), where K = −2e−ϕϕzz̄ is the
Gaussian curvature of the metric ds2, and eϕd2z = eϕdx ∧ dy, z = x + iy, is the corre-
sponding area form on X (see [ZT87c] and [TT03a, Lemma 2.1]). It follows from (2.5)
that S has a unique non-degenerate critical point given by the hyperbolic metric on X .
We will denote the corresponding solution of the Liouville equation by ϕcl and, using the
physics terminology, will call the corresponding critical value of S the classical action
Scl . We have for χ ∈ C∞(X, R),

S(ϕcl + χ) − Scl =
∫∫

X

(e−ϕcl |χz|2 + eχ − χ − 1)eϕcl d2z. (2.6)

The classical action Scl for varying Riemann surfaces defines a function on the Scho-
ttky space Sg , and −Scl is a Kähler potential for the Weil-Petersson metric on Sg
[ZT87c].

2.1.2. Fuchsian and quasi-Fuchsian uniformizations. The Fuchsian uniformization of
a compact Riemann surface X of genus g > 1 is a complex-analytic isomorphism
X � �\U, where � is a torsion-free, strictly hyperbolic Fuchsian group, and U is the
upper half-plane. Equivalently, the Fuchsian uniformization is a holomorphic cover-
ing JF : U → X , with the group of deck transformations � � π1(X, x0). It equips
the Riemann surface X with the Fuchsian global coordinate, and the space C M (X)

is identified with the affine subspace of C∞(U, R) consisting of functions ϕ satisfying
condition (2.3).

The Liouville action functional S : C M (X) → R is defined explicitly by the for-
mula similar to (2.4). It is based on the homological algebra machinery associated with
the �-action on U, developed in [AT97], and we refer to [TT03a] for the details. As in the
Schottky case, the action functional S has a unique non-degenerate critical point given
by the hyperbolic metric on X , and satisfies property (2.6). It is an easy computation
(see [TT03a, Corollary 2.1]) that Scl = 4π(2g − 2)—twice the hyperbolic area of X .

To describe the quasi-Fuchsian uniformization of X , fix a Riemann surface Y of the
same genus as X but with the opposite orientation. According to the Bers’ simultaneous
uniformization theorem, there exists a quasi-Fuchsian group � with the domain of dis-
continuity � ⊂ Ĉ = C ∪ {∞}, such that X � Y � �\�. The group � is unique up
to a conjugation in PSL(2, C) if X and Y are marked Riemann surfaces, and domain
� consists of two disjoint components �1 and �2, which cover the Riemann surfaces
X and Y respectively. The covering JQF : �1 → X defines a quasi-Fuchsian global
coordinate on X (which depends on Y ).

The definition of the Liouville action functional on the space C M (X � Y ) of con-
formal metrics on X � Y is a generalization of the Fuchsian case. We refer to [TT03a]
for the explicit representation and details. Here we just emphasize that the action func-
tional on C M (X � Y ) satisfies property (2.5) and has a unique non-degenerate critical
point, given by the hyperbolic metric on X � Y . Moreover, the choice of the hyperbolic
metric on Y defines the embedding C M (X) ↪→ C M (X �Y ), and the restriction of the
action functional to C M (X) is the Liouiville action functional S for the quasi-Fuchsian
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global coordinate on X , which satisfies property (2.6). Corresponding classical action
Scl depends non-trivially on X , and for varying X (and fixed Y ) defines a function on
the Teichmüller space Tg of marked compact Riemann surfaces of genus g > 1. It is
proved in [TT03a] that the function −Scl is a Kähler potential for the Weil-Petersson
metric on Tg .

2.2. The stress-energy tensor. The stress-energy tensor is associated with local defor-
mations of classical fields—conformal metrics on X , and is defined by corresponding
variational derivatives of the action functional (see Appendix B for details). For the
classical Liouville theory, its (2, 0) and (0, 2) components are given by

T (ϕ) = ϕzz − 1

2
ϕ2

z and T̄ (ϕ) = T (ϕ) = ϕz̄ z̄ − 1

2
ϕ2

z̄ .

Here ϕ is a Liouville field—a function ϕ ∈ C∞(�, R) satisfying transformation law
(2.3). It follows from (2.3) that the function T (z) = T (ϕ)(z) on � satisfies

T ◦ γ (γ ′)2 = T, γ ∈ �,

i.e., is a quadratic differential for �. Corresponding classical stress-energy tensor Tcl =
T (ϕcl) satisfies the “conservation law”

∂z̄ Tcl = 0,

i.e., is a holomorphic quadratic differential for �. This property expresses the fact that
the stress-energy tensor for the classical Liouville theory is traceless. The same result
holds for Fuchsian and quasi-Fuchsian global coordinates as well and, in particular, for
the Fuchsian case Tcl = 0. In this form the stress-energy tensor T for the Liouville
theory was introduced by Poincaré [Poi98] more than a hundred years ago in his proof
of the uniformization theorem for Riemann surfaces which uses the Liouville equation.

The stress-energy tensor T has the following geometric interpretation. For every
ds2 = eϕ |dz|2 = {eϕα |dzα|2}α∈A ∈ C M (X) define the following functions on zα(Uα),

Tα(ϕ) = ∂2
zα

ϕα − 1
2 (∂zαϕα)2 and T̄α(ϕ) = ∂̄2

zα
ϕα − 1

2 (∂̄zαϕα)2. (2.7)

It follows from (2.1) that on every zβ(Uα ∩ Uβ),

Tβ = Tα ◦ fαβ ( f ′
αβ)2 + S( fαβ), (2.8)

where

S( f ) = f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

is the Schwarzian derivative of a holomorphic function f . By definition, collection
T (ϕ) = {Tα(ϕ)}α∈A satisfying (2.8) is a non-holomorphic projective connection on X ,
and it follows from the Liouville equation that Tcl is a holomorphic projective connec-
tion. Since the hyperbolic metric eϕcl |dz|2 is a push-forward of the Poincaré metric on
U by the covering map JF : U → X , a simple computation gives Tcl = {Szα (J−1

F )}α∈A.
Using the property S(γ ) = 0 for all γ ∈ PSL(2, C), and the Caley identity

S( f ◦ g) = S( f ) ◦ g (g′)2 + S(g),
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it is easy to verify directly that Szα (J−1
F ) are well-defined functions on zα(Uα), which

satisfy (2.8). Slightly abusing notations, we will write Tcl = S(J−1
F ).

Let zK be a global coordinate on X given by the covering JK : �K → X , and let
eϕK |dzK |2 = J ∗

K (ds2) be the pull-back of ds2 = eϕ |dz|2 ∈ C M (X) by JK . From (2.7)
we obtain

T (ϕ) = T (ϕK ) ◦ J−1
K (J−1

K )2
z + S(J−1

K ), (2.9)

where z is a local coordinate on X . Thus the push-forward to X of the quadratic differen-
tial T (ϕK ) on �K is not a quadratic differential on X , but a projective connection. The
stress-energy tensor also behaves like a projective connection under changes of global
coordinates. Namely, consider the following commutative diagram

U
J−−−−→ �

JF

⏐
⏐
�

⏐
⏐
�JS

X
id−−−−→ X

where J = J−1
S ◦JF describes the relation between Fuchsian and Schottky global coordi-

nates. Denoting by eϕF |dzF |2 and eϕS |dzS|2 the pull-backs of ds2 = eϕ |dz|2 ∈ C M (X)

by the mappings JF and JS respectively, we obtain

T (ϕS) = T (ϕF ) ◦ J−1 (J−1
z )2 + S(J−1). (2.10)

In particular, Tcl = S(J−1). The same formula (2.10) holds if we replace JS by a cover-
ing JK : �K → X associated with any global coordinate zK on X , e.g., by JK = JQF .

For every χ ∈ C∞(X) set χα = χ ◦ z−1
α and let qα = (∂zαχα)2 ∈ C∞(zα(Uα)). On

every zβ(Uα ∩ Uβ) these functions satisfy

qβ = qα ◦ fαβ ( f ′
αβ)2,

so that the collection q = {qα}α∈A is a quadratic differential on X . If z is a local coordi-
nate on X , then q = χ2

z . Now let Dα be the following second order differential operator
acting on functions on zα(Uα),

Dα = eϕcl ◦ ∂zα ◦ e−ϕcl ◦ ∂zα = ∂2
zα

− (∂zαϕcl)∂zα .

It follows from (2.1) that for every χ ∈ C∞(X) the collection Dχ = {Dαχα}α∈A is also
a quadratic differential3 on X . If z is a local coordinate on X , then

Dzχ = eϕcl (e−ϕcl χz)z = χzz − (∂zϕcl)χz .

For every eϕ |dz|2 ∈ C M (X) setting ϕ = ϕcl + χ , where χ ∈ C∞(X, R), we get

T (ϕ) = Tcl + Dzχ − 1
2χ2

z . (2.11)

Quadratic differentials Dzχ − 1
2χ2

z for χ ∈ C∞(X, R) describe “fluctuations” around
the classical stress-energy tensor Tcl .

3 This is true for every ϕ satisfying (2.1).
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3. Quantum Liouville Theory

Here we formulate quantum Liouville theory using the Feynman functional integral
formalism. The space CM (X) of conformal metrics on X is an infinite-dimensional
Fréchet manifold with a natural Riemannian metric defined by

‖δϕ‖2 =
∫∫

X

|δϕ|2eϕd2z, δϕ ∈ TϕCM (X) � C∞(X, R).

Assuming that the metric ‖ · ‖2 gives rise to the “volume element” Dϕ and choosing a
global coordinate on X (Schottky, or quasi-Fuchsian), we define the partition function
〈X〉—the “expectation value” of the Riemann surface X , by the following functional
integral

〈X〉 =
∫∫∫

C M (X)

e− 1
2π�

S(ϕ) Dϕ. (3.1)

Here the dimensionless parameter � > 0 plays the role of the Planck constant. For vary-
ing X the partition function 〈X〉 gives rise to a real-valued function on the corresponding
deformation space, Schottky space Sg , or Teichmüller space Tg , defined in Sect. 4.1.
The correlation functions of multi-local fields O—functionals on CM (X) which depend
on the values of ϕ at finitely many points on X , are defined by

〈OX〉 =
∫∫∫

C M (X)

O(ϕ)e− 1
2π�

S(ϕ) Dϕ. (3.2)

For O = ∏k
i=1 T (ϕ)(zi )

∏l
j=1 T̄ (ϕ)(w̄ j ), where z is a global coordinate on X , we get

multi-point correlation functions with insertions of the stress-energy tensor. Correlation
functions 〈∏k

i=1 T (ϕ)(zi )
∏l

j=1 T̄ (ϕ)(w̄ j )X〉 are tensors of type (2, 0) in z1, . . . , zk ,
and tensors of type (0, 2) in w1, . . . , wl , and are symmetric with respect to these two
groups of variables.

Here we do not attempt to give a rigorous mathematical definition of functional inte-
grals (3.1) and (3.2).4 Instead, we define (3.1) and (3.2) perturbatively using background
field formalism —the expansion around the critical point of the action, i.e., around the
classical solution ϕcl . The result is a formal power series in � with coefficients given by
the Feynman rules. The combinatorics of the perturbative expansion in QFT is well-estab-
lished (see, e.g., [Ram90, Wit99] and [Kaz99] for mathematically oriented exposition).
Here we describe the formal power series in � for partition and correlation functions,
and give a rigorous regularization scheme for the coefficients of these series.

3.1. Feynman rules for the partition function. Let �0 be the Laplace operator of the
hyperbolic metric acting on functions on X ,

�0 = −e−ϕcl
∂2

∂zα∂ z̄α

on zα(Uα).

4 This would require rigorous definition of the probability measure on the space of distributions on C M (X),
similar to what has been done in constructive quantum field theory in two dimensions [Sim74, GJ87].
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The Laplacian �0 on a compact Riemann surface X is a positive, elliptic operator. Let

G = 1
2 (�0 + 1

2 )−1

be one-half of the resolvent of �0 at the point − 1
2 . It is well-known that G is an inte-

gral operator with a point-wise positive kernel G(P, Q), which is a smooth function
on X × X , except for the diagonal P = Q, where it has a logarithmic singularity. The
function G(P, Q) is called the propagator of the quantum Liouville theory. We describe
its properties in Sect. 5.

The perturbative expansion of Feynman integrals is based on Wick’s theorem—the
following formula for Gaussian integrals,

∫∫∫

C∞(X,R)

χ(P1) . . . χ(Pn)e
− 1

2
∫∫

X
χ(�0+ 1

2 )χ eϕcl d2z
Dχ

=
⎧
⎨

⎩

0, if n is odd,
D(
n
2

)
!
∑

σ∈Sn
G(Pσ(1), Pσ(2)) . . . G(Pσ(n−1), Pσ(n)), if n is even.

(3.3)

Here P1, . . . , Pn are distinct points on X , D−2 = det(�0 + 1
2 ) is the zeta-function reg-

ularized determinant of �0 + 1
2 , and Sn is the permutation group on n elements. The

integration measure Dχ is defined as the volume form of the Riemannian metric

‖χ‖2 =
∫∫

X

|χ |2eϕcl d2z

on C∞(X, R). Effectively, formula (3.3) is a definition of the Gaussian measure Dχ

(see, e.g., [GJ87]).
To use (3.3), we expand ϕ around the critical point ϕcl ,

ϕ = ϕcl +
√

π� χ,

where χ ∈ C∞(X, R). By (2.6) we have

S(ϕcl + χ) = Scl + π�

∫∫

X

χ(�0 + 1
2 )χeϕcl d2z +

∞∑

n=3

(
√

π�)n

n!
∫∫

X

χneϕcl d2z.

Substituting this expansion into (3.1) and using Dϕ = Dχ (which may be considered
as a perturbative definition of Dϕ), we obtain

〈X〉 = e− 1
2π�

Scl
∑

m

cm

∫∫∫

C∞(X,R)

∞∏

n=1

⎛

⎝
∫∫

X

χneϕcl d2z

⎞

⎠

mn

e−‖χ‖2
2Dχ, (3.4)

where

‖χ‖2
2 = 1

2

∫∫

X

χ(�0 + 1
2 )χ eϕcl d2z
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is essentially a Sobolev norm square of a function χ . The summation in (3.4) goes over
all multi-indices m = (m1, m2, . . . ), such that mn ≥ 0, m1 = m2 = 0, mn = 0 for
n > N for some N > 0, and

cm = (π�)
|m̃|
2

(−2)|m|m!nm! ,

where

|m| =
∞∑

n=1

mn, |m̃| =
∞∑

n=1

(n − 2)mn,

m! =
∞∏

n=1

mn !, nm! =
∞∏

n=1

(n!)mn .

Using (3.3) and standard combinatorics of functional integration (see, e.g, [Kaz99,
Wit99]), it is easy to convert (3.4) into the following sum over Feynman diagrams,

〈X〉 = De− 1
2π�

Scl

⎛

⎝1 +
∑

ϒ∈G≥3

(−1)|V (ϒ)|(2π�)−χ(ϒ) Wϒ(X)

|Autϒ |

⎞

⎠ . (3.5)

Here G≥3 is a set of graphs ϒ with all vertices of valency ≥ 3. For ϒ ∈ G≥3 V (ϒ)

and E(ϒ) are, respectively, the set of vertices5 and the set of edges of a graph ϒ ,
and |V (ϒ)| = #V (ϒ), |E(ϒ)| = #E(ϒ). Also, |Autϒ | is the order of the group of
automorphisms of ϒ , and

χ(ϒ) = |V (ϒ)| − |E(ϒ)| = m − |L(ϒ)|
is the Euler characteristic of ϒ , where |L(ϒ)| is the number of loops of ϒ , and m is the
number of connected components of ϒ . The weights Wϒ(X) are given by the following
formula,

Wϒ(X) =
∫

· · ·
∫

X V

H(P1, . . . , PV )

V∏

k=1

d Pk . (3.6)

Here V = |V (ϒ)|, d Pk = eϕcl (zk )d2zk is the area form of the hyperbolic metric on the
kth factor in X V = X × · · · × X︸ ︷︷ ︸

V times

, and

H(P1, . . . , PV ) =
∏

e∈E(ϒ)

G
(
Pv0(e), Pv1(e)

)
, (3.7)

where ∂e = {v0(e), v1(e)} ⊂ V (ϒ) are the endpoints of the edge e ∈ E(ϒ), and
G(P, Q) is the propagator.

Formulas (3.5)–(3.7) give a formal definition of the partition function 〈X〉. However,
for graphs with self-loops, i.e., graphs having edges that start and end at the same vertex,
corresponding weights are infinite, since the propagator G(P, Q) diverges at Q = P .
To make sense of the formal power series expansion (3.5), one needs to redefine the

5 By definition, the set V (ϒ) is not empty.
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propagator at coincident points. It follows from the short-distance behavior of the
resolvent kernel in Sect. 5.1, that the following expression

G(P, P) := lim
Q→P

(

G(P, Q) +
1

2π

(
log |z(P) − z(Q)|2 + ϕcl(z(P))

))

, (3.8)

where z is a local coordinate in the neighborhood U ⊂ X containing P and Q, defines
a smooth real-valued function on X . It is this “regularization at the coincident points”
(see [Tak93, Tak96a]) that we use in (3.7).

As it is customary in quantum field theory, we introduce the free energy

FX = − log〈X〉.
It is well-known (see, e.g., [Ram90, Kaz99, Wit99]) that passing from the partition func-
tion to free energy results in replacing the sum over all graphs in the expansion (3.5) by
the sum over connected graphs only.

Definition 3.1. The free energy FX = − log〈X〉 of the quantum Liouville theory on a
compact Riemann surface X in the background field formalism is given by the following
formal power series in �,

FX = 1

2π�
Scl +

1

2
log det

(
�0 + 1

2

) −
∑

ϒ∈G(c)
≥3

(−1)|V (ϒ)|(2π�)−χ(ϒ) Wϒ(X)

|Aut ϒ | ,

where G(c)
≥3 is a subset of all connected graphs ϒ ∈ G≥3.

Remark 3.2. The term of order �
−1 in FX represents classical contribution to the free

energy. The constant in � term is a 1-loop contribution associated with the circle diagram.
By definition, it is equal to one-half of the logarithm of the regularized determinant of
the elliptic operator �0 + 1

2 . The higher order terms correspond to graphs with loops:
the n-loop term—the coefficient in front of �

n−1—is the contribution of all connected
graphs with n loops in G≥3.

Remark 3.3. It follows from Definition 3.1 that different choices of global coordinates
on X affect only classical contribution to the free energy. All other terms in the perturbat-
ive expansion of FX are canonical in the sense that they only depend on the hyperbolic
metric on X through the resolvent kernel G(P, Q). In what follows it will be conve-
nient, though not really necessary, to consider Schottky, quasi-Fuchsian and Fuchsian
global coordinates on X . In Sect. 9 we will interpret the free energy in terms of complex
geometry of the moduli space Mg .

Remark 3.4. According to [DP86] and [Sar87], the 1-loop contribution, up to an addi-
tive constant cg depending only on the genus g, can be expressed solely in terms of the
hyperbolic geometry of X as follows,

log det
(
�0 + 1

2

) = log Z X (2) + cg.

Here Z X (s) is the Selberg zeta function of a Riemann surface X , defined for Re s > 1
by the following absolutely convergent product:

Z X (s) =
∏

{�}

∞∏

n=0

(1 − e−(s+n)|�|),

where � runs through the set of all simple closed oriented geodesics on X with respect
to the hyperbolic metric, and |�| is the length of �.
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3.2. Feynman rules for correlation functions. Let z be a global coordinate on X . Here
we define the multi-point correlation functions

〈 k∏

i=1

T (zi )

l∏

j=1

T̄ (w̄ j )X
〉
=

∫∫∫

C M (X)

k∏

i=1

T (ϕ)(zi )

l∏

j=1

T̄ (ϕ)(w̄ j )e
− 1

2π�
S(ϕ) Dϕ

as formal power series in �. It will be convenient to replace T (ϕ) and T̄ (ϕ) by 1
�

T (ϕ)

and 1
�

T̄ (ϕ) respectively, and in what follows we will always use this normalization. As

in the definition of the partition function 〈X〉, we use the substitution ϕ = ϕcl +
√

π� χ .
It follows from (2.11) that

T (ϕ) = Tcl +

√
π

�
Dzχ − π

2
χ2

z .

Using (3.3) we get that Feynman diagrams for 〈∏k
i=1 T (zi )

∏l
j=1 T̄ (w̄ j )X〉 are la-

beled graphs with k + l vertices with valencies 1 and 2 carrying the labels z1, . . . , zk ,
w̄1, . . . , w̄l , and with all other vertices of valency ≥ 3. In order to sum only over con-
nected graphs, we introduce irreducible correlation functions,

〈〈T (z)X〉〉 = 〈T (z)X〉
〈X〉 , 〈〈T̄ (z̄)X〉〉 = 〈T̄ (z̄)X〉

〈X〉 ,

〈〈T (z)T (w)X〉〉 = 〈T (z)T (w)X〉
〈X〉 − 〈〈T (z)X〉〉〈〈T (w)X〉〉,

〈〈T (z)T̄ (w̄)X〉〉 = 〈T (z)T̄ (w̄)X〉
〈X〉 − 〈〈T (z)X〉〉〈〈T̄ (w̄)X〉〉.

In general, denoting I = ∏k
i=1 T (zi )

∏l
j=1 T̄ (w̄ j ), we have inductively (see, e.g.,

[Tak96a])

〈〈I X〉〉 = 〈I X〉
〈X〉 −

∑

r

∑

I=I1...Ir

〈〈I1 X〉〉 . . . 〈〈Ir X〉〉,

where the sum goes over all representations of I as a product of I1, . . . , Ir corresponding
to the partition of the set {z1, . . . , zk, w̄1, . . . , w̄l} into r non-empty subsets.

The perturbative expansion for the one-point irreducible correlation function with
the (2, 0) component of the stress-energy tensor is given by

〈〈T (z)X〉〉 = Tcl(z) + 2π
∑

ϒ∈G(c)
{z}

(−1)|V (ϒ)|+ε1(ϒ)(2π�)−χ(ϒ) Wϒ(X; z)

|Autϒ | . (3.9)

Here G(c)
{z} is the set of all connected graphs ϒ with a single vertex of valency 1 or 2

with the label z and all other vertices of valency ≥ 3, and ε1(ϒ) = 1 or 0 depending on
whether the labeled vertex has valency 1 or 2. Also Autϒ is the group of automorphisms
of ϒ which preserves the labeling, and χ(ϒ) = |V (ϒ)| − |E(ϒ)| = 1 − |L(ϒ)| is
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the Euler characteristic of ϒ , where |L(ϒ)| is the number of loops of ϒ . The weights
Wϒ(X; z) are given by the following formula,

Wϒ(X; z) =
∫

· · ·
∫

X Ṽ

H(P1, . . . , PV )

Ṽ∏

k=1

d Pk, (3.10)

where Ṽ = |V (ϒ)| − 1, PV = z corresponds to vertex v labeled by z, and

H(P1, . . . , PV ) =
∏

e∈E(ϒ)

Dv0(e)Dv1(e)G
(
Pv0(e), Pv1(e)

)
. (3.11)

Here
⎧
⎪⎨

⎪⎩

Dv = id if vertex v has valency ≥ 3,

Dv = Dz if vertex v has valency 1,

Dv = ∂z if vertex v has valency 2.

For self-loops we use the same regularization (3.8) at coincident points, except for the
case when vertex v has n self-loops and is connected by an edge to a labeled vertex of
valency 1. In this case we replace one of the factors in G(Pv, Pv)

n by G(Pv, Pv) + n
2π

.
The contribution of the vertex of valency 1 with label z to (3.11) is the factor DzG(z, w),
which has a singularity of the form 1/(z − w)2 as w → z. The same singularity arises
when the labeled vertex of valency 2 is attached to a self-loop. The corresponding inte-
grals in (3.10) are understood in the principal value sense.

To complete this definition, we need to assign the weight to a tadpole graph (see
Fig. 1)
According to [Tak96a], we define

H(z) = ∂z∂zG(z, z)

:= lim
w→z

(

∂z∂wG(z, w) +
1

2π

(
1

(z − w)2 − 1

2
eϕcl (z) z̄ − w̄

z − w

))

.

(3.12)

We will show in Sect. 5.1 that H(z) is a quadratic differential for a group � correspond-
ing to a global coordinate z, which behaves like a projective connection under changes
of global coordinates. Analyzing formula (3.9) it is easy to see that 〈〈T (z)X〉〉 is a formal
power series in � whose coefficients are quadratic differentials for �. Except the classical

Fig. 1.
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and 1-loop terms, their push-forwards to X are quadratic differentials. In other words,
higher loop terms in 〈〈T (z)X〉〉 do not depend on the choice of global coordinate on X .

The correlation function 〈〈T̄ (z̄)X〉〉 is defined similarly, with z replaced by z̄. The
perturbative definition of multi-point correlation functions is the following.

Definition 3.5. Irreducible multi-point correlation functions with insertions of the stress-
energy tensor components are given by the following formal power series in �,

〈〈
k∏

i=1

T (zi )

l∏

j=1

T̄ (w̄ j )X

〉〉

= (2π)k+l
∑

ϒ∈G(c)
I

(−1)|V (ϒ)|+ε1(ϒ)(2π�)−χ(ϒ) Wϒ(X; I)

|Autϒ | .

Here G(c)
I is the set of all connected graphs ϒ with k +l vertices of valencies 1 or 2 labeled

by the set I = {z1, . . . , zk, w̄1, . . . , w̄l} and with all other vertices of valency ≥ 3, ε1(ϒ)

is the number of vertices of valency 1, and Autϒ is the group of automorphisms of ϒ

which preserve the labeling. The weights Wϒ(X; I) are given by

Wϒ(X; I) =
∫

· · ·
∫

X Ṽ

H(P1, . . . , PV )

Ṽ∏

k=1

d Pk,

where Ṽ = |V (ϒ)| − k − l. Here for a labeled vertex v the point Pv is from the labels
set I, and

H(P1, . . . , PṼ ; I) =
∏

e∈E(ϒ)

Dv0(e)Dv1(e)G
(
Pv0(e), Pv1(e)

)
,

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dv = id if v has valency ≥ 3,

Dv = Dzi if v has valency 1 and label zi ,

Dv = ∂zi if v has valency 2 and label zi ,

Dv = Dw̄ j if v has valency 1 and label w̄ j ,

Dv = ∂w̄ j if v has valency 2 and label w̄ j .

For graphs with self-loops the weights are regularized by (3.8), except for the case when
a vertex v with n self-loops is connected by an edge to a vertex of valency 1, in which
case one of the factors in G(Pv, Pv)

n is replaced by G(Pv, Pv) + n
2π

. For the cases
k = 1, l = 0 and k = 0, l = 1 one should add, correspondingly, the tree-level terms

Tcl(z) = 1
�

(
∂2

z ϕcl − 1
2 (∂zϕcl)

2
)

and Tcl(w̄) = 1
�

(
∂2
w̄ϕcl − 1

2 (∂w̄ϕcl)
2
)

.

The weights for the tadpole graphs—graphs with a single vertex of valency 2 labeled by
z or w̄, are given, correspondingly, by H(z) and H̄(w̄) = H(w), where H(z) is defined
in (3.12).

It follows from Definition 3.5 that 〈〈∏k
i=1 T (zi )

∏l
j=1 T̄ (w̄ j )X〉〉 are symmetric with

respect to the variables z1, . . . , zk and w̄1, . . . , w̄l respectively. When k + l ≥ 2, all
coefficients in these formal power series are quadratic differentials for � in variables
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zi and w̄ j , whose push-forward to X are quadratic differentials.6 In other words, for
k + l ≥ 2 correlation functions 〈〈∏k

i=1 T (zi )
∏l

j=1 T̄ (w̄ j )X〉〉 do not depend on the
choice of a global coordinate on X . We will prove in Sects. 6–8 that these correlation
functions are quadratic differentials in zi and w̄ j , which are meromorphic in zi and
anti-meromorphic in w j , and with only poles at coincident points.

4. Deformation Theory

For the convenience of the reader, here we present necessary basic facts from deformation
theory (see e.g., [Ahl87, Ber70, Ahl61] or our discussion in [TT03a]).

4.1. Schottky and Teichmüller spaces. Let � be either a Schottky group, or a quasi-Fuch-
sian group,7 with the domain of discontinuity �. Let A−1,1(�) be a space of bounded
Beltrami differentials for �—the Banach space of µ ∈ L∞(C) satisfying

µ(γ z)
γ ′(z)
γ ′(z)

= µ(z) for z ∈ �, γ ∈ �,

and let B−1,1(�) be the open unit ball in A−1,1(�) with respect to ‖ · ‖∞ norm,

‖ µ ‖∞= sup
z∈C

|µ(z)| < 1.

For every µ ∈ B−1,1(�) there exists a unique quasiconformal homeomorphism f µ :
Ĉ → Ĉ satisfying the Beltrami equation

f µ
z̄ = µ f µ

z

and fixing the points 0, 1 and ∞. Set �µ = f µ ◦� ◦ ( f µ)−1 and define the deformation
space of � to be

D(�) = B−1,1(�)/ ∼ ,

where µ ∼ ν if and only if f µ = f ν on Ĉ \ �, which is equivalent to the condition
f µ ◦ γ ◦ ( f µ)−1 = f ν ◦ γ ◦ ( f ν)−1 for all γ ∈ �.

The deformation space D(�) has a natural structure of a complex manifold, explicitly
described as follows (see, e.g., [Ahl87]). Let H−1,1(�) be the Hilbert space of Beltrami
differentials for � with the inner product

(µ1, µ2) =
∫∫

F

µ1(z)µ2(z)ρ(z) d2z, (4.1)

where µ1, µ2 ∈ H−1,1(�), F is a fundamental domain for � in �, and ρ = eϕcl is den-
sity of the hyperbolic metric on �. Denote by �−1,1(�) the finite-dimensional subspace
of harmonic Beltrami differentials with respect to the hyperbolic metric. It consists of
µ ∈ H−1,1(�) satisfying

∂z(ρµ) = 0. (4.2)

6 Here by a quadratic differential in w̄ we understand a complex-conjugate of a quadratic differential in w.
7 In fact, � could be any non-elementary, finitely generated Kleinian group.
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The complex vector space �−1,1(�) is identified with the holomorphic tangent space to
D(�) at the origin. Choose a basis µ1, . . . , µd for �−1,1(�), set µ = t1µ1 + · · · + tdµd ,
where t1, . . . , td are such that ‖µ‖∞ < 1, and let f µ be the normalized solution of the
Beltrami equation. Then the correspondence (t1, . . . , td) �→ �µ = f µ ◦ � ◦ ( f µ)−1

defines complex coordinates in a neighborhood of the origin in D(�), called the Bers
coordinates. The holomorphic cotangent space to D(�) at the origin can be naturally
identified with the vector space �2,0(�) of holomorphic quadratic differentials —
holomorphic functions q on � satisfying

q(γ z)γ ′(z)2 = q(z), γ ∈ �.

The pairing between holomorphic cotangent and tangent spaces to D(�) at the origin is
given by

(q, µ) =
∫∫

F

q(z)µ(z) d2z.

Corresponding anti-holomorphic cotangent space to D(�) at � is identified with the
vector space �0,2(�) = �2,0(�) of anti-holomorphic quadratic differentials.

There is a natural isomorphism �µ between the deformation spaces D(�) and D(�µ),
which maps �ν ∈ D(�) to (�µ)λ ∈ D(�µ), where, in accordance with f ν = f λ ◦ f µ,

λ =
(

ν − µ

1 − νµ̄

f µ
z

f̄ µ
z̄

)

◦ ( f µ)−1.

Isomorphism �µ allows us to identify the holomorphic tangent space to D(�) at �µ

with the complex vector space �−1,1(�µ), and holomorphic cotangent space to D(�)

at �µ with the complex vector space �2,0(�µ). It also allows us to introduce Bers coor-
dinates in the neighborhood of �µ in D(�), and to show directly that these coordinates
transform complex-analytically. For the de Rham differential d on D(�) we denote by
d = ∂ + ∂̄ decomposition into (1, 0) and (0, 1) components.

The differential of isomorphism �µ : D(�) � D(�µ) at ν = µ is given by the linear
map Dµ : �−1,1(�) → �−1,1(�µ),

ν �→ Dµν = Pµ
−1,1

[(
ν

1 − |µ|2
f µ
z

f̄ µ
z̄

)

◦ ( f µ)−1

]

,

where Pµ
−1,1 is orthogonal projection from H−1,1(�µ) to �−1,1(�µ). The map Dµ

allows us to extend a tangent vector ν at the origin of D(�) to vector field ∂
∂tν

defined
on the coordinate neighborhood of the origin,

∂

∂tν

∣
∣
∣
∣
�µ

= Dµν ∈ �−1,1(�µ).

The scalar product (4.1) in �−1,1(�µ) defines a Hermitian metric on the deformation
space D(�). This metric is called the Weil-Petersson metric and it is Kähler. We denote
its symplectic form by ωW P ,

ωW P

(
∂

∂tµ
,

∂

∂ t̄ν

)∣
∣
∣
∣
�λ

= i

2
(Dλµ, Dλν), µ, ν ∈ �−1,1(�).
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When � is a Schottky group of marked compact Riemann surface X of genus g > 1,
the deformation space D(�) is the Schottky space Sg of X . When � is a Fuchsian
group, such that components U and L cover, respectively, the marked compact Riemann
surface X of genus g > 1 and its mirror image X̄ , the deformation space D(�) contains
the Teichmüller space Tg of X as a submanifold. Namely, the choice of the subspace of
B−1,1(�) consisting of µ with the reflection symmetry:

µ(z̄) = µ(z), z ∈ C,

gives rise to the real-analytic embedding Tg ↪→ D(�). In this case, every group �µ is a
Fuchsian group. The choice of a subspace of B−1,1(�) consisting of µ that are identically
0 on the lower half-plane L, gives rise to the complex-analytic embedding Tg ↪→ D(�).
In this case �µ is, in general, a quasi-Fuchsian group. Its domain of discontinuity has two
components �

µ
1 = f µ(U) and �

µ
2 = f µ(L), covering Riemann surfaces Xµ � �µ\�µ

1
and X̄ respectively. The Weil-Petersson metric on D(�) restricts to the Weil-Petersson
metric of the Teichmüller space Tg . It is given by the same formula (4.1), where now F is
a fundamental domain for � in �1. We continue to denote by d = ∂ + ∂̄ decomposition
of de Rham differential d on Tg into (1, 0) and (0, 1) components. The Teichmüller
space Tg is the universal covering space for the moduli space Mg of compact Riemann
surfaces of genus g > 1.

4.2. Formal geometry on deformation spaces. A formal function on a deformation space
D(�) is an element of C∞(D(�))((�))—a formal power series in � with coefficients in
C∞(D(�)). Correspondingly, a formal 1-form on D(�) is a formal power series in �

with coefficients being 1-forms on D(�). For a formal function F on D(�), ∂F and ∂̄F
are formal (1, 0) and (0, 1) forms on D(�). For every t ∈ D(�) there is an associated
Riemann surface Xt � �t\�t , and ∂F(t) and ∂̄F(t) are represented by formal holo-
morphic and anti-holomorphic quadratic differentials for �t . The Riemann surfaces Xt
form a holomorphic family parameterized by D(�).

It follows from Definition 3.1 that the free energy FX gives rise to a formal function
F on the Schottky space Sg , or on the Teichmüller space Tg , depending on the choice
of a global coordinate on X . Namely, to every point t ∈ Sg (or t ∈ Tg) there is an
associated Riemann surface Xt with Schottky (or quasi-Fuchsian) global coordinate,
and F(t) = FXt ∈ 1

�
C[[�]]. As it was pointed out in Remark 3.3, actually F − 1

2π�
Scl

is a formal function on the moduli space Mg .
It also follows from Definition 3.5 that for every t ∈ Sg (or t ∈ Sg) one-point

correlation functions 〈〈T (z)Xt 〉〉 and 〈〈T̄ (z̄)Xt 〉〉 are formal quadratic differentials for
�t in z and z̄. We will show in Sect. 6 that they are holomorphic and anti-holomorphic
formal quadratic differentials that represent (up to an additional one-loop term) formal
(1, 0) and (0, 1)-forms ∂F and ∂̄F , where F is a formal function associated with free
energy. Multi-point correlation functions admit similar interpretation. In Sects. 7 and 8
we present all details for cases 〈〈T (z)T (w)Xt 〉〉 and 〈〈T (z)T̄ (w̄)Xt 〉〉.

4.3. Variational formulas. Here we collect variational formulas needed in the next sec-
tion. For µ ∈ A−1,1(�) quasiconformal mappings f εµ depend holomorphically on ε in
some neighborhood of 0 ∈ C. Setting

ḟ = d

dε

∣
∣
∣
∣
ε=0

f εµ,
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we obtain

ḟ (z) = − 1

π

∫∫

C

z(z − 1)µ(w)

(w − z)w(w − 1)
d2w and ḟ z̄ = µ. (4.3)

A tensor of type (l, m) for �, where l and m are integers, is a C∞-function θ on �

satisfying
θ ◦ γ (γ ′)l(γ ′)m = θ, γ ∈ �.

Let θε be a smooth family of tensors of type (l, m) for the holomorphic family �εµ,
where it is always assumed that µ ∈ �−1,1(�), and ε ∈ C is sufficiently small. Set

( f εµ)∗(θε) = θε ◦ f εµ ( f εµ
z )l( f̄ εµ

z̄ )m,

which is a tensor of type (l, m) for �—a pull-back of the tensor θε for �εµ by f εµ. The
Lie derivatives of the family θε along the vector fields ∂

∂tµ
and ∂

∂ t̄µ
are defined in the

standard way,

Lµθ = ∂

∂ε

∣
∣
∣
∣
ε=0

( f εµ)∗(θε) and L µ̄θ = ∂

∂ε̄

∣
∣
∣
∣
ε=0

( f εµ)∗(θε).

When θ is a function on D(�)—a tensor of type (0, 0), Lie derivatives reduce to direc-
tional derivatives Lµθ = (∂θ)(µ) and Lµ̄θ = (∂̄θ)(µ̄).

When θ is a (1, 0)-form on D(�), i.e., a family θε of holomorphic quadratic differ-
entials for �εµ, we have

∂θ =
d∑

i=1

dti ∧ Lµi θ and ∂̄θ =
d∑

i=1

dt̄i ∧ Lµ̄i θ,

where dt1, . . . , dtd is the basis for �2,0(�) dual to the basis µ1, . . . , µd for �−1,1(�).
Let H2,0(�) be the Hilbert space of quadratic differentials for � with the inner product

(q1, q2) =
∫∫

F

q1(z)q2(z)ρ(z)−1d2z, (4.4)

where F is a fundamental domain for � in �, and let P : H2,0(�) → �2,0(�) be
the orthogonal projection onto the subspace of holomorphic quadratic differentials. It
immediately follows from Stokes’ theorem that the quadratic differential Dzh, where h
is a smooth �-automorphic function on �, is orthogonal to �2,0(�).

Now suppose that for a (1, 0)-form θ on D(�),

Lµθ(z) =
∫∫

F

Q(z, w)µ(w)d2w,

where Q(z, w) is a smooth quadratic differential for � in z and w. Identification of holo-
morphic tangent and cotangent spaces to D(�) with �−1,1(�) and �2,0(�) in Sect. 4.1,
allows us to identify the (2, 0)-form ∂θ on D(�) at the point � with Pw Pz Q(w, z) −
Pz Pw Q(z, w)—the holomorphic quadratic differential for � in z and w, where Pz and
Pw are corresponding projection operators with respect to z and w. Explicitly,

∂θ

(
∂

∂ti
,

∂

∂t j

)

= −
∫∫

F

∫∫

F

Q(z, w)(µi (z)µ j (w) − µ j (z)µi (w))d2zd2w.
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The symmetric part 1
2 (Pz Pw Q(z, w) + Pw Pz Q(w, z)) corresponds to the following

2-tensor:

∂sθ =
d∑

i=1

Lµi θ ⊗s dti , (4.5)

defined in a coordinate chart of the origin in D(�), where ⊗s stands for the symmetrized
tensor product, dti ⊗s dt j = 1

2 (dti ⊗ dt j + dt j ⊗ dti ). Explicitly,

∂sθ

(
∂

∂ti
,

∂

∂t j

)

= 1

2

∫∫

F

∫∫

F

Q(z, w)(µi (z)µ j (w) + µ j (z)µi (w))d2zd2w.

If S is a function on D(�), then, by definition, ∂s S = ∂S, and we have

∂s(∂s S) =
d∑

i, j=1

∂2S

∂ti∂t j
dti ⊗s dt j ,

while ∂(∂S) = 0. In general, ∂s can be extended to a linear operator mapping
(n, 0)-symmetric tensors on a coordinate chart of the origin in D(�) to symmetric
(n + 1, 0)-tensors.

For the Lie derivatives of vector fields νεµ = Dεµν we get [Wol86]

Lµν = 0 and Lµ̄ν = −∂̄ρ−1∂̄(�0 + 1
2 )−1(µν̄). (4.6)

For every �µ ∈ D(�), the density ρµ of the hyperbolic metric on �µ is a (1, 1)-tensor
for �µ. Lie derivatives of the smooth family of (1, 1)-tensors ρ parameterized by D(�)

are given by the following formulas:

Lµρ = Lµ̄ρ = 0, (4.7)

LµL ν̄ρ = 1
2ρ(�0 + 1

2 )−1(µν̄), (4.8)

belonging, correspondingly, to Ahlfors [Ahl61] and Wolpert [Wol86]. Since f εµ depends
holomorphically on ε, we get from (4.7),

∂

∂ε

∣
∣
∣
∣
ε=0

(
ϕ

εµ
cl ◦ f εµ

) = − ḟz . (4.9)

For every �µ ∈ D(�) let �
µ
1 be the component of domain of discontinuity of �µ

such that Xµ � �µ\�µ
1 , and let Jµ : U → �

µ
1 be the corresponding covering map. The

assignment ϑ(µ) = S(J−1
µ ) ∈ �2,0(�µ) defines a (1, 0)-form on D(�). It was proved

in [ZT87c] for the case D(�) = Sg , and in [TT03a] for the case D(�) = Tg , that

∂Scl = 2ϑ, (4.10)

as well as

Lµϑ(z) = 6

π

∫∫

C

µ(w)

(z − w)4 d2w, (4.11)

Lµ̄ϑ(z) = −1

2
ρ µ(z). (4.12)
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The integral in (4.11) is understood in the principal value sense, i.e., as a limit

lim
ε→0

∫∫

|w−z|≥ε

µ(w)

(z − w)4 d2w,

which exists for harmonic µ. Formula (4.12) is equivalent to

∂̄∂Scl = −2iωW P , (4.13)

whereas interpretation of (4.11) in terms of ∂2
s Scl will be given in Sect. 7.1.

Remark 4.1. When � is a Fuchsian group and µ |L = 0, then according to [TT03b,
Lemma 2.12] Lµϑ(z) = 0.

Lie derivatives of a family of linear operators Oε mapping tensors of type (l, m) to
tensors of type (l ′, m′) are defined by the formulas

LµO = ∂

∂ε

∣
∣
∣
∣
ε=0

( f εµ)∗Oε(( f εµ)∗)−1,

Lµ̄O = ∂

∂ε̄

∣
∣
∣
∣
ε=0

( f εµ)∗Oε(( f εµ)∗)−1,

and satisfy

Lµ(O(θ)) = LµO(θ) + O(Lµθ), Lµ̄(O(θ)) = Lµ̄O(θ) + O(L µ̄θ).

For the families of ∂̄-operators mapping (n, 0)-tensors to (n, 1)-tensors, and of ∂-oper-
ators mapping (0, 1)-tensors to (1, 1)-tensors, we have the following formulas,

Lµ∂̄ = −µρn∂ρ−n, Lµ̄∂̄ = 0, (4.14)

Lµ∂ = 0, L µ̄∂ = −∂̄µ̄. (4.15)

Hence for the operator �0 + 1
2 = −ρ−1∂∂̄ + 1

2 we get

Lµ(�0 + 1
2 ) = ρ−1∂µ∂, Lµ̄(�0 + 1

2 ) = ρ−1∂̄µ̄∂̄ . (4.16)

The Lie derivatives of operators ∂ and Dz = ρ∂ρ−1∂ as operators from functions to
(1, 0) and (2, 0) tensors respectively, are given by

Lµ∂ = 0, LµDz = 0, (4.17)

Lµ̄∂ = −µ̄∂̄, L µ̄Dz = −µ̄∂̄∂ − ρ∂ρ−1µ̄∂̄. (4.18)

It follows from (4.14) that for a family θε(z) of holomorphic quadratic differentials
Lµ̄θ(z) is holomorphic in z, whereas Lµθ(z), in general, is not. Thus if

Lµ̄θ(z) =
∫∫

F

Q̃(z, w)µ(w)d2w,

where Q̃(z, w) is a smooth quadratic differential for � in z and w̄, then the (1, 1)-form
∂̄θ on D(�) at the point � is identified with the quadratic differential −Pw̄ Q̃(z, w) for
�, which is holomorphic in z and anti-holomorphic in w. Explicitly,

∂̄θ

(
∂

∂ti
,

∂

∂ t̄ j

)

= −
∫∫

F

∫∫

F

Q̃(z, w)µi (z)µ j (w)d2zd2w.
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5. The Propagator

The propagator G(P, Q) of quantum Liouville theory—the integral kernel of the
operator G = 1

2 (�0 + 1
2 )−1, is uniquely characterized by the following properties:

P1. G is a smooth function on X × X \ D, where D is the diagonal P = Q in X × X .
P2. G is symmetric, G(P, Q) = G(Q, P) for P, Q ∈ X .
P3. For fixed Q ∈ X , G(P, Q) as a function of P ∈ X \ {Q} satisfies

(
�0 + 1

2

)
G = 0.

P4. For fixed Q ∈ X , the function

G(P, Q) +
1

2π
log |z(P) − z(Q)|2

is continuous in some neighborhood U of Q, where z is a local coordinate in U .

It follows from these properties that for every g ∈ C∞(X) the function

h(P) =
∫∫

X

G(P, Q)g(Q)d Q

satisfies the equation
(�0 + 1

2 )h = 1
2 g. (5.1)

In particular, ∫∫

X

G(P, Q)d Q = 1. (5.2)

On the upper half-plane U, the kernel for the integral operator 1
2 (�0 + 1

2 )−1 is given
by (see, e.g., [Tak96a])

G(z, w) = 1

2π

∫ 1

0

t (1 − t)

(t + u)2 dt = 2u + 1

2π
log

u + 1

u
− 1

π
, (5.3)

where

u(z, w) = |z − w|2
4 Im z Im w

. (5.4)

The function G has the property

G(σ z, σw) = G(z, w), σ ∈ PSL(2, R). (5.5)

It terms of the Fuchsian global coordinate z with the covering map JF : U → X , the
propagator G F (z, w) = G(JF (z), JF (w)) is given by the method of images,

G F (z, w) =
∑

γ∈�

G(z, γw), (5.6)

and it follows from (5.5) that G F (z, w) is �-automorphic in z and w,

G F (γ1z, γ2w) = G F (z, w), γ1, γ2 ∈ �. (5.7)

If zK is another global coordinate on X with the covering map JK : �K → X , then
G K (zK , wK ) = G(JK (zK ), JK (wK )) satisfies

G K (zK , wK ) = G F (J−1(zK ), J−1(wK )), (5.8)

where J = J−1
K ◦ JF .
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5.1. Behavior near diagonal and explicit formulas. Here we present basic properties of
the propagator of quantum Liouville theory. It is convenient to use the Fuchsian global
coordinate z on X and to write G = G F .

It follows from (5.3)–(5.4) that

G(z, w) = − 1

2π
log

|z − w|2
Im z Im w

− 1 − log 2

π
+ o(1) as w → z,

and, therefore,

G(z, w) = − 1

2π
log |z − w|2 + O(1) as w → z.

Similarly, as w → z,

∂zG(z, w) = − 1

2π

w − z̄

(z − w)(z − z̄)
+ o(1), (5.9)

∂z∂wG(z, w) = − 1

2π

1

(z − w)2 − 1

π

z̄ − w̄

z − w

1

(z − z̄)2 + o(|z − w|), (5.10)

∂z∂w̄G(z, w) = − 1

π

1

(z − z̄)2 log |z − w|2 + O(1), (5.11)

so that

∂zG(z, w) = − 1

2π(z − w)
+ O(1), (5.12)

∂z∂wG(z, w) = − 1

2π(z − w)2 − 1

π

z̄ − w̄

z − w

1

(z − z̄)2 + O(1), (5.13)

∂z∂w̄G(z, w) = − 1

π(z − z̄)2 log |z − w|2 + O(1). (5.14)

In terms of the Fuchsian global coordinate, the regularization (3.8) at the coincident
points is given by

G(z, z) =
∑

γ∈�
γ �=id

G(z, γ z) − 1 − log 2

π
(5.15)

(see [Tak93]). It follows from (5.5) that G(z, z) is �-automorphic,

G(γ z, γ z) = G(z, z), γ ∈ �.

Similarly, the regularization (3.12) of the tadpole graph H(z) = ∂z∂zG(z, z) is given by

H(z) =
∑

γ∈�
γ �=id

∂z∂wG(z, γw)

∣
∣
∣
w=z

(5.16)

(see [Tak94, Tak96a]). It follows from (5.5) that H is a quadratic differential for �, and

∂z H(z) = 2
∑

γ∈�
γ �=id

∂2
z ∂wG(z, γw)

∣
∣
∣
w=z

. (5.17)
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Using property P3, we also obtain

∂z̄ H(z) = 1

2
ρ(z)∂zG(z, z). (5.18)

It follows from (5.8) that G(z, z)gives rise to a well-defined smooth function G(P, P)

on X . However, it follows from (3.12) and the classical formula

f ′(z) f ′(w)

( f (z) − f (w))2 = 1

(z − w)2 +
1

6
S( f )(z) +

1

12
S( f )′(z)(w − z) + · · · (5.19)

as w → z, where dots stand for O(|z − w|2) term, that

HK (zK ) = H(J−1(zK ))(J−1)′(zK )2 − 1

12π
S(J−1)(zK ). (5.20)

Hence H(z), in accordance with [Tak94, Tak96a], behaves like “−1/12π of a projective
connection” under changes of global coordinates.

The following explicit formulas:

DzG(z, w) = 1

2π

(w − w̄)2

(z − w)2(z − w̄)2 , (5.21)

and

Dz∂wG(z, w) = 1

π

w − w̄

(z − w)3(z − w̄)
, DzDwG(z, w) = 3

π

1

(z − w)4 , (5.22)

Dz∂w̄G(z, w) = 1

π

w̄ − w

(z − w)(z − w̄)3 , DzDw̄G(z, w) = 3

π

1

(z − w̄)4 , (5.23)

give the following asymptotic formulas as w → z:

DzG(z, w) = 1

2π

(w − w̄)2

(z − w)2(z − w̄)2 + O(1),

Dz∂wG(z, w) = 1

π

w − w̄

(z − w)3(z − w̄)
+ O(1),

Dz∂w̄G(z, w) = 1

π

w̄ − w

(z − w)(z − w̄)3 + O(1),

DzDwG(z, w) = 3

π

1

(z − w)4 + O(1),

and explicit formulas

DzDwG(z, w) = 3

π

∑

γ∈�

γ ′(w)2

(z − γw)4 , (5.24)

DzDw̄G(z, w) = 3

π

∑

γ∈�

γ ′(w̄)2

(z − γ w̄)4 . (5.25)

Since
U =

⋃

γ∈�

γ F, (5.26)
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where F is a fundamental domain for � in U, we obtain from (5.25) and the Ahlfors’
classical reproducing formula in [Ahl87, Ch. VI.D., Lemma 2],

(Pq)(z) = 4
∫∫

F

DzDw̄G(z, w)q(w)ρ(w)−1d2w, q ∈ H2,0(�), (5.27)

so that P(z, w) = 4DzDw̄G(z, w) is an integral kernel of the projection operator P :
H2,0(�) → �2,0(�). Representation (5.27) was used in [Tak94, Tak96a], and plays a
fundamental role in this paper.

In general, DzDw̄G(z, w), where z and w are local coordinates on X , is a holomor-
phic quadratic differential on X with respect to the first variable, and is an anti-holo-
morphic quadratic differential on X with respect to the second variable. The expression
P(z, w) = 4DzDw̄G(z, w) is an integral kernel of the orthogonal projection operator
P : H2,0(X) → �2,0(X), where the inner product in H2,0(X) is defined by using the
hyperbolic metric on X .

Similarly, DzDwG(z, w) is a meromorphic quadratic differential on X in variables
z and w, with the fourth order pole at z = w. It behaves like a quadratic differential in
z and w under a change of global coordinates. Let z be a global coordinate on X . Using
(5.19) we get as w → z,

DzDwG(z, w) = 3

π

(
1

(z − w)4 +
S(J−1)(z)

3(z − w)2 − S(J−1)′(z)
6(z − w)

)

+ O(1). (5.28)

Finally,
R(z, w) = 4ρ(z)−1∂z̄DwG(z, w) (5.29)

is a meromorphic quadratic differential on X in w with a single simple pole at w = z,
and is a (−1, 0)-tensor with respect to z. We have

R(z, w) = − 1

π(z − w)
+ O(1) as w → z, (5.30)

and this expansion does not depend on the choice of local coordinates z and w in the
neighborhood of the diagonal in X × X . It follows from property P3 that for any choice
of global coordinate z on X , the kernel R(z, w) satisfies the equation

∂z R(z, w) + (∂zϕcl)(z)R(z, w) = 2DwG(z, w), (5.31)

which implies

∂3
z R(z, w) = 2DzDwG(z, w) − (2∂z R(z, w) + R(z, w)∂z)S(J−1)(z) (5.32)

and

Dz(R(z, w)∂zG(z, v))

= 2Dw∂zG(z, w)∂zG(z, v) + (2∂z R(z, w) + R(z, w)∂z)DzG(z, v).

(5.33)

Remark 5.1. The kernel R(z, w) is a Green’s function of ∂̄-operator acting on (−1, 0)-
tensors on X—an integral kernel of the inverse operator ∂̄−1 on the space of trivial
Beltrami differentials on X , which is an orthogonal complement in H−1,1(X) to the
subspace of harmonic Beltrami differentials. It is also used in the formulation of con-
formal Ward identities on Riemann surfaces in [EO87].
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Remark 5.2. Operator P can be also defined on the vector space of quadratic differentials
for � which are smooth everywhere on F except at z = w, where they have the following
asymptotic behavior:

q(z) = a1

(z − w)4 +
a2

(z − w)2 +
a3

z − w
+ O(1) and ∂z̄q(z) = O(1)

as z → w. The integral in (5.27) is understood in the principal value sense, and it follows
from the Stokes’ theorem, (5.28), and (5.30)–(5.32) that P(q) ∈ �2,0(�).

Remark 5.3. For a family of holomorphic quadratic differentials θεµ(z) for �εµ we have

(Lµθ)(z) = ∂

∂ε

∣
∣
∣
∣
ε=0

(
θεµ ◦ f εµ( f εµ

z )2
)

(z) = ∂

∂ε

∣
∣
∣
∣
ε=0

θεµ(z)

+ (∂zθ)(z)
∂

∂ε

∣
∣
∣
∣
ε=0

f εµ(z) + 2θ(z)
∂

∂ε

∣
∣
∣
∣
ε=0

f εµ
z (z).

Suppose that

∂

∂ε

∣
∣
∣
∣
ε=0

θεµ(z) =
∫∫

F

Q1(z, w)µ(w)d2w,

where Q1(z, w) is a quadratic differential in w. Then by (4.3)

(Lµθ)(z) =
∫∫

F

Q(z, w)µ(w)d2w,

where

Q(z, w) = Q1(z, w) + (2∂zR(z, w) + R(z, w)∂z)θ(z),

and

R(z, w) = − 1

π

∑

γ∈�

z(z − 1)γ ′(w)2

(γw − z)γw(γw − 1)

is a meromorphic quadratic differential for � in w. By the Stokes’ theorem, it is easy to
prove that

PwR(z, w) = R(z, w) + R(z, w).

Thus we obtain

Pw(Q1)(z, w) + (2∂zR(z, w) + R(z, w)∂z)θ(z)

= Pw(Q)(z, w) − (2∂z R(z, w) + R(z, w)∂z)θ(z), (5.34)

where Pw(Q1)(z, w) is holomorphic in z.
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5.2. Variational formulas. Here we collect variational formulas for the propagator G,
which are necessary for Sects. 6–8.

Lemma 5.4. Let z be a global coordinate on X � �\�, and µ ∈ �−1,1(�). We have
the following formulas, where F is a fundamental domain for � in �.

(i) For z �= w,

LµG(z, w) = 2
∫∫

F

∂vG(z, v)∂vG(v,w)µ(v)d2v,

Lµ̄G(z, w) = 2
∫∫

F

∂v̄G(z, v)∂v̄G(v,w)µ(v)d2v.

(ii)

LµG(z, z) = 2
∫∫

F

(∂vG(z, v))2µ(v)d2v,

Lµ̄G(z, z) = 2
∫∫

F

(∂v̄G(z, v))2µ(v)d2v.

(iii) For z �= w,

Lµ∂zG(z, w) = 2
∫∫

F

∂z∂vG(z, v)∂vG(v,w)µ(v)d2v,

Lµ̄∂zG(z, w) = 2
∫∫

F

∂z∂v̄G(z, v)∂v̄G(v,w)µ(v)d2v.

(iv) For z �= w,

LµDzG(z, w) = 2
∫∫

F

Dz∂vG(z, v)∂vG(v,w)µ(v)d2v,

Lµ̄DzG(z, w) = 2
∫∫

F

Dz∂v̄G(z, v)∂v̄G(v,w)µ(v)d2v

− 1

2
ρ(z)µ(z)G(z, w).

(v) For z �= w,

Lµ∂z∂wG(z, w) = 2
∫∫

F

∂z∂vG(z, v)∂w∂vG(v,w)µ(v)d2v,

Lµ̄∂z∂wG(z, w) = 2
∫∫

F

∂z∂v̄G(z, v)∂w∂v̄G(v,w)µ(v)d2v.

Both integrals in (ii) and the first integrals in (iii)-(v) are understood in the principal
value sense.
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Proof. From the definition of the propagator G(z, w) we obtain
(
Lµ(�0 + 1

2 )
)

G(z, w) + (�0 + 1
2 )

(
LµG(z, w)

) = 0,

so that using (4.16) we get for z �= w,

LµG(z, w) = −((�0 + 1
2 )−1ρ−1∂µ∂)G(z, w)

= −2
∫∫

F

G(z, v)∂vµ(v)∂vG(v,w)d2v

= 2
∫∫

F

∂vG(z, v)∂vG(v,w)µ(v)d2v,

which proves (i). Here in the last line we used the Stokes’ theorem and elementary fact
∮

|z|=ε

dz̄

z
= 0. (5.35)

To prove (ii), it is convenient to use the Fuchsian global coordinate on X � �\U.
Using (4.9), we get

LµG(z, z) = lim
w→z

Lµ

(

G(z, w) +
1

2π

(
log |z − w|2 + φcl(z)

))

= lim
w→z

⎛

⎝2
∫∫

F

∂vG(z, v)∂vG(v,w)µ(v)d2v

+
1

2π

(
ḟ (z) − ḟ (w)

z − w
− ḟz(z)

)
⎞

⎠ ,

where it is easy to justify the interchange of the Lie derivative Lµ and the limit w → z.
Using (5.6) and (5.26) we have

2
∫∫

F

∂vG(z, v)∂vG(v,w)µ(v)d2v = 2
∫∫

U

∂vG(z, v)∂vG(v,w)µ(v)d2v

= 2
∫∫

U

(

− 1

2π

1

v − z
+ h1(v, z)

)

×
(

− 1

2π

1

v − w
+ h2(v,w)

)

µ(v)d2v

= 1

2π2

∫∫

U

( 1

(v − z)(v − w)

− 2π

v − z
h2(v,w) − 2π

v − w
h1(v, z)

+4π2h1(v, z)h2(v,w)
)
µ(v)d2v,
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where h1, h2 are bounded functions on U × U. The last three terms are continuous as
w → z. On the other hand, it follows from (4.3) that

ḟ (z) − ḟ (w)

z − w
− ḟz(z) = − 1

π

∫∫

U

µ(v)

(
1

(v − z)(v − w)
− 1

(v − z)2

)

d2v,

where the integral is understood in the principal value sense. Combining this with the
previous formula gives (ii).

To prove (iii), we use (4.17)–(4.18) to get for z �= w,

Lµ∂zG(z, w) = ∂z LµG(z, w) = 2
∫∫

F

∂z∂vG(z, v)∂vG(v,w)µ(v)d2v,

and

Lµ̄∂zG(z, w) = −µ(z) ∂z̄G(z, w) + 2∂z

∫∫

F

∂v̄G(z, v)∂v̄G(v,w)µ(v)d2v

= 2
∫∫

F

∂z∂v̄G(z, v)∂v̄G(v,w)µ(v)d2v.

Here we used (5.12) and the elementary formula

∂

∂z

∫∫

|v−z|≤ε

f (z, v)

v̄ − z̄
d2v =

∫∫

|v−z|≤ε

fz(z, v)

v̄ − z̄
d2v − π f (z, z) + O(ε),

where f (z, v) is smooth at z = v, which readily follows from the Stokes’ theorem.
Parts (iv) and (v) are proved similarly. In particular, using (4.18) we obtain for z �= w,

Lµ̄DzG(z, w) = −µ(z)∂z∂z̄G(z, w) − ρ(z)∂zρ(z)−1µ(z)∂z̄G(z, w)

+ 2ρ(z)∂zρ(z)−1∂z

∫∫

F

∂ūG(z, u)∂ūG(u, w)µ(u)d2u

= −µ(z)∂z∂z̄G(z, w) − ρ(z)∂zρ(z)−1µ(z)∂z̄G(z, w)

+ 2ρ(z)∂zρ(z)−1
∫∫

F

∂ū∂zG(z, u)∂ūG(u, w)µ(u)d2u

+ ρ(z)∂zρ(z)−1µ(z)∂z̄G(z, w)

= −1

2
ρ(z)µ(z)G(z, w) + 2

∫∫

F

∂ūDzG(z, u)∂ūG(u, w)µ(u)d2u.

��
Corollary 5.5. Let hε be a smooth family of �εµ-automorphic functions on �εµ. Then

(i)

Lµ

∫∫

F

DzG(z, u)h(u)ρ(u)d2u =
∫∫

F

(LµDzG(z, u)h(u)

+ DzG(z, u)Lµh(u))ρ(u)d2u,
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(ii)

Lµ̄

∫∫

F

DzG(z, u)h(u)ρ(u)d2u =
∫∫

F

(Lµ̄DzG(z, u)h(u)

+ DzG(z, u)Lµ̄h(u))ρ(u)d2u

+
1

2
ρ(z)µ(z)h(z),

where integrals are understood in the principal value sense.

Proof. Follows from part (iv) of Lemma (5.4) and definition of the principal value
integral. ��

For a global coordinate z on X � �\�, set

K�(z, w) =
∑

γ∈�

γ ′(w)2

(z − γw)4 . (5.36)

The kernel K� is a meromorphic quadratic differential for � in z and w, with the fourth
order pole at z = w. When z is the Fuchsian global coordinate, it follows from (5.24)
that

K�(z, w) = π

3
DzDwG(z, w). (5.37)

Lemma 5.6. Let z be a global coordinate z on X � �\� and µ ∈ �−1,1(�). For
H(z) = ∂z∂zG(z, z) we have

Lµ H(z) = 2
∫∫

F

(

(∂z∂wG(z, w))2 − 1

4π2 K�(z, w)

)

µ(w)d2w,

Lµ̄ H(z) = 2
∫∫

F

(∂z∂w̄G(z, w))2 µ(w)d2w − 1

4π
ρ(z)µ(z).

Proof. Let z be the Fuchsian global coordinate on X � �\U and µ|L = 0, so that
corresponding �εµ = f εµ ◦ � ◦ ( f εµ)−1 are quasi-Fuchsian groups for ε �= 0. In order
to use representation (5.16), we need to change a quasi-Fuchsian global coordinate on
Xεµ � �εµ\�εµ

1 , where �
εµ
1 = f εµ(U), to the Fuchsian global coordinate, given the

covering Jεµ : U → �
εµ
1 . It follows from (5.20) that

Lµ H(z) = lim
z′→z

Lµ

(

∂z∂z′ G(z, z′) − ∂z∂z′G(z, z′) − 1

12π
S(J−1)(z)

)

.

Using Remark 4.1, the formula

LµG(z, z′) = 2
∫∫

U

∂wG(z, w)∂wG(w, z′)µ(w)d2w,
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and (5.6) and (5.26), we obtain

Lµ H(z) = 2 lim
z′→z

∫∫

U

∂z∂wG(z, w)∂z′∂w(G(w, z′) − G(w, z′))µ(w)d2w

= 2
∑

γ∈�
γ �=id

∫∫

U

∂z∂wG(z, w)∂z∂wG(γw, z)µ(w)d2w

= 2
∫∫

F

∑

γ1,γ2∈�
γ1 �=γ2

∂z∂wG(z, γ1w)∂z∂wG(γ2w, z)µ(w)d2w,

where integrals are understood in the principal value sense. Below we will show that for
all z ∈ U,

lim
ε→0

∫∫

Uε(z)

(∂z∂wG(z, w))2µ(w)d2w = 0, (5.38)

where Uε(z) = {w ∈ U : |w − z| ≥ ε}. Thus we get

LµH(z) = 2
∫∫

F

(∂z∂wG(z, w))2µ(w)d2w,

where the integral is understood in the principal value sense. For a global coordinate
given by X = �\� we obtain, using (5.20) and (4.11),

LµH(z) = 2
∫∫

F

(∂z∂wG(z, w))2 µ(w)d2w − 1

2π2

∫∫

C

µ(w)

(z − w)4 d2w

= 2
∫∫

F

(

(∂z∂wG(z, w))2 − 1

4π2 K�(z, w)

)

µ(w)d2w.

To prove (5.38), it is convenient to use the unit disc D = {z ∈ C : |z| < 1}. The
kernel G(z, w) is given by the same formula (5.3), where now

u(z, w) = |z − w|2
(1 − |z|2)(1 − |w|2) .

Using the Ahlfors’ formula

µ(w) = 3(1 − |w|2)2

π

∫∫

D

µ(ζ )

(1 − ζ w̄)4 d2ζ, (5.39)
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we obtain

lim
ε→0

∫∫

Uε(z)

(∂z∂wG(z, w))2µ(w)d2w = lim
ε→0

∫∫

Dε(z)

(∂z∂wG(z, w))2µ(w)d2w

= lim
ε→0

3

π

∫∫

Dε(z)

∫∫

D

(∂z∂wG(z, w))2 (1 − |w|2)2

(1 − ζ w̄)4 µ(ζ )

×d2ζd2w

= 3

π

∫∫

D

A(z, ζ )µ(ζ )d2ζ,

where Dε(z) = {w ∈ D : |w − z| ≥ ε} and

A(z, ζ ) = lim
ε→0

∫∫

Dε(z)

(∂z∂wG(z, w))2 (1 − |w|2)2

(1 − ζ w̄)4 d2w.

Using (5.5), we get A(σ z, σ ζ )σ ′(z)2σ ′(ζ )2 = A(z, ζ ) for all σ ∈ PSU(1, 1), and by
explicit computation,

∂z∂wG(0, w) = − 1

2π

w̄2

(1 − |w|2)
(

1 − 3|w|2
|w|4 − 2

1 − |w|2 log |w|2
)

.

Using polar coordinates, we immediately obtain that A(0, ζ ) = 0 and, therefore, A(z, ζ ) =
0 for all z, ζ ∈ D.

Finally, using (3.12) and (4.3), we have for a global coordinate z on X � �\�,

Lµ̄H(z) = lim
z′→z

Lµ̄

(

∂z∂z′ G(z, z′) +
1

2π

(
1

(z − z′)2 − 1

2
ρ(z)

z̄ − z̄′

z − z′

))

= lim
z′→z

(

2
∫∫

F

∂z∂w̄G(z, w)∂z′∂w̄G(w, z′)µ(w)d2w

− 1

4π

ρ(z)

z − z′
(

ḟ (z) − ḟ (z′) − (z̄ − z̄′) ḟz(z)
))

= 2
∫∫

F

(∂z∂w̄G(z, w))2 µ(w)d2w − 1

4π
ρ(z) µ(z).

On the other hand, using (4.12), we have for the Fuchsian global coordinate on X � �\U,

Lµ̄ H(z) = 2
∫∫

F

(∂z∂w̄G(z, w))2µ(w)d2w − 2
∫∫

U

(∂z∂w̄G(z, w))2 µ(w)d2w

+
1

24π
ρ(z)µ(z).

Hence, ∫∫

U

(∂z∂w̄G(z, w))2µ(w)d2w = 7

48π
ρ(z)µ(z), (5.40)

which can be also verified directly. ��
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6. One-Point Correlation Functions

Here we compute one-point correlation functions 〈〈T (z)X〉〉 and 〈〈T̄ (z̄)X〉〉 in all orders
of the perturbation theory.

Theorem 6.1. Let F be a formal function on the Schottky space Sg, associated with
the free energy FX and defined in Sect. 4.1. For every t ∈ Sg let Xt � �t\�t , where
�t is the corresponding Schottky group, and let Jt = J−1

S ◦ JF , where JS and JF are
covering maps corresponding to the Schottky and Fuchsian uniformizations of Xt . Then
for every t ∈ Sg correlation functions 〈〈T (z)Xt 〉〉 and 〈〈T̄ (z̄)Xt 〉〉 are holomorphic and
anti-holomorphic quadratic differentials for �t , and

(∂F)(t) = 1

π

(

〈〈T (z)Xt 〉〉 − 1

12
S(J−1

t )(z)

)

, (6.1)

(∂̄F)(t) = 1

π

(

〈〈T̄ (z̄)Xt 〉〉 − 1

12
S(J−1

t )(z̄)

)

, (6.2)

which are understood as equalities in 1
�
�2,0(�t )[[�]] and 1

�
�0,2(�t )[[�]] respectively.

The same statement holds for the Teichmüller space Tg.

Remark 6.2. Slightly abusing notations, we will write (6.1)–(6.2) as

∂ log〈X〉 = − 1

π

(

〈〈T (z)X〉〉 − 1

12
S(J−1)(z)

)

, (6.3)

∂̄ log〈X〉 = − 1

π

(

〈〈T̄ (z̄)X〉〉 − 1

12
S(J−1)(z̄)

)

. (6.4)

These equations are conformal Ward identities with single insertion of the stress-energy
tensor for quantum Liouville theory on compact Riemann surfaces. In particular, it fol-
lows from (6.3) that 〈〈T (z)X〉〉 is a formal holomorphic quadratic differential on �t ,
i.e., every term in its perturbative expansion is a holomorphic quadratic differential for
�t .

Proof. Since F is real-valued, Eq. (6.2) follows from (6.1). We prove (6.1) in all orders
of the perturbation theory by verifying it at the classical, one-loop, and higher loops
levels. For t ∈ Sg we will abbreviate � = �t , X = Xt , J = Jt , etc.

6.1. Classical contribution. Formula (4.10) gives (6.1) at the classical level.

6.2. One-loop contribution. According to (3.9)–(3.12),

〈〈T (z)X〉〉1−loop = −π

⎛

⎝H(z) +
∫∫

F

DzG(z, w)G(w,w)ρ(w)d2w

⎞

⎠ ,

where H(z) = ∂z∂zG(z, z) and F is a fundamental domain for � in �, and is given by
the following graphs (see Fig. 2):
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Fig. 2.

On the other hand, it follows from Definition 3.1 that at the one-loop level FX =
1
2 log Z(2). It was proved in [TZ91, Sect. 3], using the Fuchsian global coordinate on
X � �\U that

∂ log Z(2) = −2P(H), (6.5)

where P is an orthogonal projection operator onto the space of holomorphic quadratic
differentials.

Remark 6.3. For any choice of a global coordinate on X ,

∂ log Z(2) = −2P

(

H +
1

12π
S(J−1)

)

.

Using (6.5), representation (5.27) and the Stokes’ theorem, we get

∂ log Z(2) = −8
∫∫

F

DzDw̄G(z, w)H(w)ρ(w)−1d2w

= −2 lim
ε→0

∫∫

Fε(z)

∂w̄ R(w, z)H(w)d2w

= 2
∫∫

F

R(w, z)∂w̄ H(w)d2w + i
∫

∂ Fε(z)

R(w, z)H(w)dw.

Here R(z, w) is given by (5.29) and Fε(z) = F \ {|w − z| ≤ ε}. Since R(w, z)H(w)

is a (1, 0) tensor for �, the line integral over ∂ F vanishes. Using (5.30), we get for the
remaining line integral, where Cε(z) = {|w − z| = ε},8

−i lim
ε→0

∮

Cε(z)
R(w, z)H(w)dw = −2H(z).

8 Here and in what follows all contours like Cε(z) are oriented counter-clockwise.
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Now using (5.18), (5.31), (5.35) and the Stokes’ theorem, we obtain

2
∫∫

F

R(w, z)∂w̄ H(w)d2w =
∫∫

F

R(w, z)∂w(G(w,w))ρ(w)d2w

= lim
ε→0

⎛

⎜
⎝−

∫∫

Fε(z)

∂w(ρ(w)R(w, z))G(w,w)d2w

− i

2

∫

Cε(z)
R(w, z)G(w,w)dw̄

)

= −2
∫∫

F

DzG(z, w)G(w,w)ρ(w)d2w.

Thus in terms of the the Fuchsian global coordinate on X we have

∂ log〈X〉1−loop = − 1

π
〈〈T (z)X〉〉1−loop. (6.6)

Now using (5.20) and Remark 6.3, we get for the Schottky global coordinate on X ,

∂ log〈X〉1−loop = − 1

π

(

〈〈T (z)X〉〉1−loop − 1

12
S(J−1)(z)

)

, (6.7)

where J = J−1
S ◦ JF .

6.3. Higher loops. The higher loop terms in FX do not depend on the choice of a global
coordinate on X , and for convenience we will be using the Fuchsian global coordinate.

Define the “forgetful map” p1 : G(c)
{z} → G(c)

≥3 by eliminating the labeled vertex of
valency 1 or 2. Namely, if ϒ is a graph with a labeled vertex v1 of valency 1 and e is
the edge connecting it to a vertex v2 of valency larger than 3, then p1(ϒ) is obtained
by removing the vertex v1 and the edge e. If the valency of v2 is 3, we also remove the
vertex v2 and replace two remaining edges at v2 by a single edge. If ϒ is a graph with a
labeled vertex v1 of valency 2 with edges e1 and e2, then p1(ϒ) is obtained by removing
the vertex v1 and replacing the edges e1, e2 by a single edge. Clearly, χ(ϒ) = χ(p1(ϒ))

and Aut(ϒ) = Aut(p1(ϒ)). Conversely, if ϒ ′ ∈ p−1
1 (ϒ), then ϒ ′ is obtained from ϒ

by one of the following ways.

(a) Attach an extra edge e to the midpoint of an edge of ϒ , so that one of its endpoints
becomes a vertex of valency 3, and the other becomes a labeled vertex of valency1.

(b) Insert a labeled vertex v of valency 2 at the midpoint of an edge of ϒ .
(c) Attach an extra edge e to a vertex v of valency n of ϒ , so that v becomes a vertex

of valency n + 1, and the other endpoint of e becomes a labeled vertex of valency 1.

We have that in case (a) V ′ = V + 2 and ε1(ϒ
′) = 1, in case (b) V ′ = V + 1 and

ε1(ϒ
′) = 0, and in case (c) V ′ = V + 1 and ε1(ϒ

′) = 1.
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We will show that at the higher loop level equation (6.1) is valid graph by graph, i.e.,
for every ϒ ∈ G(c)

≥3 with more than one loop,

∂Wϒ(X) = −2
∑

ϒ ′∈p−1
1 (ϒ)

(−1)|V (ϒ)|+|V (ϒ ′)|+ε1(ϒ
′)Wϒ ′(X; z). (6.8)

Using (3.6)–(3.7) and the Leibniz rule, we get

LµWϒ(X) =
∑

e∈E(ϒ)

∫∫

X

∫∫

X

LµG(Pv0(e), Pv1(e))W e
ϒ(X)(Pv0(e), Pv1(e)) (6.9)

×d Pv0(e)d Pv1(e),

where

W e
ϒ(X)(Pv0(e), Pv1(e)) =

∫

· · ·
∫

X V ′

∏

e′∈E(ϒ)\{e}
G(Pv0(e′), Pv1(e′))

V ′
∏

k=1

d Pk .

Here V ′ = V − 2 unless v0(e) = v1(e), in which case V ′ = V − 1 and there is a single
integration over Pv0(e) in (6.9).

First we consider the case v0(e) �= v1(e). Using part (i) of Lemma 5.4, we get that
the contribution of an edge e into LµWϒ(X) is

2
∫∫

F

∫∫

F

W e
ϒ(z1, z2)

⎛

⎝
∫∫

F

∂zG(z1, z)∂zG(z2, z)µ(z)d2z

⎞

⎠ ρ(z1)ρ(z2)d
2z1d2z2.

Using (5.27), we get that the contribution of the edge e to ∂Wϒ(X) is
∫∫

F

∫∫

F

W e
ϒ(z1, z2)I (z1, z2)ρ(z1)ρ(z2)d

2z1d2z2,

where

I (z1, z2) = 8
∫∫

F

DzDw̄G(z, w)∂wG(z1, w)∂wG(z2, w)ρ(w)−1d2w,

and the change of the order of integrations is easily justified. Using the Stokes’ theorem
and setting Fε(z, z1, z2) = Fε(z) \ {{|w − z1| ≤ ε} ∪ {|w − z2| ≤ ε}}, Cε(z1, z2) =
{|w − z1| = ε} ∪ {|w − z2| = ε}, we get

I = −2 lim
ε→0

∫∫

Fε(z,z1,z2)

R(w, z)∂w̄(∂wG(z1, w)∂wG(z2, w))d2w

+ i lim
ε→0

∮

Cε(z)
R(w, z)∂wG(z1, w)∂wG(z2, w)dw

+ i lim
ε→0

∮

Cε(z1,z2)

R(w, z)∂wG(z1, w)∂wG(z2, w)dw

= I1 + I2 + I3.
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As in the one-loop case, using property P3, (5.12) and (5.31), we obtain for z �= z1, z2,

I1 = −
∫∫

F

ρ(w)R(w, z)∂w(G(z1, w)G(z2, w))d2w

= 2
∫∫

F

DzG(z, w)G(z1, w)G(z2, w)ρ(w)d2w,

I2 = 2∂zG(z1, z)∂zG(z2, z),

I3 = (R(z1, z)∂z1 + R(z2, z)∂z2)G(z1, z2).

Now it follows from (3.10)–(3.11) that the terms I1 and I2 correspond, respectively,
to the contribution into (6.8) of graphs of type (a) and (b) such that the corresponding
edge e is not a loop. Assuming that there are no self-loops starting at v0(e) and v1(e), we
can collect terms I3 corresponding to all edges having v0(e) or v1(e) as their endpoints.
This gives

∫∫

F

W z1
ϒ ρ(z1)R(z1, z)∂z1

n1∏

k=1

G(z1, uk)d
2z1

+
∫∫

F

W z2
ϒ ρ(z2)R(z2, z)∂z2

n2∏

l=1

G(z2, vl)d
2z2

= −2
∫∫

F

W z1
ϒ DzG(z, z1)

n1∏

k=1

G(z1, uk)ρ(z1)d
2z1

−2
∫∫

F

W z2
ϒ DzG(z, z2)

n2∏

l=1

G(z2, vl)ρ(z2)d
2z2,

where u1, . . . , un1 and v1, . . . , vn2 , respectively, parameterize all vertices in the stars of
v1(e) and v2(e). These terms correspond to the contribution into (6.8) from the graphs
of type (c) such that there are no self-loops starting at v0(e) and v1(e).

For the remaining case when v0(e) = v1(e), or when there are self-loops starting at
v0(e) or v1(e), we consider the principal value integral

Ĩ = 8
∫∫

F

DzDw̄G(z, w)(∂wG(z1, w))2ρ(w)−1d2w

= Ĩ1 + Ĩ2 + Ĩ3,

where as in the previous case,

Ĩ1 = 2
∫∫

F

DzG(z, w)G(z1, w)2ρ(w)d2w,

Ĩ2 = 2(∂zG(z1, z))2,

Ĩ3 = i lim
ε→0

∮

Cε(z1)

R(w, z)(∂wG(z1, w))2dw.
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It follows from (3.10)–(3.11) that the terms Ĩ1 and Ĩ2 correspond, respectively, to the
contribution into (6.8) of the graphs of type (a) and (b) such that the corresponding edge
e is a loop. To evaluate Ĩ3, we use

(∂wG(z1, w))2 =
∑

γ1,γ2∈�

∂wG(γ1z1, w)∂wG(γ2z1, w)

=
∑

γ1 �=γ2∈�

∂wG(γ1z1, w)∂wG(γ2z1, w) +
∑

γ∈�

(∂wG(γ z1, w))2,

and write Ĩ3 = Ĩ3,1 + Ĩ3,2. Using (5.9) and (5.5) we obtain

Ĩ3,1 = i
∑

γ1 �=γ2∈�

lim
ε→0

∮

Cε(z1)

R(w, z)∂wG(γ1z1, w)∂wG(γ2z1, w)dw

= 2
∑

γ �=id∈�

R(z1, z)∂wG(γ z1, w)|w=z1
= R(z1, z)∂z1 G(z1, z1),

and using property (5.31) we get

Ĩ3,2 = i
∑

γ∈�

lim
ε→0

∮

Cε(z1)

R(w, z)(∂wG(γ z1, w))2dw = − 1

π
DzG(z, z1).

Now collecting all terms Ĩ3,1 corresponding to edges having the vertex v0(e) = v1(e)
as an endpoint, we get

∫∫

F

W z1
ϒ ρ(z1)R(z1, z)∂z1

n1∏

k=1

G(z1, uk)d
2z1

= −2
∫∫

F

W z1
ϒ DzG(z, z1)

n1∏

k=1

G(z1, uk)ρ(z1)d
2z1,

and collecting all terms Ĩ3,2 we obtain

−m1

π

∫∫

F

W z1
ϒ DzG(z, z1)

n1∏

k=2

G(z1, uk)ρ(z1)d
2z1,

where m1 is the number of self-loops at the vertex v0(e) = v1(e). Thus in accordance
with the Feynman rules in Sect. 3.2, terms Ĩ3 correspond to the contribution into (6.8)
of the remaining graphs of type (c). ��
Remark 6.4. It is elementary to show, using (5.6) and (5.21), that

∫∫

F

DzG(z, w)ρ(w)d2w = 0,

so that
∫∫

F

DzG(z, w)G(w,w)ρ(w)d2w =
∫∫

F

DzG(z, w)
(
G(w,w) + 1

2π

)
ρ(w)d2w.

Thus the Feynman rule for vertices with self-loops is consistent with the regularization
at the one loop level.
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7. Two-Point Correlation Function—T T Equation

Here we compute two point correlation functions 〈〈T (z)T (w)X〉〉 and 〈〈T̄ (z̄)T̄ (w̄)X〉〉
in all orders of perturbation theory. Namely, we express them through one point cor-
relation functions 〈〈T (z)X〉〉 and 〈〈T̄ (z̄)X〉〉, which according to Theorem 6.1 can be
considered as formal (1, 0) and (0, 1)-forms on the Schottky space Sg . Using notations
in Sect. 4.3, we have the following result.

Theorem 7.1. For every t ∈ Sg correlation functions 〈〈T (z)T (w)Xt 〉〉 and 〈〈T̄ (z̄)T̄ (w̄)

Xt 〉〉, where Xt � �t\�t , are meromorphic and anti-meromorphic quadratic differen-
tials for �t respectively, having only fourth order poles at z = w and z̄ = w̄. For
t ∈ U0 ⊂ Sg—a coordinate chart of the origin of the Schottky space Sg—we have

∂s〈〈T (z)Xt 〉〉 = − 1

π

(
〈〈T (z)T (w)Xt 〉〉 − c

2
K�t (z, w)

)

+ (2∂z R(z, w) + R(z, w)∂z)〈〈T (z)Xt 〉〉 + T (z, w), (7.1)

∂̄s〈〈T̄ (z̄)Xt 〉〉 = − 1

π

(
〈〈T̄ (z̄)T̄ (w̄)Xt 〉〉 − c

2
K�t (z̄, w̄)

)

+ (2∂z̄ R(z̄, w̄) + R(z̄, w̄)∂z̄)〈〈T̄ (z̄)X〉〉 + T (z, w). (7.2)

Here c = 12

�
+ 1 and T (z, w) = ∑∞

n=−1 �
nTn(z, w) with Tn(z, w) are smooth

quadratic differentials for �t in z and w which are holomorphic in w. Kernels R(z, w)

and K�(z, w) are given explicitly by (5.29) and (5.36) respectively, and R(z̄, w̄) =
R(z, w), K�(z̄, w̄) = K�(z, w). The same statement holds for the Teichmüller space
Tg.

Equations (7.1)–(7.2) are conformal Ward identities with two insertions of same
type components of the stress-energy tensor for quantum Liouville theory on compact
Riemann surfaces.

Proof. For t ∈ Sg we abbreviate � = �t , X = Xt , J = Jt , K = K�t , etc. Equation
(7.2) follows from (7.1), and we will prove (7.1) by computing ∂s〈〈T (z)X〉〉 in all orders
of perturbation theory.

7.1. Classical contribution. As it follows from (4.11),

LνTcl(z) = 6

π�

∫∫

C

ν(w)

(z − w)4 d2w = 6

π�

∫∫

F

K (z, w)ν(w)d2w,

where F is a fundamental domain for � in �. Using Stokes’ theorem, (5.30) and (5.32),
we get

Pw(K )(z, w) = 4
∫∫

�\�
DwDūG(w, u)K (z, u)ρ(u)−1d2u

= i

2
lim
ε→0

(∮

Cε(w)

R(u, w)K (z, u)du +
∮

Cε(z)
R(u, w)K (z, u)du

)

= K (z, w) − π

3
DzDwG(z, w) +

π�

6
(2∂z R(z, w) + R(z, w)∂z) Tcl(z).

(7.3)
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It follows from Remark 5.2 that Pw(K )(z, w), in agreement with (5.28), is a smooth
quadratic differential in z and w which is holomorphic in w, and such that (Pw(K )

(z, · ), ν) = (K (z, · ), ν) for all ν ∈ �−1,1(�). In particular,
∫∫

F

(
2DzDwG(z, w) − �(2∂z R(z, w) + R(z, w)∂z)Tcl(z)

)
ν(w)d2w = 0. (7.4)

On the other hand,

〈〈T (z)T (w)X〉〉cl = 2π

�
DzDwG(z, w)

is a meromorphic quadratic differential in variables z and w which corresponds to the
single tree graph (see Fig. 3):

Fig. 3.

Thus we obtain

∂s Tcl(z) = 6

π�
Pz(Pw(K ))(z, w) = − 1

π

(

〈〈T (z)T (w)X〉〉cl − 6

�
K (z, w)

)

+2Tcl(z)∂z R(z, w) + ∂zTcl(z)R(z, w) +
6

π�
T (z, w),

where T (z, w) = Pz(Pw(K ))(z, w) − Pw(K )(z, w) is a smooth quadratic differen-
tial in variables z and w, holomorphic in w. Note that since ∂Tcl(z) = 0, the kernel
Pz(Pw(K ))(z, w) is symmetric.

7.2. One-loop contribution. At the one loop level,

〈〈T (z)X〉〉1−loop = −π

⎛

⎝H(z) +
∫∫

F

DzG(z, u)G(u, u)ρ(u)d2u

⎞

⎠ ,

corresponding to two graphs in Fig. 2. On the other hand, it is easy to see that there
are eight graphs at the one loop level that have two vertices with labels z and w, which
contribute to 〈〈T (z)T (w)X〉〉1−loop. They are given by Fig. 4.
Using parts (ii) and (iv) of Lemma 5.4, Corollary 5.5 and Lemma 5.6, we get

Lν〈〈T (z)X〉〉1−loop = −π
(

Lν H(z) +
∫∫

F

LνDzG(z, u)G(u, u)ρ(u)d2u

+
∫∫

F

DzG(z, u)LνG(u, u)ρ(u)d2u
)

= −π

∫∫

F

E(z, w)ν(w)d2w,
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Fig. 4.

where E(z, w) = E1(z, w) + E2(z, w) + E3(z, w) and

E1(z, w) = 2(∂z∂wG(z, w))2 − 1

2π2 K (z, w),

E2(z, w) = 2
∫∫

F

Dz∂wG(z, w)∂wG(w, u)G(u, u)ρ(u)d2u,

E3(z, w) = 2
∫∫

F

DzG(z, u)(∂wG(w, u))2ρ(u)d2u.

According to Remark 5.2, Pw(Ei )(z, w), i = 1, 2, 3, are holomorphic quadratic differ-
entials in w. We compute them by using the Fuchsian global coordinate on X � �\U,
so K (z, w) now stands for the kernel (5.36) for the Fuchsian group �. From the Stokes’
theorem and property P3 it follows that

P(E1) = 4
∫∫

F

DwDūG(w, u)

(

2(∂z∂uG(z, u))2 − 1

2π2 K (z, u)

)

ρ(u)−1d2u

= −
∫∫

F

ρ(u)R(u, w)∂u(∂zG(z, u))2d2u

+ i lim
ε→0

∮

Cε(w)

R(u, w)

(

(∂z∂uG(z, u))2 − 1

4π2 K (z, u)

)

du
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+ i lim
ε→0

∮

Cε(z)

R(u, w)

(

(∂z∂uG(z, u))2 − 1

4π2 K (z, u)

)

du

= T1 + T2 + T3.

Using again the Stokes’ theorem, (5.31), and observing that

lim
ε→0

∮

Cε(z)

ρ(u)R(u, w)(∂zG(z, u))2dū = 0,

we obtain

T1 = 2
∫∫

F

DwG(u, w)(∂zG(z, u))2ρ(u)d2u.

The term T1 corresponds to the contribution of Graph 1 into 〈〈T (z)T (w)X〉〉1−loop.
Using (5.30), we get

T2 = 2(∂z∂wG(z, w))2 − 1

2π2 K (z, w),

where the first term corresponds to Graph 2. Since

(∂z∂uG(z, u))2 − 1

4π2 K (z, u) = 2∂z∂uG(z, u)
∑

γ �=id∈�

∂z∂uG(γ z, u)γ ′(z) + O(1)

as u → z, using (5.17) we obtain

T3 = (2∂z R(z, w) + R(z, w)∂z)H(z). (7.5)

To compute Pw(E2) we observe that by the Stokes’ theorem and property P3,

8
∫∫

F

DwDūG(w, u)Dz∂uG(z, u)∂uG(u, v)ρ(u)−1d2u

= −
∫∫

F

ρ(u)R(u, w)∂u(DzG(z, u)G(u, v))d2u

+ i lim
ε→0

∮

Cε

R(u, w)Dz∂uG(z, u)∂uG(u, v)du

= 2
∫∫

F

DwG(w, u)DzG(z, u)G(u, v)ρ(u)d2u + 2Dz∂wG(z, w)∂wG(w, v)

+ R(v,w)Dz∂vG(z, v) + 2Dw∂zG(z, w)∂zG(z, v)

+ (2∂z R(z, w) + R(z, w)∂z)DzG(z, v),

where Cε = Cε(v)∪Cε(w)∪Cε(z), and in the last line we used (5.30) and (5.33). Thus
we obtain

Pw(E2)(z, w) = 8
∫∫

F

∫∫

F

DwDūG(w, u)Dz∂uG(z, u)∂uG(u, v)

× G(v, v)ρ(u)−1ρ(v)d2ud2v

= T4 + T5 + T6 + T7 + T8,
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where

T4 = 2
∫∫

F

∫∫

F

DwG(w, u)DzG(z, u)G(u, v)G(v, v)ρ(u)ρ(v)d2ud2v

and

T5 = 2
∫∫

F

Dz∂wG(z, w)∂wG(w, v)G(v, v)ρ(v)d2v

correspond to Graphs 3 and 4,

T6 =
∫∫

F

R(v,w)∂vDzG(z, v)G(v, v)ρ(v)d2v,

while

T7 = 2
∫∫

F

Dw∂zG(z, w)∂zG(z, v)G(v, v)ρ(v)d2v

corresponds to Graph 5, and

T8 = (2∂z R(z, w) + R(z, w)∂z)

∫∫

F

DzG(z, v)G(v, v)ρ(v)d2v.

Finally, the computation in Sect. 6.3 gives

Pw(E3)(z, w) = 4
∫∫

F

DwDūG(w, u)E3(z, u)ρ(u)−1d2u

= 8
∫∫

F

∫∫

F

DzG(z, v)DwDūG(w, u)(∂uG(u, v))2ρ(u)−1ρ(v)d2ud2v

= 2
∫∫

F

∫∫

F

DzG(z, v)DwG(w, u)G(u, v)2ρ(u)ρ(v)d2ud2v

+ 2
∫∫

F

DzG(z, v)(∂wG(w, v))2ρ(v)d2v

+
∫∫

F

DzG(z, v)R(v,w)∂vG(v, v)ρ(v)d2v

− 1

π

∫∫

F

DzG(z, v)DwG(w, v)ρ(v)d2v

= T9 + T10 + T11 + T12.

The first two terms T9 and T10 correspond to Graphs 6 and 7. Using (5.31) we see that
the terms T6, T11 and T12 correspond to the remaining Graph 8. Note that it is the term
T12 which is responsible for the regularization of the self-loop in Sect. 3.2.
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Since ∂2 = 0, we get from Theorem 6.1 that the kernel Pz(Pw E))(z, w) is symmetric.
Thus for the Fuchsian global coordinate on X ,

∂s〈〈T (z)X〉〉1−loop = −π Pz(Pw(E))(z, w) (7.6)

= − 1

π

(

〈〈T (z)T (w)X〉〉1−loop − 1

2
K (z, w)

)

+(2∂z R(z, w) + R(z, w)∂z)〈〈T (z)X〉〉1−loop + T1(z, w),

where T1(z, w) = π Pw(E)(z, w) − π Pz(Pw(E))(z, w) is a smooth quadratic differen-
tial in z and w which is holomorphic in w. It follows from the symmetry of 〈〈T (z)T (w)

X〉〉1−loop that it is a meromorphic quadratic differential in z and w with a fourth order
pole at z = w.

To find ∂s〈〈T (z)X〉〉1−loop for the Schottky global coordinate we observe that, accord-
ing to (5.20), 〈〈T (z)X〉〉1−loop − 1

12S(J−1)(z) behaves as a quadratic differential under
the change of global coordinates. Using formulas (5.37) and S(J−1)(z) = 0, which are
valid for the Fuchsian global coordinate on X , we obtain from (7.6) that for the Schottky
global coordinate,

∂s

(

〈〈T (z)X〉〉1−loop − 1

12
S(J−1)(z)

)

= − 1

π

(
〈〈T (z)T (w)X〉〉1−loop − π

6
DzDwG(z, w)

)

+ (2∂z R(z, w) + R(z, w)∂z)

(

〈〈T (z)X〉〉1−loop − 1

12
S(J−1)(z)

)

+ T1(z, w).

Combining this formula with our computation of ∂s Tcl(z) in Sect. 7.1, we finally obtain

∂s〈〈T (z)X〉〉1−loop = − 1

π

(

〈〈T (z)T (w)X〉〉1−loop − 1

2
K (z, w)

)

+ (2∂z R(z, w) + R(z, w)∂z)〈〈T (z)X〉〉1−loop + T̃1(z, w),

(7.7)

where K (z, w) is again the kernel (5.36) for the Schottky group, and T̃1(z, w) is a smooth
quadratic differential in z and w which is holomorphic in w. Using (6.7) we also get

(∂s − 2∂z R(z, w) − R(z, w)∂z) log〈X〉1−loop

= 1

π2

(
〈〈T (z)T (w)X〉〉1−loop − π

6
DzDwG(z, w)

)
+ T1(z, w). (7.8)

7.3. Higher loops. Similar to Sect. 6.3, define the map p2 : G(c)
z,w → G(c)

z by eliminating
the vertex with label w of valency 1 or 2. We claim that for every ϒ ∈ G(c)

≥3 with more
than one loop,

∑

ϒ ′∈p−1
1 (ϒ)

(−1)|V (ϒ ′)|+ε1(ϒ
′)(∂s − 2∂z R(z, w) − R(z, w)∂z)Wϒ ′(X; z)

= −2
∑

ϒ ′′∈(p2◦p1)−1(ϒ)

(−1)|V (ϒ ′′)|+ε1(ϒ
′′)Wϒ ′′(X; z, w).
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This readily follows from the arguments in Sects. 6.3 and 7.2. Namely, when using the
Leibniz rule we concentrate on the edge e of ϒ ′ with neither of its endpoints being a
labeled vertex of valency 1 or 2, the result follows as in Sect. 6.3. When one of the
endpoints of e is a vertex with label z of valency 1 or 2, repeating arguments in Sect. 7.2
yields an extra contribution

(2∂z R(z, w) + R(z, w)∂z)Wϒ ′(X; z).

Putting everything together proves the theorem. ��
Remark 7.2. Equation (7.1) can be stated as

(Pw Q)(z, w) − (2∂z R(z, w) + R(z, w)∂z)〈〈T (z)X〉〉
= − 1

π

(
〈〈T (z)T (w)X〉〉 − c

2
K (z, w)

)
,

with the kernel Q(z, w) given by

Lν〈〈T (z)X〉〉 =
∫∫

F

Q(z, w)ν(w)d2w.

Using Remark 5.3, we can also state Theorem 7.1 as

Pw(Q1)(z, w) + (2∂zR(z, w) + R(z, w)∂z)〈〈T (z)X〉〉
= − 1

π

(
〈〈T (z)T (w)X〉〉 − c

2
K (z, w)

)
,

which clearly shows that 〈〈T (z)T (w)X〉〉 is meromorphic in z and w.

Corollary 7.3. For µ, ν ∈ �−1,1(�),

Lν〈〈T (z)X〉〉 = − 1

π

∫∫

F

(
〈〈T (z)T (w)X〉〉 − c

2
K (z, w)

)
ν(w)d2w,

L ν̄〈〈T̄ (z̄)X〉〉 = − 1

π

∫∫

F

(
〈〈T̄ (z̄)T̄ (w̄)X〉〉 − c

2
K (z̄, w̄)

)
ν(w)d2w,

where integrals are understood in the principal value sense.

Proof.

Lν〈〈T (z)X〉〉 =
∫∫

F

Q(z, w)ν(w)d2w

=
∫∫

F

(Q1(z, w) + (2∂zR(z, w) + R(z, w)∂z)〈〈T (z)X〉〉) ν(w)d2w

=
∫∫

F

(Pw Q1(z, w) + (2∂zR(z, w) + R(z, w)∂z)〈〈T (z)X〉〉) ν(w)d2w.

��
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Remark 7.4. It follows from Corollary 7.3 that for ν ∈ �−1,1(�),

∫∫

F

(2∂z R(z, w) + R(z, w)∂z)〈〈T (z)X〉〉)ν(w)d2w = 0. (7.9)

In fact, using (5.31) and orthogonality of DwG to harmonic Beltrami differentials, we
get for q ∈ �2,0(�) and ν ∈ �−1,1(�),

∫∫

F

(2∂z R(z, w) + R(z, w)∂z)q(z)ν(w)d2w = 0.

We also have, in agreement with (7.4) and (7.9), that

∫∫

F

DzDwG(z, w)µ(w)d2w = 0.

Corollary 7.5. For µ, ν ∈ �−1,1(�),

LµLν log〈X〉 = 1

π2

∫∫

F

∫∫

F

(
〈〈T (z)T (w)X〉〉 − 6

�
K (z, w)

)
µ(z)ν(w)d2zd2w,

Lµ̄L ν̄ log〈X〉 = 1

π2

∫∫

F

∫∫

F

(
〈〈T̄ (z̄)T̄ (w̄)X〉〉 − 6

�
K (z̄, w̄)

)
µ(z)ν(w)d2zd2w,

where integrals are understood in the principal value sense.

Proof. Follows from Theorem 6.1, Eq. (4.11) and Corollary 7.3. ��

8. Two-Point Correlation Function—T T Equation

Here we compute the two point correlation function 〈〈T (z)T̄ (w̄)X〉〉 in all orders of the
perturbation theory. Using notations in Sect. 4.3, we have the following result.

Theorem 8.1. On the Schottky space Sg,

∂̄〈〈T (z)X〉〉 = 1

π
〈〈T (z)T̄ (w̄)X〉〉. (8.1)

The same statement holds for the Teichmüller space Tg.

Proof. We follow the proof of Theorem 7.1, using L ν̄ instead of Lν . ��
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8.1. Classical contribution. It follows from (4.12) and (5.27) that

L ν̄Tcl(z) = − 1

2�
ρ(z)ν(z) = −2

�

∫∫

F

DzDw̄G(z, w)ν(w)d2w.

Using identification in Sect. 4.3, we get

∂̄Tcl(z) = 2

�
DzDw̄G(z, w) = 1

π
〈〈T (z)T̄ (w̄)X〉〉cl .

This equation corresponds to the single tree graph in Fig. 3 with w replaced by w̄, and
according to (4.10), it is equivalent to

∂̄∂ log〈X〉cl = i

π�
ωW P . (8.2)

8.2. One-loop contribution. At the one loop level, using (5.27), parts (ii) and (iv) of
Lemma 5.1, Corollary 5.5 and Lemma 5.6, we get

L ν̄〈〈T (z)X〉〉1−loop = −π
(

L ν̄ H(z) +
∫∫

F

L ν̄DzG(z, u)G(u, u)ρ(u)d2u

+
∫∫

F

DzG(z, u)L ν̄G(u, u)ρ(u)d2u +
1

2
ρ(z)ν(z)G(z, z)

)

= −π

∫∫

F

Ẽ(z, w)ν(w)d2w,

where Ẽ(z, w) = Ẽ1(z, w) + Ẽ2(z, w) + Ẽ3(z, w) + Ẽ4(z, w) + Ẽ5(z, w), and

Ẽ1(z, w) = 2(∂z∂w̄G(z, w))2 − 1

π
DzDw̄G(z, w),

Ẽ2(z, w) = 2
∫∫

F

Dz∂w̄G(z, w)∂w̄G(w, u)G(u, u)ρ(u)d2u,

Ẽ3(z, w) = 2
∫∫

F

Dz(z, u)(∂w̄G(w, u))2ρ(u)d2u,

Ẽ4(z, w) = −2DzDw̄G(z, w)

∫∫

F

G(z, u)G(u, u)ρ(u)d2u,

Ẽ5(z, w) = 2DzDw̄G(z, w)G(z, z).

Here Ẽ4(z, w) and Ẽ5(z, w) are already anti-holomorphic quadratic differentials for
� in variable w, and we compute the corresponding orthogonal projections of Ẽ1(z, w),
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Ẽ2(z, w) and Ẽ3(z, w) by using the Fuchsian global coordinate on X � �\U. From the
Stokes’ theorem, property P3 and (5.31) it follows that

Pw̄(Ẽ1) = 4
∫∫

F

Dw̄DuG(w, u)

(

2(∂z∂ūG(z, u))2 − 1

π
DzDūG(z, u)

)

ρ(u)−1d2u

= −
∫∫

F

ρ(u)R(ū, w̄)∂ū(∂zG(z, u))2d2u − 1

π
DzDw̄G(z, w)

− i lim
ε→0

∮

Cε(w)

R(ū, w̄)(∂z∂ūG(z, u))2dū

= 2
∫∫

F

Dw̄G(w, u)(∂zG(z, u))2ρ(u)d2u + 2(∂z∂w̄G(z, w))2

− 1

π
DzDw̄G(z, w) − i

2
lim
ε→0

∮

Cε(z)
R(ū, w̄)(∂zG(z, u))2ρ(u)du

= T̃1 + T̃2 + T̃3 + T̃4.

Terms T̃1 and T̃2 correspond to the contributions of Graphs 1 and 2, with w replaced by
w̄, into 〈〈T (z)T̄ (w̄)X〉〉1−loop, and

T̃3 = − 1

π
DzDw̄G(z, w).

To compute T̃4, we use (5.9), (5.31) and

(∂zG(z, u))2 =
∑

γ1 �=γ2∈�

∂zG(z, γ1u)∂zG(z, γ2u) +
∑

γ∈�

(∂zG(z, γ u))2,

to obtain

T̃4 = ρ(z)R(z̄, w̄)
∑

γ �=id∈�

∂zG(z, γ u)|u=z − i

2
lim
ε→0

∮

Cε(z)
R(ū, w̄)(∂zG(z, u))2ρ(u)du

= 1

2
ρ(z)R(z̄, w̄)∂z(G(z, z)) +

1

π
DzDw̄G(z, w).

To compute Pw̄(Ẽ2) we observe that by the Stokes’ theorem, property P3 and (5.31),

8
∫∫

F

Dw̄DuG(w, u)Dz∂ūG(z, u)∂ū G(u, v)ρ(u)−1d2u

= −
∫∫

F

R(ū, w̄)∂ū(DzG(z, u)G(u, v))ρ(u)d2u

− i lim
ε→0

∮

Cε

R(ū, w̄)Dz∂ūG(z, u)∂ū G(u, v)dū

= 2
∫∫

F

Dw̄G(w, u)DzG(z, u)G(u, v)ρ(u)d2u + 2Dz∂w̄G(z, w)∂w̄G(v,w)

+ 2∂zDw̄G(z, w)∂zG(z, v) + R(v̄, w̄)Dz∂v̄G(z, v) + 2DzDw̄G(z, w)G(z, v),
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where Cε = Cε(v) ∪ Cε(w) ∪ Cε(z). Thus we obtain

Pw̄(Ẽ2)(z, w) = 8
∫∫

F

∫∫

F

Dw̄Du G(w, u)Dz∂ū G(z, u)∂ū G(u, v)G(v, v)ρ(u)−1ρ(v)d2ud2v

= T̃5 + T̃6 + T̃7 + T̃8 + T̃9,

where

T̃5 = 2
∫∫

F

∫∫

F

Dw̄G(w, u)DzG(z, u)G(u, v)G(v, v)ρ(u)ρ(v)d2ud2v,

T̃6 = 2
∫∫

F

Dz∂w̄G(z, w)∂w̄G(w, v)G(v, v)ρ(v)d2v,

T̃7 = 2
∫∫

F

∂zDw̄G(z, w)∂zG(z, v)G(v, v)ρ(v)d2v

correspond, respectively, to Graphs 3, 4 and 5 with w replaced by w̄, while

T̃8 =
∫∫

F

R(v̄, w̄)Dz∂v̄G(z, v)G(v, v)ρ(v)d2v

and

T̃9 = −Ẽ4(z, w).

Finally, as in Sect. 6.3, we obtain

Pw̄(Ẽ3)(z, w) = 8
∫∫

F

∫∫

F

DzG(z, v)Dw̄DuG(w, u)(∂ūG(u, v))2ρ(u)−1ρ(v)d2ud2v

= 2
∫∫

F

∫∫

F

DzG(z, v)Dw̄G(w, u)G(u, v)2ρ(u)ρ(v)d2ud2v

+ 2
∫∫

F

DzG(z, v)∂w̄G(w, v)∂w̄G(w, v)ρ(v)d2v

+
∫∫

F

DzG(z, v)R(v̄, w̄)∂v̄G(v, v)ρ(v)d2v

− 1

π

∫∫

F

DzG(z, v)Dw̄G(w, v)ρ(v)d2v

=T̃10 + T̃11 + T̃12 + T̃13.

The first two terms, T̃10 and T̃11, correspond to Graphs 6 and 7. Using the Stokes’ the-
orem and (5.31), we see that the sum T̃3 + T̃4 + Ẽ5 + T̃8 + T̃12 + T̃13 corresponds to the
remaining Graph 8. Thus we have proved

〈〈T (z)T̄ (w̄)X〉〉1−loop = π2 Pw̄(Ẽ)(z, w),
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so that 〈〈T (z)T̄ (w̄)X〉〉1−loop is holomorphic in z and anti-holomorphic in w. Hence

∂̄〈〈T (z)X〉〉1−loop = 1

π
〈〈T (z)T̄ (w̄)X〉〉1−loop.

8.3. Higher loops. As in Sect. 7.3, we claim that for every ϒ ∈ G(c)
≥3 with more than

one loop,
∑

ϒ ′∈p−1
1 (ϒ)

(−1)|V (ϒ ′)|+ε1(ϒ
′)∂̄Wϒ ′(X; z)

= −2
∑

ϒ ′′∈(p2◦p1)−1(ϒ)

(−1)|V (ϒ ′′)|+ε1(ϒ
′′)Wϒ ′′(X; z, w̄),

where now p2 : G(c)
z,w̄ → G(c)

z is the map eliminating the labeled vertex w̄ of valency 1
or 2.

This readily follows from the arguments in Sects. 6.3, 7.3 and 8.2. Since the only
graph in G(c)

z that contains an edge with both end points being a vertex of valency two
is a one-loop tadpole graph, the computation is even simpler than in Sect. 7.3.

It follows from Theorem 8.1 that

L ν̄〈〈T (z)X〉〉 = − 1

π

∫∫

F

〈〈T (z)T̄ (w̄)X〉〉ν(w)d2w. (8.3)

Combining Theorems 6.1 and 8.1, we obtain

Corollary 8.2.

∂̄∂ log〈X〉 = − 1

π2

(
〈〈T (z)T̄ (w̄)X〉〉 − π

6
DzDw̄G(z, w)

)
,

or, equivalently,

LµL ν̄ log〈X〉= 1

π2

∫∫

F

∫∫

F

(
〈〈T (z)T̄ (w̄)X〉〉 − π

6
DzDw̄G(z, w)

)
µ(z)ν(w)d2zd2w.

9. Conformal Ward Identities and Modular Geometry

According to Belavin, Polyakov and Zamolodchikov [BPZ84], conformal symmetry
of the two-dimensional quantum field theory on the Riemann sphere is expressed by
the so-called conformal Ward identities for correlation functions with insertions of the
stress-energy tensor. In particular, one-point Ward identities determine conformal dimen-
sions of primary fields, while two-point Ward identities describe the Virasoro algebra
symmetry of a theory. BPZ conformal Ward identities were generalized to higher genus
Riemann surfaces in [EO87].

As we have already mentioned, Eqs. (6.3)–(6.4) and (7.1)–(7.2), (8.1) are one-point
and two-point Ward identities for quantum Liouville theory on the higher genus Riemann
surfaces. One-point Ward identities for the punctured Riemann sphere were discussed
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previously in [Tak94, Tak96a].9 Here we only observe that from (5.30) we obtain the
following asymptotic for two-point correlation functions:

〈〈T (z)T (w)X〉〉 = c/2

(z − w)4 +
2

(z − w)2 〈〈T (z)X〉〉 − 1

z − w
∂z〈〈T (z)X〉〉

+ regular terms as w → z,

〈〈T (z)T̄ (w̄)X〉〉 = regular terms as w → z,

〈〈T̄ (z̄)T̄ (w̄)X〉〉 = c/2

(z̄ − w̄)4 +
2

(z̄ − w̄)2 〈〈T̄ (z̄)X〉〉 − 1

z̄ − w̄
∂z̄〈〈T̄ (z̄)X〉〉,

+ regular terms as w → z,

where c = 12

�
+ 1. The leading terms in these equations are precisely BPZ Ward iden-

tities, where c is the central charge of the theory.
As was pointed out in [Tak96a], Eqs. (6.3)–(6.4) and (7.1)–(7.2), (8.1) also admit

interpretation in terms of “modular geometry” of Friedan and Shenker. Actually, these
equations give precise meaning to the discussion in [FS87, Sect. 3]. Namely, introduc-
ing10

F̃ = F +
1

24π
Scl , (9.1)

and using (4.11), we can rewrite (6.3)–(6.4) as

∂F̃X = 1

π
〈〈T (z)X〉〉, (9.2)

∂̄F̃X = 1

π
〈〈T̄ (z̄)X〉〉, (9.3)

where ∂ and ∂̄ are (1, 0) and (0, 1) components of de Rham differential on Sg . Inter-

preting eF̃ as a Hermitian metric11 in a trivial holomorphic line bundle Sg × C → Sg ,
we see that 1

π
〈〈T (z)X〉〉 and 1

π
〈〈T̄ (z̄)X〉〉 are (1, 0) and (0, 1) components of the cor-

responding canonical connection12 in the unitary frame. It was proved by Zograf (see
[Zog89, Theorem 3.1]) that the Hermitian metric exp

{ 1
12π

Scl
}

in Sg × C descends to
the Hermitian metric in the Hodge line bundle λH over the moduli space Mg . Since

eF̃ = e
c

24π
Scl eF0 , where F0 is a (formal) function on Mg , we see that the trivial

holomorphic line bundle Sg × C → Sg with the Hermitian metric eF̃ descends to

a “projective holomorphic line bundle” Ec = λ
c/2
H over the moduli space Mg (see

[FS87] for the definition of a projective line bundle).
Correspondingly, Corollaries 7.3 and 8.2 can be interpreted as curvature computations

for Ec. Namely, denote by 1 the section of Ec whose pull-back to the trivial bundle over

9 We plan to address this case in the forthcoming publication.
10 It is interesting to interpret this finite one-loop redefinition of the free energy in invariant terms.
11 Here we are tacitly assuming that F̃ is a smooth function on Sg . Of course, it is only a formal function,

so all geometric objects should be interpreted in a formal category.
12 The connection which is compatible with the Hermitian metric and complex structure in the line bundle.
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Sg is a section identically equal to 1, and by ∇µ, µ ∈ �−1,1(�)—covariant derivative
of the canonical connection. Using Corollary 7.3 we have

∇µ∇ν1 = 1

π

⎛

⎝Lµ +
1

π

∫∫

F

〈〈T (w)X〉〉µ(w)d2w

⎞

⎠
∫∫

F

〈〈T (z)X〉〉ν(z)d2z

= − 1

π2

∫∫

F

∫∫

F

(
〈〈T (z)T (w)X〉〉 − c

2
K (z, w)

)
µ(w)ν(z)d2wd2z

+
1

π2

∫∫

X

〈〈T (z)X〉〉ν(z)d2z
∫∫

X

〈〈T (w)X〉〉µ(w)d2w,

which is symmetric in ν and µ, so that the (2, 0) component of the curvature tensor
vanishes.

Similar statements hold for (0, 2) components. Finally, it follows from Corollary 8.2
that

∇µ∇ν̄1 = 0,

∇ν̄∇µ1 = 1

π

⎛

⎝L ν̄

∫∫

F

〈〈T (z)X〉〉µ(z)d2z

⎞

⎠

= − 1

π2

∫∫

F

∫∫

F

〈〈T (z)T̄ (w̄)X〉〉µ(z)ν(w)d2zd2w.

Thus using the identification in Sect. 4.3 we see that the (1, 1) component of the curvature
tensor is given by

1

π2 〈〈T (z)T̄ (w̄)X〉〉.

Remark 9.1. Since the Hodge line bundle λH is positive, the projective line bundle Ec

is also positive for c > 0. Moreover, assuming that F̃ is a function on Sg given by the
actual integral (3.1), the curvature form 1

π2 〈〈T (z)T̄ (w̄)X〉〉 of the canonical connection

on Ec is a positive definite (1, 1) form on Mg . Indeed, denoting by DLϕ = e− 1
2π�

S(ϕ)Dϕ

the corresponding measure on C M (X) and using that

〈X〉 =
∫∫∫

C M (X)

DLϕ,

we obtain for µ ∈ �−1,1(�),

〈X〉2
∫∫

F

∫∫

F

〈〈T (z)T̄ (w̄)X〉〉µ(z)µ(w)d2zd2w

= 〈X〉
∫∫∫

C M (X)

∣
∣
∣
∣
∣
∣

∫∫

F

T (ϕ)(z)µ(z)d2z

∣
∣
∣
∣
∣
∣

2

DLϕ −

∣
∣
∣
∣
∣
∣
∣

∫∫∫

C M (X)

∫∫

F

T (ϕ)(z)µ(z)d2z DLϕ

∣
∣
∣
∣
∣
∣
∣

2

,
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which is non-negative by Cauchy-Bunyakovskii inequality. In this way we get a Kähler
metric ω on Mg , whose pull-back to Sg has a Kähler potential −F̃ . The corresponding
sympectic form ω is given by the following power series in �,

ω = 1

2π�
ωW P +

∞∑

n=0

�
nω(n). (9.4)

It would be very interesting to give a geometric interpretation of these “quantum correc-
tions” to the Weil-Petersson metric, and to understand the series (9.4) non-perturbatively.

Appendix A. Belavin-Knizhnik Theorem and the T T Equation

Here we compare the one-loop T T̄ equation in Corollary 8.2 with the special case of
Belavin-Knizhnik theorem [BK86]—a local index theorem for families of ∂̄-operators
on Riemann surfaces—a formula for the Chern form of Quillen’s metric in the corre-
sponding determinant line bundle over Mg . Using log〈X〉1−loop = − 1

2 log Z(2), we get
from Corollary 8.2,

LµL ν̄ log Z(2) = − 2

π2

∫∫

F

∫∫

F

〈〈T (z)T̄ (w̄)X〉〉µ(z)ν(w)d2zd2w

+
1

12π
(µ, ν), (A.1)

where (µ, ν) stands for the inner product (4.1) in �−1,1(�). On the other hand, using
D’Hoker-Phong formula [DP86] det �2 = cg Z(2), where �2 is the Laplace operator of
the hyperbolic metric acting on quadratic differentials on X and cg is a constant depend-
ing only on genus, the Belavin-Knizhnik formula for the family of ∂̄-operators acting
on quadratic differentials can be written in the form

LµL ν̄ log Z(2) − LµL ν̄ log det N = 13

12π
(µ, ν). (A.2)

Here N is a Gram matrix with respect to the inner product (4.4) of the bases of holomor-
phic quadratic differentials on the Riemann surfaces Xt , which depend holomorphically
on t ∈ Tg (see [ZT87a] for details and references).

We show how to obtain the Belavin-Knizhnik formula (A.2) from (A.1). First, using
(4.8), [ZT87a, Lemma 1], formulas (2.8) in [ZT87a] and (1.3) in [TZ91], it is elementary
to obtain

LµL ν̄ log det N = −
∫∫

F

∫∫

F

P(z, z)G(z, w)µ(w)ν(w)ρ(w)ρ(z)−1d2zd2w

−
∫∫

F

∫∫

F

P(z, w)G(z, w)µ(z)ν(w)d2zd2w, (A.3)

where P(z, w) = 4DzDw̄G(z, w).

Remark A.1. Formula (A.3) coincides with Wolpert’s formula [Wol86] for the Ricci
tensor of the Weil-Petersson metric on Tg .
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Now using the Fuchsian global coordinate on X � �\U, we rewrite the first term in
(A.3) as

− 4
∫∫

F

∫∫

F

∑

γ∈�

Dz′Dz̄G(z′, γ z)
∣
∣
z′=z G(z, w)µ(w)ν(w)ρ(w)ρ(z)−1d2zd2w.

Using (5.23) and (5.2), we obtain

−4
∫∫

F

∫∫

F

Dz′Dz̄G(z′, z)
∣
∣
z′=z G(z, w)µ(w)ν(w)ρ(w)ρ(z)−1d2zd2w = − 3

4π
(µ, ν).

Using Eqs. (4.2), (5.12), (5.23), property P3 and the Stokes’ theorem, we can rewrite
the remaining part of the first term in (A.3) as

4
∫∫

F

∫∫

F

∑

γ �=id∈�

∂z′Dz̄G(z′, γ z)
∣
∣
z′=z ∂zG(z, w)µ(w)ν(w)ρ(w)ρ(z)−1d2zd2w

= −2
∫∫

F

∫∫

F

∑

γ �=id∈�

∂z′∂z̄G(z′, γ z)
∣
∣
z′=z G(z, w)µ(w)ν(w)ρ(w)d2zd2w

−2
∫∫

F

∫∫

F

∑

γ �=id∈�

∂z̄G(z′, γ z)
∣
∣
z′=z ∂zG(z, w)µ(w)ν(w)ρ(w)d2zd2w

+2i lim
ε→0

∫∫

F

∮

Cε(w)

∑

γ �=id∈�

∂z′∂z̄G(z′, γ z)
∣
∣
z′=z ∂zG(z, w)

×µ(w)ν(w)ρ(w)ρ(z)−1dzd2w

=
∫∫

F

∫∫

F

∑

γ �=id∈�

G(z′, γ z)
∣
∣
z′=z G(z, w)µ(w)ν(w)ρ(z)ρ(w)d2zd2w

+2
∫∫

F

∑

γ �=id∈�

∂z′∂z̄G(z′, γ z)
∣
∣
z′=z µ(z)ν(z)d2z = J1 + J2.

Similarly, the second term in (A.3) can be rewritten as

−4
∫∫

U

∫∫

F

DzDw̄G(z, w)
∑

γ∈�

G(z, γw)µ(z)ν(w)d2zd2w.

To compute the contribution from γ = id ∈ �, we use the identity
∫∫

U

DzDūG(z, u)G(z, u)DuDw̄G(u, w)ρ(u)−1d2u = 1

12π
DzDw̄G(z, w).

Indeed, denoting the integral by B(z, w), we get from (5.5) that

B(σ z, σw)σ ′(z)2σ ′(w)
2 = B(z, w)
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for all σ ∈ PSL(2, R), so it is sufficient to compute it at a fixed z. Using the unit disk
D as a model for the hyperbolic plane (cf. with the proof of Lemma 5.6), it is easy to
compute that B(0, w) = 1

4π2 , and the identity follows. Therefore,

−4
∫∫

U

∫∫

F

DzDw̄G(z, w)G(z, w)µ(z)ν(w)d2zd2w

= −16
∫∫

F

∫∫

U

µ(z)B(z, w)ν(w)d2zd2w = − 1

3π
(µ, ν).

Similarly, the remaining part of the second term in (A.3) can be rewritten as

4
∫∫

U

∫∫

F

∂zDw̄G(z, w)
∑

γ �=id∈�

∂zG(z, γw)µ(z)ν(w)d2zd2w

−
∫∫

F

∑

γ �=id∈�

G(z, γ z)µ(z)ν(z)ρ(z)d2z

= −4
∫∫

U

∫∫

F

∂z∂w̄G(z, w)
∑

γ �=id∈�

∂z∂w̄G(z, γw)µ(z)ν(w)d2zd2w

+2i lim
ε→0

∫∫

F

∮

Cε(z)

∑

γ �=id∈�

∂z∂w̄G(z, γw)∂zG(z, w)µ(z)ν(w)dwd2z

−
∫∫

F

∑

γ �=id∈�

G(z, γ z)µ(z)ν(z)ρ(z)d2z

= J3 − J2 + J4.

Thus

LµL ν̄ log det N = − 13

12π
(µ, ν) + J1 + J3 + J4,

and using (5.15), (5.40) and (5.2), we finally obtain

LµL ν̄ log det N =
∫∫

F

∫∫

F

G(z, z)G(z, w)µ(w)ν(w)ρ(w)ρ(z)d2zd2w − 1

2π
(µ, ν)

− 4
∫∫

F

∫∫

F

(
∂z∂w̄G(z, w)

)2
µ(z)ν(w)d2zd2w

−
∫∫

F

G(z, z)µ(z)ν(z)ρ(z)d2z.

Using this representation for LµL ν̄ log det N , we get the Belavin-Knizhnik theo-
rem (A.2) by carefully analyzing the contribution of each one-loop graph into (A.1).
The corresponding computation is quite tedious and is based on the repeated use of the
Stokes’ theorem. In a sense, it reverses the computation in Sect. 8.2. We leave details to
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the interested reader. Instead, here we present a shortcut which uses (4.6) and Remark
6.3. Namely, from (4.6) and Lemma 5.6 we get

LµL ν̄ log Z(2) = −2L ν̄

∫∫

F

(

H(z) +
1

12π
S(J−1)(z)

)

µ(z)d2z

= − 4
∫∫

F

∫∫

F

(∂z∂w̄G(z, w))2µ(z)ν(w)d2zd2w +
7

12π
(µ, ν)

+ 4
∫∫

F

∫∫

F

H(z)Dz̄G(z, w)µ(w)ν(w)ρ−1(z)ρ(w)d2zd2w.

Using (5.18), Stokes’ theorem and (5.1), we can rewrite the last term as

−2
∫∫

F

∫∫

F

∂zG(z, z)∂z̄G(z, w)µ(w)ν(w)ρ−1(z)ρ(w)d2zd2w

=
∫∫

F

∫∫

F

G(z, z)G(z, w)µ(w)ν(w)ρ(z)ρ(w)d2zd2w

−
∫∫

F

G(z, z)µ(z)ν(z)ρ(z)d2z.

Combining this with the obtained expression for LµL ν̄ log det N gives (A.2).

Remark A.2. Thus the one-loop term in the T T̄ equation can be viewed as another “pack-
aging” of the local index theorem for families of ∂̄-operators on Riemann surfaces. It
would be interesting to find geometric interpretation of higher loop terms.

Appendix B. The Stress-Energy Tensor and the Action Functional

Let z be a Schottky global coordinate on X � �\�. For µ ∈ H−1,1(�) and sufficiently
small ε ∈ C, consider the holomorphic family Xεµ � �εµ\�εµ, where �εµ = f εµ(�)

and �εµ = f εµ ◦ � ◦ ( f εµ)−1. For given ϕ ∈ C M (X), let ϕεµ ∈ C M (Xεµ) be a
smooth family defined by

ϕεµ ◦ f εµ + log | f εµ
z |2 = ϕ. (B.1)

Lemma B.1. Let S : C M (X) → R be the Liouville action functional defined by (2.4),
and let T (ϕ) = ϕzz − 1

2ϕ2
z be the corresponding (2, 0) component of the stress-energy

tensor. We have
∂

∂ε

∣
∣
∣
∣
ε=0

S(ϕεµ) = 2
∫∫

F

T (ϕ)(z)µ(z)d2z. (B.2)

Proof. It repeats verbatim the proof of Theorem 1 in [ZT87c]! Namely, condition (B.1),
which replaces Ahlfors lemma used in [ZT87c], gives

ϕ̇z + ϕzz ḟ = −ϕz ḟz − ḟzz,

ϕ̇z̄ + ϕzz̄ ḟ = −ϕz ḟz̄ − ḟzz̄,
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where

ϕ̇ = ∂

∂ε
ϕεµ

∣
∣
∣
∣
ε=0

,

and the corresponding computation in [ZT87c] works line by line. The Gauss-Bonnet
theorem, used in [ZT87c], is replaced by the equation

∫∫

Fεµ

eϕεµ

d2z =
∫∫

F

eϕ(1 − |εµ|2)d2z,

which follows from (B.1). ��

Lemma B.1 gives a derivation of the stress-energy tensor from the Liouville action func-
tional. We stress that the “transformation law” (B.1), and the form (2.4) of the action
functional, both play a crucial role in this computation. The same statement holds for
the Liouville action functional for the quasi-Fuchsian global coordinate, and the proof
repeats verbatim the proof of Theorem 4.1 in [TT03a].

In conclusion, we present a heuristic derivation of the one-point conformal Ward iden-
tity, which clarifies corresponding arguments in [BPZ84]. Namely, considering (B.1) as
a “change of variables” in the functional integral

〈Xεµ〉 =
∫∫∫

C M (Xεµ)

e− 1
2π�

S(ϕεµ)Dϕεµ,

and assuming that Dϕεµ = Dϕ, we obtain

Lµ〈X〉 = ∂

∂ε

∣
∣
∣
∣
ε=0

〈Xεµ〉 =
∫∫∫

C M (X)

LµS(ϕ)e− 1
2π�

S(ϕ)Dϕ

=
∫∫

F

〈T (z)X〉µ(z)d2z.

Now every infinitesimally trivial Beltrami differential µ gives rise to a family Xεµ con-
formally equivalent to X , so that Lµ〈X〉 = 0. This shows that 〈T (z)X〉 is a holomorphic
quadratic differential for �.

As we have shown, there is a one-loop correction to this naive form of the Ward
identity, which is due to the regularization of the divergent tadpole graph. Thus rigorous
definition of the “integration measure” Dϕ (which, in particular, would make this and
similar arguments work) is a non-trivial problem.
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