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WEIL-PETERSSON METRIC ON THE UNIVERSAL

TEICHMÜLLER SPACE II. KÄHLER POTENTIAL AND

PERIOD MAPPING

LEON A. TAKHTAJAN AND LEE-PENG TEO

Abstract. We study the Hilbert manifold structure on T0(1) — the
connected component of the identity of the Hilbert manifold T (1). We
characterize points on T0(1) in terms of Bers and pre-Bers embeddings,
and prove that the Grunsky operators B1 and B4, associated with the
points in T0(1) via conformal welding, are Hilbert-Schmidt. We define
a “universal Liouville action” — a real-valued function S1 on T0(1), and
prove that it is a Kähler potential of the Weil-Petersson metric on T0(1).
We also prove that S1 is −

1

12π
times the logarithm of the Fredholm

determinant of associated quasi-circle, which generalizes classical results

of Schiffer and Hawley. We define the universal period mapping P̂ :
T (1) → B(ℓ2) of T (1) into the Banach space of bounded operators

on the Hilbert space ℓ2, prove that P̂ is a holomorphic mapping of

Banach manifolds, and show that P̂ coincides with the period mapping
introduced by Kurillov and Yuriev and Nag and Sullivan. We prove

that the restriction of P̂ to T0(1) is an inclusion of T0(1) into the Segal-
Wilson universal Grassmannian, which is a holomorphic mapping of
Hilbert manifolds. We also prove that the image of the topological

group S of symmetric homeomorphisms of S1 under the mapping P̂

consists of compact operators on ℓ2.
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1. Introduction

This is the second part of our paper [TT03b], which will be referred to
as Part I. Here we continue our investigation of the Weil-Petersson met-
ric on the universal Teichmüller space T (1). Namely, we study in detail
the Hilbert manifold structure of T (1) and establish relations between the
Hilbert submanifold T0(1) — the connected component of the identity in
T (1), and classical Grunsky operators Bl, l = 1, 2, 3, 4, associated with the
conformal welding. In Part I, we have described the image of T0(1) un-
der the Bers embedding β : T (1) → A∞(D). Here we characterize T0(1)

in terms of the pre-Bers embedding β̂ : T (1) → A1
∞(D) and prove that

the Grunsky operators B1 and B4 associated with the points in T0(1) are
Hilbert-Schmidt. We establish the relation between eigenvalues of Grunsky
operators and classical Fredholm eigenvalues, generalizing Schiffer’s result
for C3 curves [Sch81]. We prove that the logarithm of the Fredholm deter-
minant of the operator I −B1B

∗
1 associated with points in T0(1) (or, which

is the same, of the Fredholm determinant of I −B4B
∗
4) is, up to a constant,

a Kähler potential for the Weil-Petersson metric on T0(1). We prove the
explicit formula for this Fredholm determinant, expressing it as the “uni-
versal Liouville action”. Using Grunsky operators, we define the universal
period mapping P of T0(1) into the Hilbert space S2 of Hilbert-Scmidt

operators on the Hilbert space ℓ2, as well as the mapping P̂ of T (1) into
the Banach space B(ℓ2) of bounded operators on ℓ2. We prove that P

and P̂ are holomorphic mappings of Hilbert and Banach manifolds respec-

tively. We show that the mapping P̂ coincides with the period mapping,
first introduced by Kirillov and Yuriev [KY88] for the homogenous space
Möb(S1)\Diff+(S1), studied in detail by Nag [Nag92], and then extended
to T (1) by Nag and Sullivan [NS95]1. Finally, we prove that the image of the
topological group S of symmetric homeomorphisms of S1 under the period

mapping P̂ is S∞ ∩ P̂(T (1)), where S∞ is the ideal of the Banach algebra
B(ℓ2) consisting of compact operators on ℓ2.

Below is the detailed description of the paper. In what follows we are
using notations and results from Part I; in particular, the normalization of
the conformal welding for T (1), described in Section 2.2.1, Part I. Namely,
for every [µ] ∈ T (1) we consider the q.c. mapping wµ that fixes −1,−i, 1 as

1It is explained in [Nag92] and [NS95] it what sense the mapping P̂ generalizes the
classical period mapping of compact Riemann surfaces.
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an element of S1\Homeoqs(S
1), which admits a conformal welding

wµ = g−1
µ ◦ fµ,

where fµ and gµ are q.c. mappings whose restrictions on D and D
∗, re-

spectively, are holomorphic functions satisfying fµ(0) = 0, (fµ)′(0) = 1 and
gµ(∞) = ∞.

In Section 2 we characterize the univalent functions associated with the
Hilbert manifold T0(1) in terms of the Hilbert spaces A1

2(D) and A1
2(D

∗) of
holomorphic functions on D and D

∗ respectively, square integrable with re-
spect to the Lebesgue measure. Using the embedding A1

2(D) →֒ A1
∞(D) into

the Banach space of holomorphic functions on D, the Becker-Pommerenke
theorem [BP78], and the characterization of the topological group S of sym-
metric homeomorphisms of S1 given by Gardiner and Sullivan [GS92], we
prove that T0(1) is a subgroup of S. The main result of this section is Theo-
rem 2.12, which states that [µ] ∈ T0(1) if and only if one of the following con-
ditions holds: (i) S(fµ) ∈ A2(D); (ii) A(fµ) ∈ A1

2(D); (iii) S(gµ) ∈ A2(D
∗);

(iv) A(gµ) ∈ A1
2(D

∗). Here S(f) is the Schwarzian derivative of the univalent
function f , and

A(f) =
f ′′

f ′
.

This theorem allows us to introduce the “universal Liouville action” — the
function S1 : T0(1) → R, defined by

S1([µ]) =

∫∫

D

|A(fµ)|2 d2z +

∫∫

D∗

|A(gµ)|2 d2z − 4π log |g′µ(∞)|.(1.1)

In Section 3 to every [µ] ∈ T (1) we assign the Grunksy operators B1, B2, B3

and B4, associated with the corresponding pair (fµ, gµ) of univalent func-
tions. The Lebesgue measure of the quasi-circle C\{f(D)∪g(D∗)} is zero, so
that the generalized Grunsky inequality [Hum72, Pom75] can be succinctly

formulated as the unitarity of the operator B =

(
B1 B2

B3 B4

)
on ℓ2 ⊕ ℓ2.

The main result of Section 3.1 is Theorem 3.6, which states (see Corollary
3.9) that [µ] ∈ T0(1) if and only if the corresponding Grunsky operators
B1(f

µ), B4(gµ) ∈ S2 — the Hilbert space of Hilbert-Schmidt operators on
ℓ2. In Theorem 3.10 we prove that the mapping P : T0(1) → S2, defined by
P([µ]) = B1(f

µ), is a holomorphic mapping of Hilbert manifolds. Extended
to the universal Teichmüller space T (1), this defines a holomorphic mapping

P̂ : T (1) → B(ℓ2) of Banach manifolds, which we prove in Appendix B. In
Section 3.2 we show that for [µ] ∈ T0(1) the eigenvalues of the correspond-
ing trace class operators B1B

∗
1 and B4B

∗
4 are related to the eigenvalues of

the classical Poincaré-Fredholm integral operator associated with the quasi-
circle C = fµ(S1) = gµ(S

1). Since for [µ] ∈ T0(1) these quasi-circles contain
all C3 curves, this generalizes Schiffer’s result [Sch81]. Extending [Sch59],
we introduce the Fredholm determinant DetF (C) of the quasi-circle C as
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the Fredholm determinant det(I − B1B
∗
1) = det(I − B4B

∗
4), and define the

function S2 : T0(1) → R by

(1.2) S2([µ]) = log DetF (fµ(S1)), [µ] ∈ T (1).

In Section 3.3 we define the semi-infinite period matrices of 1-forms for
natural bases of A1

2(D) and A1
2(D

∗), which generalize imaginary parts of the
classical period matrices for compact Riemann surfaces, and show that they
correspond to the operators B2B

∗
2 and B3B

∗
3 .

In Section 4 we compute the “first variations” of the functions S1 and
S2 — the (1, 0)-forms ∂S1 and ∂S2, where ∂ is the (1, 0)-component of the
de Rham differential on the Hilbert manifold T0(1). Namely, we show in
Theorems 4.5 and 4.1 (see Corollaries 4.9 and 4.2) that

∂S1 = 2ϑ and ∂S2 = − 1

6π
ϑ,(1.3)

where the (1, 0)-form ϑ on T0(1), under the natural isomorphism T ∗
[µ]T0(1) ≃

A2(D
∗), is given by

(1.4) ϑ[µ] = S(gµ).

The proof of Theorem 4.1 is rather standard, whereas the proof of Theorem
4.5 relies heavily on the identity given in Lemma 4.6. The latter can be
interpreted as an extension of the generalized Grunsky equality to pairs of
univalent functions (fµ, gµ) for [µ] ∈ T0(1), which we consider quite interest-
ing. Since the functions S1 and S2 on T0(1) both vanish at 0 ∈ T0(1), from
(1.3) we immediately obtain that

S2 = − 1

12π
S1,

thus expressing the Fredholm determinant as the universal Liouville action.
In Corollary 4.12 and Remark 4.13 we interpret this relation as a surgery
type formula for the determinants of elliptic operators on domains on the
Riemann sphere P

1.
In Section 5 we show that the relation (1.3) implies that the function S1

is a Kähler potential of the Weil-Petersson metric on T0(1). The proof goes
along the same lines as in the case of finite-dimensional Teichmüller spaces
[TT03a]. This explains why the function S1 is called the universal Liouville

action. In Section 6 we study the period mapping P̂ : T (1) → B(ℓ2).
We prove that it coincides with the Kirillov-Yuriev-Nag-Sullivan mapping
of T (1) into the infinite-dimensional analog of Siegel disk D∞. We also show
that the period mapping P : T0(1) → S2 gives an embedding of T0(1) into
the Segal-Wilson universal Grassmannian.

In Appendix A we study the Hilbert manifold structure on the topolog-
ical group T0(1) — the pre-image of the Hilbert manifold T0(1) under the
canonical projection π : T (1) → T (1). We prove in Theorem A.3 that
the Bers embedding β : T0(1) → A2(D) ⊕ C and the pre-Bers embedding

β̂ : T0(1) → A1
2(D) induce the same Hilbert manifold structure on T0(1).



POTENTIAL OF THE WEIL-PETERSSON METRIC ON T (1) 5

This result is parallel to the one proved in the Appendix of [Teo02]. We also
prove Corollaries A.4 and A.6, characterizing convergence in the Hilbert
manifold topology of T0(1), which were used in the proof of Lemma 4.6.

Finally, in Appendix B we show that P̂ : T (1) → B(ℓ2) is a holomorphic
mapping of Banach manifolds and prove that the image of the topological
group S under the map P̂ is the subset S∞ ∩ P̂(T (1)) of B(ℓ2). The
properties of the tower of embedded manifolds T0(1) →֒ S →֒ T (1) are
summarized in a commutative diagram at the end of Appendix B.

Acknowledgments. We appreciate useful discussions with M. Luybich.
The second author would like to thank P.Y. Wu for helpful discussions about
operator theory. The work of the first author was partially supported by
the NSF grant DMS-0204628. The work of the second author was partially
supported by the grant NSC 92-2115-M-009-017. The second author also
thanks CTS for the fellowship to visit Stony Brook University in the Summer
of 2003, where a part of this work was done.

2. Hilbert spaces of univalent functions

It is well-known (see, e.g., Section 2.2 in Part I) that the universal Te-
ichmüller space T (1) is isomorphic to the space D of univalent functions on
D. Here we characterize the univalent functions associated with the Hilbert
manifold T0(1).

In addition to the Hilbert spaces A2(D) and A2(D
∗), introduced in Section

3, Part I, we define the following Hilbert spaces of holomorphic functions,

A1
2(D) =



ψ holomorphic on D : ‖ψ‖2

2 =

∫∫

D

|ψ(z)|2 d2z <∞



 ,

A1
2(D

∗) =



ψ holomorphic on D

∗ : ‖ψ‖2
2 =

∫∫

D∗

|ψ(z)|2 d2z <∞



 .

We denote by A1
2(D) and A1

2(D
∗) the corresponding Hilbert spaces of anti-

holomorphic functions.

Remark 2.1. Every ψ ∈ A1
2(D) corresponds to a holomorphic 1-form ω =

ψ(z)dz on D (or on Γ\D for a cofinite Fuchsian group Γ) such that the
(1, 1)-form ω ∧ ω̄ is integrable. Similarly, every φ ∈ A2(D) corresponds to a
holomorphic quadratic differential q = φ(z)(dz)2 on D (or on Γ\D) such that
the (1, 1)-form (|φ(z)|2/ρ(z))dz ∧ dz̄ is integrable, so that the latter space
could be also denoted by A2

2(D). We will use the same notation ‖ ‖2 for
the norms in these Hilbert spaces. To avoid confusion, in the main text we
always denote elements in the spaces A2 by φ, and elements in the spaces
A1

2 by ψ.
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In addition to the Banach spaces A∞(D) and A∞(D∗) introduced in Sec-
tion 2.1, Part I, we define the following Banach spaces of holomorphic func-
tions,

A1
∞(D) =

{
ψ holomorphic on D : ‖ψ‖∞ = sup

z∈D

∣∣(1 − |z|2)ψ(z)
∣∣ <∞

}
,

A1
∞(D∗) =

{
ψ holomorphic on D

∗ : ‖ψ‖∞ = sup
z∈D∗

∣∣(1 − |z|2)ψ(z)
∣∣ <∞

}
.

For a holomorphic function f : Ω → C such that f ′ 6= 0 on Ω we set

A(f) =
f ′′

f ′
.

Remark 2.2. Classical distortion theorem (see e.g., [Pom75, Dur83]) im-
plies that if f : D → C and g : D

∗ → C are univalent functions, then
A(f) ∈ A1

∞(D) and A(g) ∈ A1
∞(D∗). In [Teo02], it was shown that the Bers

embedding of the universal Teichmüller curve T (1) into A∞(D) ⊕ C can be
factorized as the composition of two holomorphic embeddings

T (1) → A1
∞(D) → A∞(D) ⊕ C.

Here the map T (1) → A1
∞(D) is given by γ = g−1 ◦ f 7→ A(f) and the map

A1
∞(D) → A∞(D) ⊕ C is defined as

ψ 7→
(
ψz − 1

2ψ
2, 1

2ψ(0)
)
.

Similar to Lemma 3.1 in Part I, we have

Lemma 2.3. The vector spaces A1
2(D) and A1

2(D
∗) are subspaces of A1

∞(D)
and A1

∞(D∗) respectively. The natural inclusion maps A1
2(D) →֒ A1

∞(D) and

A1
2(D

∗) →֒ A1
∞(D∗) are bounded linear mappings of Banach spaces.

Proof. It is sufficient to consider only the spaces of holomorphic functions
on D. For every ψ ∈ A1

2(D) let ψ(z) =
∑∞

n=1 nanz
n−1 be the power series

expansion. Then

‖ψ‖2
2 =

∫∫

D

|ψ(z)|2d2z = π

∞∑

n=1

n|an|2,

and by Cauchy-Schwarz inequality, we have

|ψ(z)| ≤
∞∑

n=1

n|an||z|n−1 ≤
( ∞∑

n=1

n|an|2
)1/2( ∞∑

n=1

n|z|2n−2

)1/2

for every z ∈ D. Using

∞∑

n=1

n|z|2n−2 =
1

(1 − |z|2)2 ,
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we get

‖ψ‖∞ = sup
z∈D

|(1 − |z|2)ψ(z)| ≤ 1√
π
‖ψ‖2.

�

Similar to Remark 3.2 in Part I, we get

Corollary 2.4. For every ψ ∈ A1
2(D),

lim
|z|→1−

(1 − |z|2)ψ(z) = 0.

Similar statement holds for every ψ ∈ A1
2(D

∗).

For a holomorphic function f : Ω → C set

Ψ(f) = fz − 1
2f

2.

If f ′ 6= 0 on Ω, then S(f) = (Ψ ◦ A)(f), where S(f) is the Schwarzian
derivative of f . In [Teo02] it was proved that Ψ

(
A1

∞(D)
)
⊂ A∞(D) and

Ψ
(
A1

∞(D∗)
)
⊂ A∞(D∗). Similarly, we have the following result.

Lemma 2.5. Ψ
(
A1

2(D)
)
⊂ A2(D) and Ψ

(
A1

2(D
∗)
)
⊂ A2(D

∗).

Proof. Again it is sufficient to consider functions on D. For ψ =
∑∞

n=1 nanz
n−1 ∈

A1
2(D) we have
∫∫

D

|Ψ(ψ)|2ρ(z)−1d2z ≤ 2

∫∫

D

|ψz(z)|2ρ(z)−1d2z +
1

2

∫∫

D

|ψ(z)|4ρ(z)−1d2z.

For the first term, a straightforward computation gives
∫∫

D

|ψz(z)|2ρ(z)−1d2z =
π

2

∞∑

n=2

n(n− 1)

n+ 1
|an|2 < 1

2‖ψ‖2
2 <∞.

For the second term, since ψ ∈ A1
∞(D), we have

∫∫

D

ρ(z)−1|ψ(z)|4d2z ≤ 1
4‖ψ‖2

∞‖ψ‖2
2 <∞.

�

The following theorem of Becker and Pommerenke [BP78] characterizes
univalent functions on D that admit a q.c. extension to a larger domain such
that the complex dilation is continuous on S1.

Theorem 2.6. Let f : D → C be a univalent function such that f(D) is a

Jordan domain. Then the following conditions are equivalent.

(i) f has a q.c. extension F to {z : |z| < R,R > 1} such that the

complex dilation µ(z) = Fz̄/Fz satisfies

lim
|z|→1+

µ(z) = 0.
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(ii)

lim
|z|→1−

(1 − |z|2)2S(f)(z) = 0.

(iii)

lim
|z|→1−

(1 − |z|2)A(f)(z) = 0.

In [GS92], Gardiner and Sullivan have studied the subgroup

S = Möb(S1)\Homeos(S
1)

of symmetric homeomorphisms in QS = Möb(S1)\Homeoqs(S
1) ≃ T (1).

They proved that as a Banach submanifold of T (1), S is a topological group,
and that univalent functions f associated to elements in S are precisely the
functions satisfying condition (ii) of Theorem 2.6.

Remark 2.7. Actually in [GS92] this condition is stated as follows: for every
ε > 0 there is a compact subset K of D such that |(1 − |z|2)2S(f)(z)| < ε
for z ∈ D \K, which is clearly equivalent to (ii).

Using this remark and Remark 3.2 in Part I, we get the following state-
ment.

Corollary 2.8. The group T0(1) is a subgroup of S.

Remark 2.9. It is known [GS92] that the topological group S contains the
subgroup of C1-homeomorphisms of S1. Similarly, the topological group
T0(1) contains the subgroup of C3-homeomorphisms. Indeed, it is known
(see, e.g., [Ham02]) that if γ ∈ QS is C3 then corresponding f and g are
of C2 class on the boundary and all their derivatives are Holder continuous
with α < 1. From here it follows that S(f) ∈ A2(D).

Remark 2.10. For [µ] ∈ T0(1) it is an interesting open problem to charac-
terize intrinsically the corresponding map wµ|S1 and the quasi-circle f(S1),
as it was done for by Gardiner and Sullivan in [GS92] for [µ] ∈ S.

Another important consequence of Becker-Pommerenke Theorem is the
following result.

Lemma 2.11. Let f and g be univalent functions on D and D
∗ such that

S(f) ∈ A2(D) and S(g) ∈ A2(D
∗). Then A(f) ∈ A1

2(D) and A(g) ∈ A1
2(D

∗).

Proof. It is sufficient to consider functions on D. If S(f) ∈ A2(D), then by
Remark 3.2 in Part I f satisfies the condition (ii) in Theorem 2.6 and hence
it satisfies the condition (iii). In particular, there exists r′ > 0 such that

(1 − |z|2)|A(f)(z)| ≤ 1/2 for all r′ < |z| < 1.

By triangle and geometric mean inequalities,

|S(f)(z)|2 ≥
(
|A(f)′(z)| − 1

2 |A(f)(z)|2
)2

=|A(f)′(z)|2 + 1
4 |A(f)(z)|4 − |A(f)′(z)||A(f)(z)|2

≥1
2

(
|A(f)′(z)|2 − |A(f)(z)|4

)
,
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so that for r′ < |z| < 1,

(2.1) 2(1 − |z|2)2|S(f)(z)|2 ≥ (1 − |z|2)2|A(f)′(z)|2 − 1
4 |A(f)(z)|2.

Let A(f)(z) =
∑∞

n=1 nanz
n−1 be the power series expansion of A(f) and let

Dr be the disk of radius r. We have,
∫∫

Dr

(1 − |z|2)2|A(f)′(z)|2d2z =π

∞∑

n=2

n2(n− 1)2|an|2r2n
(
r−2

n− 1
− 2

n
+

r2

n+ 1

)

and
∫∫

Dr

|A(f)(z)|2d2z = π
∞∑

n=1

n|an|2r2n.

Using the elementary inequality

(n− 1)2
(
r−2

n− 1
− 2

n
+

r2

n+ 1

)
≥ 1

2n

for all n ≥ 2 and 0 < r < 1, we get∫∫

Dr

(1 − |z|2)2|A(f)′(z)|2d2z ≥ 1
2

∫∫

Dr

|A(f)(z)|2d2z − π
2 |a1|2r2.(2.2)

Integrating the inequality (2.1) over Dr \ Dr′ , and using (2.2), we get for
r > r′,

2

∫∫

Dr\Dr′

(1 − |z|2)2|S(f)(z)|2d2z ≥
∫∫

Dr\Dr′

(
(1 − |z|2)2|A(f)′(z)|2 − 1

4 |A(f)(z)|2
)
d2z

=

∫∫

Dr

(1 − |z|2)2|A(f)′(z)|2d2z − 1
4

∫∫

Dr

|A(f)(z)|2d2z

−
∫∫

Dr′

(1 − |z|2)2|A(f)′(z)|2d2z + 1
4

∫∫

Dr′

|A(f)(z)|2d2z

≥ 1
4

∫∫

Dr

|A(f)(z)|2d2z + 1
4

∫∫

Dr′

|A(f)(z)|2d2z

−
∫∫

Dr′

(1 − |z|2)2|A(f)′(z)|2d2z − π
2 |a1|2r2.

Since S(f) ∈ A2(D), from this inequality we conclude that there exists C > 0
such that ∫∫

Dr

|A(f)(z)|2d2z < C

for all 0 < r < 1, i.e., A(f) ∈ A1
2(D). �

The following statement is the main result of this section.
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Theorem 2.12. Let wµ = g−1
µ ◦ fµ be the conformal welding corresponding

to [µ] ∈ T (1). Then [µ] ∈ T0(1) if and only if one of the following conditions

holds.

(i) S(fµ) ∈ A2(D).
(ii) A(fµ) ∈ A1

2(D).
(iii) S(gµ) ∈ A2(D

∗).
(iv) A(gµ) ∈ A1

2(D
∗).

Proof. Since under the Bers embedding β(T0(1)) = β(T (1)) ∩ A2(D), it
follows that if wµ = g−1

µ ◦fµ is the conformal welding associated to [µ] ∈ T (1),
then S(fµ) ∈ A2(D) if and only if [µ] ∈ T0(1). Let j be the antiholomorphic

inversion z 7→ 1/z̄. Since q.c. mapping wµ on Ĉ satisfies j ◦wµ ◦ j = wµ, we
have

w−1
µ = j ◦ w−1

µ ◦ j = (j ◦ (fµ)−1 ◦ j) ◦ (j ◦ gµ ◦ j).
Thus

(2.3) fµ
−1

= r ◦ j ◦ gµ ◦ j and gµ−1 = r ◦ j ◦ fµ ◦ j,
where r is the dilation z 7→ g′µ(∞) z. Since [µ−1] ∈ T0(1) if and only [µ] ∈
T0(1), we have S(fµ) ∈ A2(D) if and only if S(fµ

−1

) ∈ A2(D), and hence if
and only if

S(gµ) = S(fµ−1) ◦ j j2z̄ ∈ A2(D
∗).

The statement of the theorem now follows from Lemmas 2.5 and 2.11. �

Let T0(1) be the Teichmüller curve of T0(1), i.e., the inverse image of
T0(1) under the fibration T (1) → T (1) of Hilbert manifolds. It was proved
in Appendix A of Part I that T0(1) is a topological group. Using proofs
of Lemma 2.5 and Theorem 2.11, we can easily modify the proof in the
Appendix of [Teo02] to show that A1

2(D) and A2(D) ⊕ C induce the same
Hilbert manifold structure on T0(1). We leave the details to Appendix A.

Results of this section justify the following

Definition 2.13. The “universal Liouville action” S1 : T0(1) → R is defined
by

S1([µ]) =

∫∫

D

|A(fµ)|2 d2z +

∫∫

D∗

|A(gµ)|2 d2z − 4π log |g′µ(∞)|,

where wµ = g−1
µ ◦ fµ is the conformal welding corresponding to [µ] ∈ T0(1).

We will prove in Section 5 that the universal Liouville action is a Kähler
potential of the Weil-Petersson metric on T0(1).

Remark 2.14. When g′µ is continuous on S1, the last term in the definition
of S1 can be written as

−2

∮

S1

log |g′µ(eiθ)|dθ.
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When the quasicircle gµ(S
1) = fµ(S1) is of C3 class, functionals of this type

were studied by Schiffer and Hawley in [SH62]. Here we extend the definition
to quasicirles for the Hilbert manifold T0(1).

3. Grunsky operators for T0(1)

3.1. Grunsky coefficients and operators. Here we prove that Grunsky
operators associated to a point in T0(1) are Hilbert-Schmidt. Suppose that
f : D → C and g : D

∗ → C are univalent functions on D and D
∗ such that

f(0) = 0, f ′(0) = 1, g(∞) = ∞, and f(D)∩ g(D∗) = ∅. Such univalent func-
tions are said to form a normalized disjoint pair. The generalized Grunsky
coefficients bn,m, n,m ∈ Z of a normalized disjoint pair (f, g) are defined as
follows (see e.g., [Pom75])

log
g(z) − g(ζ)

z − ζ
= b00 −

∞∑

m=1

∞∑

n=1

bmnz
−mζ−n,

log
g(z) − f(ζ)

bz
= −

∞∑

m=1

∞∑

n=0

bm,−nz
−mζn,

log
f(z) − f(ζ)

z − ζ
= b00 −

∞∑

m=0

∞∑

n=0

b−m,−nz
mζn.

By definition, b00 = log b, where b = g′(∞). Grunsky coefficients bn,m are
symmetric in n,m when n,m ≥ 1 or n,m ≤ 0, so for n ≥ 0,m ≥ 1, we define
b−n,m = bm,−n. It is also clear that coefficients bn,m, |n| ≥ 1 and |m| ≥ 1 do
not changed when f and g are simultaneosly post-composed with a dilation
z 7→ rz.

Grunsky coefficients satisfy the generalized Grunsky inequality, due to
Hummel [Hum72] (see also [Pom75]).

Theorem 3.1. Let (f, g) be a normalized disjoint pair of univalent func-

tions. Then for every λ−m, . . . , λm ∈ C,

∞∑

k=−∞
|k|
∣∣∣∣∣

m∑

l=−m
bklλl

∣∣∣∣∣

2

≤
m∑′

k=−m

|λk|2
|k| + 2Re

[
λ̄0

m∑

l=−m
b0lλl

]
,

where the prime over the sum indicates that the term k = 0 is omitted. The

equality for all λ−m, . . . , λm holds if and only if the set F = C\{f(D)∪g(D∗)}
has Lebesgue measure zero.

Remark 3.2. For γ ∈ T (1) let γ = g−1 ◦ f be the corresponding conformal
welding. Since (f, g) is a normalized disjoint pair of univalent functions and
the quasicircle C = f(S1) = g(S1) has Lebesgue measure zero, corresponding
Grunsky coefficients bmn satisfy the generalized Grunsky equality. Setting
λ0 = 1 and λk = 0, k 6= 0, we get

2Re b00 =
∞∑

k=−∞
|k||bk0|2.



12 LEON A. TAKHTAJAN AND LEE-PENG TEO

Since

log
g(z)

z
= b00 −

∞∑

k=1

bk0z
−k, and log

f(z)

z
= −

∞∑

k=1

b−k,0z
k,

and Re b00 = log |g′(∞)|, we have

2π log |g′(∞)| =

∫∫

D

∣∣∣∣
f ′(z)
f(z)

− 1

z

∣∣∣∣
2

d2z +

∫∫

D∗

∣∣∣∣
g′(z)
g(z)

− 1

z

∣∣∣∣
2

d2z.

According to Theorem 5.3 in Part I, this gives an integral formula for the
Kähler potential of the Velling-Kirillov metric on T (1).

Now let (f, g) be a normalized disjoint pair of univalent functions such
that the corresponding set F has Lebesgue measure zero. Putting in the
generalized Grunsky equality λ0 = 0 and rescaling λl 7→

√
|l|λl, we obtain

the following equality

∞∑

k=−∞

∣∣∣∣∣

m∑′

l=−m

√
|kl|bklλl

∣∣∣∣∣

2

=

m∑′

k=−m
|λk|2.

By polarization, we get

∞∑′

k=−∞

m∑′

l=−m

m∑′

l′=−m

√
|kl|bkl

√
|kl′|bkl′λlη̄l′ =

m∑′

k=−m
λkη̄k,(3.1)

where λk, ηk are arbitrary complex numbers. Grunsky coefficients bmn give
rise to semi-infinite matrices Bl, l = 1, 2, 3, 4, defined by

(B1)mn =
√
mn b−m,−n, (B2)mn =

√
mn b−m,n,

(B3)mn =
√
mn bm,−n, (B4)mn =

√
mn bmn.

From generalized Grunsky equality it immediately follows that matrices Bl
define bounded linear operators on the separable Hilbert space

ℓ2 =

{
x = {xn}∞n=1 :

∞∑

n=1

|xn|2 <∞
}

which we continue to denote by Bl, l = 1, 2, 3, 4. Here a linear operator
A on ℓ2 associated with the matrix {amn}∞m,n=1 is given by y = Ax, where

ym =
∑∞

n=1 amnxn.
In terms of the operators Bl, generalized Grunsky equality (3.1) is equiv-

alent to

B1B
∗
1 +B2B

∗
2 = I, B3B

∗
1 +B4B

∗
2 = 0,(3.2)

B1B
∗
3 +B2B

∗
4 = 0, B3B

∗
3 +B4B

∗
4 = I,

where I is the identity operator on ℓ2 and B∗
l stands for the adjoint operator

to Bl. These identities immediately imply that ‖Bl‖ ≤ 1, l = 1, 2, 3, 4.
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Remark 3.3. The operator B4 is the Grunsky operator associated to the uni-
valent function g. The classical Grunsky inequality (see e.g. [Pom75]) can be
succintly stated as I−B4B

∗
4 ≥ 0, and I−B4B

∗
4 is a positive-definite operator

if and only if the complement of g(D∗) has positive Lebesgue measure. Simi-
larly, B1 is the Grunsky operator associated to the univalent function f and
the classical Grunsky inequality is equivalent to I −B1B

∗
1 ≥ 0. For the pair

(fµ, gµ) associated to a point [µ] ∈ T (1), the operators I−B1B
∗
1 and I−B4B

∗
4

are positive-definite, so that ‖B1‖, ‖B4‖ < 1 and KerB∗
2 = KerB∗

3 = {0}.
Moreover, it follows from symmetry property of Grunsky coefficients that
also KerB2 = KerB3 = {0}, so that the operators B2, B3 : ℓ2 → ℓ2 are
topological isomorphisms.

The operators Bl define a bounded linear operator B on the Hilbert space
ℓ2 ⊕ ℓ2 by

B =

(
B1 B2

B3 B4

)
.

Since

B∗ =

(
B∗

1 B∗
3

B∗
2 B∗

4

)
,

the generalized Grunsky equality can be succinctly rewritten as

BB∗ = I,

where I =
(
I 0
0 I

)
is the identity operator on ℓ2 ⊕ ℓ2. Let J be the complex-

conjugation operator on ℓ2 defined by

(3.3) (Jx)n = x̄n, x = {xn}∞n=1 ∈ ℓ2.

Setting J =
(
J 0
0 J

)
, we can express symmetry property of Grunsky coeffi-

cients as

B∗ = JBJ.

Thus

B∗B = JBJB = JBB∗J = I,

so that B is a unitary operator on ℓ2 ⊕ ℓ2.
The operators Bl can be also realized as linear operators from the Hilbert

spaces of antiholomorphic functions to the Hilbert spaces of holomorphic
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functions. Namely, the kernels

K1(z,w) =
1

π

(
1

(z − w)2
− f ′(z)f ′(w)

(f(z) − f(w))2

)
=

1

π

∞∑

n,m=1

nmb−n,−mz
n−1wm−1,

K2(z,w) =
1

π

f ′(z)g′(w)

(f(z) − g(w))2
=

1

π

∞∑

n,m=1

nmb−n,mz
n−1w−m−1,

K3(z,w) =
1

π

g′(z)f ′(w)

(g(z) − f(w))2
=

1

π

∞∑

n,m=1

nmbn,−mz
−n−1wm−1,

K4(z,w) =
1

π

(
1

(z − w)2
− g′(z)g′(w)

(g(z) − g(w))2

)
=

1

π

∞∑

n,m=1

nmbn,mz
−n−1w−m−1,

define the linear operators Kl as follows,

K1 : A1
2(D) → A1

2(D), (K1ψ)(z) =

∫∫

D

K1(z,w)ψ(w)d2w,

K2 : A1
2(D

∗) → A1
2(D), (K2ψ)(z) =

∫∫

D∗

K2(z,w)ψ(w)d2w,

K3 : A1
2(D) → A1

2(D
∗), (K3ψ)(z) =

∫∫

D

K3(z,w)ψ(w)d2w,

K4 : A1
2(D

∗) → A1
2(D

∗), (K4ψ)(z) =

∫∫

D∗

K4(z,w)ψ(w)d2w.

Remark 3.4. It is well-known that if φ is a holomorphic function on D, then
∫∫

D

φ(w)

(z −w)2
d2w = 0,

where the integral is understood in the principal value sense. Hence we can
also represent operators K1 and K4 by the singular kernels

− 1

π

f ′(z)f ′(w)

(f(z) − f(w))2
and − 1

π

g′(z)g′(w)

(g(z) − g(w))2
.

The Hilbert spaces A1
2(D) and A1

2(D
∗) have standard orthonormal bases

{en}∞n=1 and {fn}∞n=1, given respectively by

en(z) =

√
n

π
zn−1 and fn(z) =

√
n

π
z−n−1, n ∈ N.

These bases define isomorphisms A1
2(D) ≃ ℓ2 and A1

2(D
∗) ≃ ℓ2. The op-

erators Kl and their adjoints K∗
l — integral operators with the kernels

K∗
l (z,w) = Kl(w, z), correspond respectively to the operators Bl and B∗

l ,
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l = 1, 2, 3, 4. Similarly, positive self-adjoint operators Kl = KlK
∗
l are inte-

gral operators which correspond to the operators BlB
∗
l , and we denote the

kernels of the operators Kl by Kl(z,w). Due to the relations (3.2),

(3.4) K2 = I − K1, K3 = I − K4.

Lemma 3.5. The kernel K1(z,w) of the operator K1 : A1
2(D) → A1

2(D)
satisfies

∫∫

D

∫∫

D

|K1(z,w)|2d2zd2w <∞(3.5)

if and only if the operator K1 is Hilbert-Schmidt, i.e., if and only if the

operator K1 = K1K
∗
1 on A1

2(D) is of trace class. In this case,

Tr K1 =

∫∫

D

∫∫

D

|K1(z,w)|2d2zd2w =

∫∫

D

K1(z, z)d
2z,

and S(f) ∈ A2(D), where f is the univalent function associated with the

kernel K1(z,w). Similar statements hold for the operators K4 and K4.

Proof. It is sufficient to prove the lemma for the operator K1. For the basis
{en}n∈N of the Hilbert space A1

2(D) we have

Tr K1 =

∞∑

n=1

〈K1en, en〉 =

∞∑

n=1

‖K∗
1en‖2 =

∞∑

n,m=1

nm|b−n,−m|2

=

∫∫

D

∫∫

D

|K1(z,w)|2 d2zd2w =

∫∫

D

K1(z, z)d
2z.

Since the operator K1 is positive, it is of trace class if and only if the in-
equality (3.5) holds. On the other hand, we have

S(f)(z) = −6π lim
w→z

K1(z,w) = −6
∞∑

n=2

(
∑

k+l=n

klb−k,−l

)
zn−2.

Hence if the inequality (3.5) holds,

‖S(f)‖2
2 =18π

∞∑

n=2

1

n3 − n

∣∣∣∣∣

n−1∑

k=1

k(n − k)b−k,−(n−k)

∣∣∣∣∣

2

≤18π

∞∑

n=2

1

n3 − n

(
n−1∑

k=1

k(n− k)

)(
n−1∑

k=1

k(n− k)|b−k,−(n−k)|2
)

=3π
∞∑

n=2

n−1∑

k=1

k(n− k)|b−k,−(n−k)|2 = 3π
∞∑

n,m=1

nm|b−n,−m|2 <∞.

�
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Theorem 3.6. If the pair (fµ, gµ) corresponds to a point [µ] ∈ T0(1), then

the operators K1 and K4 associated to fµ and gµ respectively, are of trace

class.

Proof. According to Lemma 3.5, it is sufficient to show that
∫∫

D

K1(z, z)d
2z <∞ and

∫∫

D∗

K4(z, z)d
2z <∞.

For [µ] ∈ T0(1) choose a representative µ ∈ L2(D∗, ρ(z)d2z) ∩ O(D∗)1. It
follows from Lemma 3.9 in Part I that the path [tµ] connecting 0 to [µ]
in T (1) lies on T0(1). Let wtµ = g−1

tµ ◦ ftµ be the corresponding conformal
welding and denote by (K1)t(z,w) the kernel K1(z,w) associated with the
univalent function ftµ. We have the following lemma.

Lemma 3.7.

d

ds

∣∣∣∣
s=0

(K1)s+t
(
f−1
t (z), f−1

t (w)
) (

f−1
t

)′
(z)
(
f−1
t

)′
(w)

=
1

π2

∫∫

Ω∗

t

µt(u)

(u− z)2(u− w)2
d2u,(3.6)

where Ω∗
t = ftµ(D∗) = gtµ(D

∗),

(µt ◦ gtµ)
g′tµ
g′tµ

= DtµR(tµ)−1(µ),

and the integral (3.6) is understood in the principal value sense.

Proof. Set wt = wtµ, ft = ftµ, gt = gtµ and vs = fs+t ◦ f−1
t . We have

vs ◦ gt = gs+t ◦ ws+t ◦ w−1
t ,

so that vs is a q.c. mapping which is holomorphic on Ωt = ft(D) and has
Beltrami differential µs,t on Ω∗

t with

(µs,t ◦ gt)
g′t
g′t

=
(ws+t ◦ w−1

t )z̄

(ws+t ◦ w−1
t )z

.

It follows from the standard variational formula for q.c. mappings that

d

ds

∣∣∣∣
s=0

vs(z) = − 1

π

∫∫

Ω∗

t

µt(u)z(z − 1)

(u− z)u(u− 1)
d2u+ p(z),(3.7)

where p(z) is a degree two polynomial. We have

(K1)s+t
(
f−1
t (z), f−1

t (w)
) (

f−1
t

)′
(z)
(
f−1
t

)′
(w)

=
1

π

(
f−1
t

)′
(z)
(
f−1
t

)′
(w)

(
f−1
t (z) − f−1

t (w)
)2 − 1

π

v′s(z)v
′
s(w)

(vs(z) − vs(w))2
,
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and

d

ds

∣∣∣∣
s=0

v′s(z)v
′
s(w)

(vs(z) − vs(w))2
= − 1

π

∫∫

Ω∗

µt(u)

(u− z)2(u− w)2
d2u,

so that the result follows. �

Now we use the fundamental theorem of calculus to estimate∫∫

D

K1(z, z)d
2z =

∫∫

D

∫∫

D

∣∣(K1)1(z,w)
∣∣2d2zd2w

=

∫∫

D

∫∫

D

∣∣∣∣
∫ 1

0

d

dt
(K1)t(z,w)dt

∣∣∣∣
2

d2zd2w

≤
∫ 1

0

∫∫

D

∫∫

D

∣∣∣∣
d

dt
(K1)t(z,w)

∣∣∣∣
2

d2zd2wdt

=

∫ 1

0

∫∫

D

∫∫

D

∣∣∣∣
d

ds

∣∣∣
s=0

(K1)t+s(z,w)

∣∣∣∣
2

d2zd2wdt

=

∫ 1

0
I(t)dt.

Making a change of variables z 7→ f−1
t (z), w 7→ f−1

t (w) in the inner integral
I(t), we get

I(t) =

∫∫

Ωt

∫∫

Ωt

∣∣∣∣
d

ds

∣∣∣∣
s=0

(K1)t+s
(
f−1
t (z), f−1

t (w)
) (

f−1
t

)′
(z)
(
f−1
t

)′
(w)

∣∣∣∣
2

d2zd2w

=
1

π4

∫∫

Ωt

∫∫

Ωt

∣∣∣∣∣∣∣

∫∫

Ω∗

t

µt(u)

(u− z)2(u− w)2
d2u

∣∣∣∣∣∣∣

2

d2zd2w.

Using the inequality

(3.8)

∫∫

Ωt

d2w

|w − z|4 ≤ 4π(ρ2)t(z), z ∈ Ω∗
t ,

where (ρ2)t(z) is the density of the hyperbolic metric on Ω∗
t (see the proof

of Theorem 3.3 in Part I), and the fact that the Hilbert transform is an
isometry on L2(C, d2z), we obtain

I(t) ≤ 1

π2

∫∫

Ωt

∫∫

Ω∗

t

|µt(z)|2
|z − w|4 d

2zd2w ≤ 4

π

∫∫

Ω∗

t

|µt(z)|2(ρ2)t(z)d
2z

=
4

π

∫∫

D∗

|µ̃t(z)|2ρ(z)d2z =
4

π
‖µ̃t‖2

2,
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where µ̃t = DtµR(tµ)−1(µ). Now it follows from Remark 3.8 in Part I that
there exists a constant C such that

‖µ̃t‖2 ≤ C‖µ‖2

for all 0 ≤ t ≤ 1, so that ∫∫

D

K1(z, z)d
2z <∞.

The corresponding estimate for the kernel K4(z,w) is proved similarly. Al-
ternatively, using the relation (2.3) we get

(3.9) K1([µ
−1])(z,w) = K4([µ])

(
1

z̄
,

1

w̄

)
1

z2

1

w2
.

Since T0(1) is a group, the inequality for the kernel K4 follows from the
corresponding inequality for the kernel K1. �

Remark 3.8. Actually using the generalized Grunsky equality one can prove
an estimate sharper than (3.8). Just observe that for z ∈ Ω∗

t∫∫

Ωt

d2w

|z − w|4 = π2
K3(g

−1(z), g−1(z))|(g−1)′(z)|2

and that 1
π(1−zw̄)2

is the kernel of the identity operator on A1
2(D

∗). Hence

the second equation in (3.4) gives,

K3(z, z) =
1

π(1 − |z|2)2 − K4(z, z) ≤
1

π(1 − |z|2)2 ,

and we get ∫∫

Ωt

d2w

|z − w|4 ≤ π

4
(ρ2)t(z).

Corollary 3.9. Grunsky operators B1 and B4 associated with the pair

(fµ, gµ), [µ] ∈ T (1), are Hilbert-Schmidt operators on ℓ2 if and only if [µ] ∈
T0(1).

Proof. Under the isomorphisms A1
2(D) ≃ ℓ2 and A1

2(D
∗) ≃ ℓ2, the operators

K1 and K4 correspond to the operators B1B
∗
1 and B4B

∗
4 respectively. Since

β(T0(1)) = A2(D)∩β(T (1)), the “only if” part of the statement follows from
Lemma 3.5. �

As an application, consider the Hilbert space S2 of Hilbert-Schmidt op-
erators on ℓ2,

S2 =
{
T : ℓ2 → ℓ2 a bounded operator

∣∣∣ ‖T‖2
2 = TrTT ∗ <∞

}
,

and define the mapping P : T0(1) → S2 by

P([µ]) = B1(f
µ), [µ] ∈ T0(1).
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Since Grunsky coefficients characterize univalent functions up to a post-
composition with Möbius transformation, the mapping P is one to one. In
fact, we have a stronger result.

Theorem 3.10. The mapping P is a holomorphic inclusion of the Hilbert

manifold T0(1) into the Hilbert space S2.

Proof. We need to show that for every [ν] ∈ T0(1) and µ ∈ H−1,1(D∗), the
map C ∋ t 7→ B1(t) = B1(f

ν+tµ) is holomorphic in a neighbourhood of t = 0
in C. For this aim, since the mapping [µ] → fµ(z) is holomorphic for fixed
z ∈ D, for every z,w ∈ D the map

t 7→ Kν+tµ
1 (z,w) =

1

π

(
1

(z − w)2
− (fν+tµ)′(z)(fν+tµ)′(w)

(fν+tµ(z) − fν+tµ(w))2

)

is holomorphic in a neighbourhood of t = 0 in C. We choose δ > 0 so that
‖ν + tµ‖∞ < 1 for all |t| < δ. For every t0 such that |t0| < δ, let δ1 be such
that 0 < δ1 < δ− |t0|. Then for all |t− t0| < δ1, we have by Cauchy integral
formula,

(
Kν+tµ

1 −Kν+t0µ
1 − (t− t0)

d

dt

∣∣∣∣
t=t0

Kν+tµ
1

)
(z,w)

=
(t− t0)

2

2πi

∮

|ζ−t0|=δ1

Kν+ζµ
1 (z,w)

(ζ − t)(ζ − t0)2
dζ.

Hence

∥∥∥∥
B1(f

ν+tµ) −B1(f
ν+t0µ)

t− t0
− d

dt

∣∣∣
t=t0

B1(f
ν+tµ)

∥∥∥∥
2

2

(3.10)

=

∫∫

D

∫∫

D

∣∣∣∣∣

(
Kν+tµ

1 −Kν+t0µ
1

t− t0
− d

dt

∣∣∣∣
t=t0

Kν+tµ
1

)
(z,w)

∣∣∣∣∣

2

d2zd2w

≤|t− t0|2
4π2

∮

|ζ−t0|=δ1

∫∫

D

∫∫

D

∣∣∣Kν+ζµ
1 (z,w)

∣∣∣
2
d2zd2w|dζ|

∮

|ζ−t0|=δ1

|dζ|
|ζ − t|2|ζ − t0|4

.

We have from the proof of Theorem 3.6,
∫∫

D

∫∫

D

∣∣∣Kν+ζµ
1 (z,w)

∣∣∣
2
d2zd2w ≤ C‖ν + ζµ‖2

2 ≤ C(‖ν‖2 + δ1‖µ‖2)
2,

so that (3.10) tends to 0 as t→ t0, which proves the assertion. �

Remark 3.11. Since the classical Grunsky operator B1 is bounded, the map-
ping P extends to the whole Banach manifold T (1). Let B(ℓ2) be the space
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of bounded linear operators on ℓ2,

B(ℓ2) =

{
T : ℓ2 → ℓ2 a linear operator : ‖T‖ = sup

‖u‖=1
‖Tu‖ <∞.

}
,

and define the mapping P̂ : T (1) → B(ℓ2) by

P̂([µ]) = B1(f
µ), [µ] ∈ T (1).

Analogous to Theorem 3.10, we show in Appendix B that the mapping P̂

is a holomorphic inclusion.

3.2. Fredholm eigenvalues and Fredholm determinant. In [Sch57],
Schiffer has studied the eigenvalues of the classical Poincaré-Fredholm bound-
ary value problem of potential theory on a C3 curve. Here we show how
Fredholm eigenvalues for a quasi-circle C = fµ(S1) = gµ(S

1), associated with
[µ] ∈ T0(1), are related to the eigenvalues of trace class operators K1 and
K4.

Let h be a separable Hilbert space with the inner product 〈 , 〉. A conju-
gation operator J on h is an R-linear operator satisfying J2 = I and

(Jx, Jy) = (x, y) for all x, y ∈ h.

Conjugation operator is necessarily complex anti-linear. For every bounded
linear operator T on h,

〈JTJx, y〉 = 〈TJx, Jy〉 = 〈Jx, T ∗Jy〉 = 〈x, JT ∗Jy〉 for all x, y ∈ h,

so that

(JTJ)∗ = JT ∗J.

In particular, if U is a unitary operator on h, then JUJ is also a unitary
operator. For a bounded linear operator T on h its transpose is defined as

T t = JT ∗J.

Generalizing the notion of symmetric complex-valued matrix, a bounded
operator T on h is called symmetric with respect to the conjugation J , if

T = T t.

The Hilbert space h = ℓ2 carries a standard conjugation operator J , defined
by (3.3). The following statement is a generalization of Schur’s Lemma (see,
e.g., [Pom75, Sect. 3.6]) to the case of compact operators on ℓ2.

Lemma 3.12. Let T be a compact operator on ℓ2, symmetric with respect

to the standard conjugation operator J . Then there exist a unitary operator

U on ℓ2 and an operator D ≥ 0 on ℓ2, diagonal with respect to the standard

basis for ℓ2, such that

T = UDU t.
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Proof. As in [Pom75], consider the decomposition

T =
T + JTJ

2
+ i

T − JTJ

2i
= A+ iB,

where A and B are self-adjoint compact operators satisfying AJ = JA and
BJ = JB. Let T be the self-adjoint operator on the Hilbert space ℓ2 ⊕ ℓ2

defined by

T =

(
A B
B −A

)
.

The operator T is compact and satisfies

(3.11) TE = −ET and TJ = JT,

where

E =

(
0 −I
I 0

)
and J =

(
J 0
0 J

)
.

From the first equation in (3.11) it follows that if u ∈ ℓ2⊕ℓ2 is an eigenvector
for T with eigenvalue λ, then v = Eu is also an eigenvector for T with
eigenvalue −λ. It follows from Hilbert-Schmidt theorem on canonical form
of compact self-adjoint operator that there exist a unitary operator U on
ℓ2 ⊕ ℓ2 of the form

U =

(
U1 U2

U2 −U1

)
,

and an operator D on ℓ2 ⊕ ℓ2 of the form

D =

(
D 0
0 −D

)
,

where D is diagonal with non-negative entries, such that

T = UDU∗.

From the second equation in (3.11) it follows that T(JUJ) = (JUJ)D.
Since JUJ is also a unitary operator, we have

T = (JUJ)D(JUJ)∗.

Consequently, we can choose U so that U = JUJ. Now it follows from the
canonical form that

T = A+ iB = (U1 + iU2)D(U∗
1 + iU∗

2 ).

Let U = U1 + iU2 : ℓ2 → ℓ2. Since U is a unitary operator, U is also unitary,
and the property U∗ = JU∗J implies that

JU∗J = J(U∗
1 − iU∗

2 )J = U∗
1 + iU∗

2 ,

since J is complex anti-linear. �

Corollary 3.13. The non-zero entries of the operator D are singular values

of the operator T .
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Proof. Since the operator U t is unitary,

TT ∗ = UD2U∗ = UD2U−1,

so that the entries of D2 are the eigenvalues of TT ∗. �

Now let (f, g) be a normalized disjoint pair of univalent functions such
that the corresponding set F has Lebesgue measure zero and the Grunsky
operator B1 is compact. We apply Schur’s Lemma to the operator B1 on
ℓ2. It follows from the symmetry property of Grunsky coefficients that

B∗
1 = JB1J.

Thus there exist a unitary operator U on ℓ2 and a diagonal operator D with
non-negative entries such that

B1 = UDU t.

From the first identity in (3.2), we obtain

U−1B2B
∗
2U = I −D2.

Since ‖B1‖ < 1, the operator I−D2 is positive-definite and hence invertible,
so that the operator

V = B∗
2U(I −D2)−1/2

is also unitary. Using the property Bt
3 = B2, which follows from the sym-

metry of Grunsky coefficients, and the third identity in (3.2), we obtain

V tB4V = −D.
Collecting everything together, we get the following identities:

B1JUJ = UD, B3JUJ = JV J(I −D2)1/2,

B2V = U(I −D2)1/2, B4V = −JV JD.
Letting

λn = (D)nn, ρn = ((1 −D2)1/2)nn =
√

1 − λ2
n

un(z) =

∞∑

m=1

√
m

π
Umnz

m−1, vn(z) =

∞∑

m=1

√
m

π
(JV J)mnz

−m−1,

and realizing Bl’s as linear operators Kl’s, we obtain for n ∈ N,
∫∫

D

K1(z,w)un(w)d2w = λnun(z),

∫∫

D

K3(z,w)un(w)d2w = ρnvn(z)

∫∫

D∗

K2(z,w)vn(w)d2w = ρnun(z),

∫∫

D∗

K4(z,w)vn(w)d2w = −λnvn(z).

Setting

un = un ◦ f−1(f−1)′ and vn = vn ◦ g−1(g−1)′,
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we get,

1

π

∫∫

Ω

un(w)

(z − w)2
d2w = −λnun(z), z ∈ Ω,(3.12)

1

π

∫∫

Ω

un(w)

(z − w)2
d2w = ρnvn(z), z ∈ Ω∗,

1

π

∫∫

Ω∗

vn(w)

(z − w)2
d2w = ρnun(z), z ∈ Ω,

1

π

∫∫

Ω∗

vn(w)

(z − w)2
d2w = λnvn(z), z ∈ Ω∗.

Comparing equations (3.12) with corresponding formulas in [Sch57], we find
that {±λ−1

n }∞n=1 are Fredholm eigenvalues associated to the quasi-circle C =
f(S1) = g(S1).

Remark 3.14. The relation between the Fredholm eigenvalues and the eigen-
values of the Grunsky operator for a C3 curve was first obtained by Schiffer
in [Sch81]. Specifically, in [Sch81] Schiffer has shown that Fredholm eigen-
values, defined as the eigenvalues of classical Poincaré-Fredholm integral
operator on C3 curve, satisfy (3.12). Furthermore, using completeness of
the bases {un}, {vn} in corresponding Hilbert spaces, he proved the relation
(3.2), which is equivalent to the generalized Grunsky equality with λ0 = 0.
Here we use the opposite approach. We start from the generalized Grun-
sky equality for the pair (fµ, gµ) for [µ] ∈ T0(1) and use it for deriving all
necessary properties of the Grunsky operators. In particular, we prove that
the Grunsky operators B1 and B4 associated with [µ] ∈ T0(1) are Hilbert-
Schmidt. The case we consider is more general than in [Sch81] since the set
of all quasi-circles fµ(S1) for [µ] ∈ T0(1) contains the set of all C3 curves as a
proper subset. In fact, we prove in Appendix B that the Grunsky operators
B1 and B4 associated with [µ] ∈ T (1) are compact if and only if [µ] ∈ S, the
subgroup of symmetric homeomorphisms of S1. Our analysis of the relation
between singular values of Grunsky operators and Fredholm eigenvalues still
holds for this case.

As in [Sch59], for a pair (f, g) such that the corresponding operators
K1 and K4 are of trace class, we define the Fredholm determinant for the
corresponding quasi-circle C = f(S1) by

DetF (C) =

∞∏

n=1

ρ2
n = det(I − K1) = det(I − K4).

Theorem 3.6 justifies the following definition.
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Definition 3.15. The real-valued function S2 : T0(1) → R is defined as

S2([µ]) = log DetF (fµ(S1)), [µ] ∈ T0(1).

It follows from (3.9) that

(3.13) S2([µ]) = S2([µ]−1), [µ] ∈ T0(1).

3.3. Period matrix of 1-forms. For a normalized disjoint pair (f, g) of
univalent functions we set Ω = f(D), Ω∗ = g(D∗), and define the Hilbert
spaces

A1
2(Ω) =



ψ holomorphic on Ω : ‖ψ‖2

2 =

∫∫

Ω

|ψ(z)|2 d2z <∞



 ,

A1
2(Ω

∗) =



ψ holomorphic on Ω∗ : ‖ψ‖2

2 =

∫∫

Ω∗

|ψ(z)|2 d2z <∞



 .

The Hilbert spaces A1
2(Ω) and A1

2(Ω
∗) — the Hilbert spaces of holomorphic

1-forms on corresponding domains, are, respectively, naturally isomorphic
to the Hilbert spaces A1

2(D) and A1
2(D

∗).
Consider generalized Faber polynomials of g and f defined, respectively,

by [Pom75, Teo03]

log
g(z) − w

bz
= −

∞∑

n=1

Pn(w)

n
z−n,

log
w − f(z)

w
= log

f(z)

z
−

∞∑

n=1

Qn(w)

n
zn.

Here Pn(w) is a polynomial of degree n in w and Qn(w) is a polynomial of
degree n in 1/w. Specifically,

Pn(w) = (g−1(w))n≥0,

the polynomial part of the n-th power of the inverse function g−1, and

Qn(w) = (f−1(w))−n≤0 ,

the principal part of the negative n-th power of the inverse function f−1.
Here for S ⊂ Z and a formal power series A(w) =

∑
n∈Z

Anw
n we denote

(A(w))S =
∑

n∈S Anw
n.

Comparing the definition of Faber polynomials with the definition of
Grunsky coefficients, we obtain the following relations (see, e.g. [Pom75,
Teo03])

Pn(g(z)) = zn + n

∞∑

m=1

bnmz
−m, Pn(f(z)) = nbn,0 + n

∞∑

m=1

bn,−mz
m,

Qn(g(z)) = −nb−n,0 + n

∞∑

m=1

bm,−nz
−m, Qn(f(z)) = z−n + n

∞∑

m=1

b−n,−mz
m.



POTENTIAL OF THE WEIL-PETERSSON METRIC ON T (1) 25

Now assume that the pair (f, g) is such that the corresponding set F =
C\{f(D)∪g(D∗)} has Lebesgue measure zero. Then it follows from the above
formulas and Remark 3.3 that the Hilbert spaces A1

2(Ω) and A1
2(Ω

∗) have
natural bases {αn}∞n=1 and {βn}∞n=1, given respectively by the polynomials

αn(z) =
P ′
n(z)√
πn

, n ∈ N,

and by the Laurent polynomials

βn(z) =
Q′
n(z)√
πn

, n ∈ N.

Indeed, we have

αn ◦ ff ′ =

∞∑

m=1

(B3)nmem and βn ◦ g g′ =

∞∑

m=1

(B2)nmfm,

and the inner products are given by

〈αn, αm〉 =

∫∫

Ω

αn(z)αm(z)d2z =

∫∫

D

αn(f(z))f ′(z)αm(f(z))f ′(z)d2z

=
∞∑

k=1

(B3)nk(B3)mk.

Hence the period matrix of A1
2(Ω) with respect to the basis {αn}∞n=1 of

holomorphic 1-forms on Ω (the Gram matrix of the basis) is given by

NΩ = {〈αn, αm〉}∞m,n=1 = B3B
∗
3 .

Similarly, the period matrix of the basis {βn}∞n=1 of holomorphic 1-forms on
Ω∗ is given by

NΩ∗ = {〈βn, βm〉}∞m,n=1 = B2B
∗
2 .

We just proved the following result.

Corollary 3.16. Let (f, g) be a normalized disjoint pair of univalent fuc-

tions such that the set F = C \ {f(D) ∪ g(D∗)} has Lebesgue measure zero

and the corresponding Grunsky operators B1 and B4 are Hilbert-Schmidt.

Then for C = f(S1),

DetF (C) = detNΩ = detNΩ∗

4. Variations of the functions S1 and S2

Let ∂ and ∂̄ be (1, 0) and (0, 1) components of de Rham differential d on
the complex manifold T0(1). Here we compute the “first variations” of the
functions S1 and S2 — the (1, 0)-forms ∂S1 and ∂S2 on T0(1).
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4.1. The first variation of S2.

Theorem 4.1. The real-valued function S2 : T0(1) → R is differentiable at

every point [ν] ∈ T0(1). In terms of the Bers coordinates εµ on the chart

Vν,
∂S2

∂εµ
([ν]) = − 1

6π

∫∫

D∗

S(gν)(z)µ(z)d2z.

Here wν = g−1
ν ◦ fν is the conformal welding corresponding to [ν] ∈ T0(1).

Proof. By definition of the Bers coordinates (see Section 3.3. in Part I), for
µ ∈ H−1,1(D∗)

∂S2

∂εµ
([ν]) =

d

dε

∣∣∣∣
ε=0

S2([εµ ∗ ν]).

Set wεµ ◦ wν = g−1
ε ◦ fε, f = f0 = fν , g = g0 = gν and K1(ε) = K1(f

ε). Since
K1(ε) is a holomorphic family, we have

∂S2

∂εµ
([ν]) =

∂

∂ε

∣∣∣∣
ε=0

det(I − K1(ε)) = −Tr

(
(I − K1)

−1∂K1

∂ε
(0)

)
(4.1)

(see, e.g., [GK69, Ch. IV.1, Property 9]). Now using Lemma 3.7, we have

∂K1

∂εµ
([ν])(z,w) =

1

π2

∫∫

D

∫∫

D∗

µ(u)f ′(z)g′(u)2f ′(ζ)
(f(z) − g(u))2(g(u) − f(ζ))2

K∗
1 (ζ, w)d2ud2ζ

=

∫∫

D

∫∫

D∗

µ(u)K2(z, u)K3(u, ζ)K
∗
1 (ζ, w)d2ud2ζ

= −
∫∫

D∗

∫∫

D∗

µ(u)K2(z, u)K4(u, ζ)K
∗
2 (ζ, w)d2ud2ζ.

Here in the last line, we have used the second relation in (3.2),

K3K
∗
1 = −K4K

∗
2 .

LetR2(z,w) be the kernel of the inverse operatorK−1
2 — the anti-holomorphic

function on D
∗ × D satisfying
∫∫

D∗

K2(z, ζ)R2(ζ, w)d2ζ = I1(z,w) =
1

π(1 − zw̄)2
,

∫∫

D

R2(z, ζ)K2(ζ, w)d2ζ = I2(z,w) =
1

π(1 − z̄w)2
.

Here I1(z,w) and I2(z,w) are the kernels of the identity operators on A1
2(D)

and A1
2(D

∗) respectively. Similarly, let R∗
2(z,w) be the kernel of the inverse

operator (K∗
2 )−1. We have

(I − K1)
−1 = K

−1
2 = (K∗

2 )−1K−1
2 ,
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so that

∂S2

∂εµ
([ν]) =

∫∫

D

∫∫

D∗

∫∫

D

∫∫

D∗

∫∫

D∗

µ(u)R∗
2(w, η)R2(η, z)

K2(z, u)K4(u, ζ)K
∗
2 (ζ, w)d2ud2ζd2zd2ηd2w

=

∫∫

D∗

∫∫

D∗

∫∫

D∗

µ(u)K4(u, ζ)I2(η, u)I2(ζ, η)d
2ud2ηd2ζ

=

∫∫

D∗

∫∫

D∗

µ(u)K4(u, ζ)I2(ζ, u)d
2ud2ζ

=

∫∫

D∗

µ(u)K4(u, u)d
2u = − 1

6π

∫∫

D∗

S(gν)(u)µ(u)d2u.

Here in the last line we have used

K4(u, u) = − 1

π
lim
ζ→u

(
g′(u)g′(ζ)

(g(ζ) − g(u))2
− 1

(ζ − u)2

)
= − 1

6π
S(g)(u).

�

Denote by T ∗
[µ]T0(1) the holomorphic cotangent space to T0(1) at a point

[µ] ∈ T0(1). The natural isomorphism T[µ]T0(1) ≃ H−1,1(D∗) induces the
isomorphism T ∗

[µ]T0(1) ≃ A2(D
∗). Define a holomorphic 1-form ϑ on T0(1)

by

ϑ[µ] = S(gµ) ∈ A2(D
∗),

where wµ = g−1
µ ◦ fµ ∈ T0(1).

Corollary 4.2. On T0(1),

∂S2 = − 1

6π
ϑ.

Remark 4.3. For C3 curves the statement of Theorem 4.1 was obtained by
Schiffer in [Sch59]. The derivation in [Sch59] uses the variational theory of
Fredholm eigenvalues and the exterior variation of the domain. Our proof
is different from Schiffer’s: we use general formula (4.1) and the quasi-
conformal variation.

4.2. The first variation of S1. In addition to S1, we introduce another
function S̃1 : T0(1) → R defined by

S̃1([µ]) = S1([µ
−1]).
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Using (2.3), we get

S̃1([µ]) =

∫∫

D

∣∣∣∣A(fµ) − 2
(fµ)′

fµ
+

2

z

∣∣∣∣
2

d2z +

∫∫

D∗

∣∣∣∣A(gµ) − 2
g′µ
gµ

+
2

z

∣∣∣∣
2

d2z

− 4π log |(gµ)′(∞)|

=

∫∫

D

|A(g̃µ)|2 d2z +

∫∫

D∗

∣∣∣A(̃fµ)
∣∣∣
2
d2z + 4π log |g̃′µ(0)|,

where f̃µ = ı ◦ fµ ◦ ı, g̃µ = ı ◦ gµ ◦ ı and ı(z) = 1
z . The functions f̃µ and g̃µ

are univalent, respectively, on the domains D
∗ and D and are normalized as

f̃µ(∞) = ∞, (̃fµ)′(∞) = 1 and g̃µ(0) = 0. They satisfy the factorization

(4.2) w̃µ = g̃−1
µ ◦ f̃µ,

where w̃µ = ı ◦ wµ ◦ ı.
This description corresponds to the realization of T (1) associated with

the model H
2 ≃ D. Namely, due to the canonical isomorphism

µ ∈ L∞(D∗) 7→ µ̃ = ı∗µ = µ

(
1

z

)
z2

z̄2
∈ L∞(D),

we have T (1) ≃ L∞(D)1/ ∼. If wµ is a q.c. mapping associated with µ ∈
L∞(D∗)1, then w̃µ is the q.c. mapping associated with µ̃ ∈ L∞(D)1, and
corresponding conformal wielding is given by (4.2).

In this section, we will also use the model T (1) ≃ L∞(D)1. To simplify
the notations, for µ ∈ L∞(D)1 we will denote corresponding q.c. mapping
by wµ = g−1

µ ◦ fµ, where fµ and gµ are univalent on the domains D
∗ and

D and are normalized as fµ(∞) = ∞, (fµ)′(∞) = 1 and gµ(0) = 0. Cor-
respondingly, for γ = g−1 ◦ f ∈ T (1) we would have the normalization
f(∞) = ∞, f ′(∞) = 1 and g(0) = 0. To avoid confusion with the notations
for our primary model T (1) = L∞(D∗)1/ ∼, we will always specify explicitly
in the main text when we are using the model T (1) ≃ L∞(D)1/ ∼.

The function S1 on T0(1) naturally extends to a function Ŝ on T0(1),
defined by

Ŝ(γ) =

∫∫

D

|A(f)|2 d2z +

∫∫

D∗

|A(g)|2 d2z − 4π log |g′(∞)|,

where γ = g−1 ◦ f ∈ T0(1). For S̃(γ) = Ŝ(γ−1) we have

S̃(γ) =

∫∫

D

|A(g̃)|2 d2z +

∫∫

D∗

∣∣∣A(f̃)
∣∣∣
2
d2z + 4π log |g̃′(0)|,

where f̃ = ı ◦ f ◦ ı and g̃ = ı ◦ g ◦ ı.
Lemma 4.4. The function S̃ is constant along the fibers of the canonical

projection π : T0(1) → T0(1), S̃ = S̃1 ◦ π.
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Proof. We are using the model T (1) ≃ L∞(D)1/ ∼. For µ ∈ L∞(D)1 let
γ = g−1 ◦ f, γµ = g−1

µ ◦ fµ ∈ T0(1) be such that π(γ) = π(γµ) = [µ].
Comparing the normalization for f and fµ at ∞, we get

f = σ ◦ fµ and g = σ ◦ gµ ◦ α−1,

for some α ∈ PSU(1, 1) and σ(z) = z + b0. Since f 7→ A(f) is invariant if

f is post-composed with a translation2, to prove that S̃(γ) = S̃(γµ) we need
only to check that for α ∈ PSU(1, 1),
∫∫

D

|A(g ◦ α−1)|2d2z + 4π log |(g ◦ α−1)′(0)| =

∫∫

D

|A(g)|2d2z + 4π log |g′(0)|.

Let

α(z) = eiθ
z − w

1 − zw̄

and set log g′(z) =
∑∞

n=0 anz
n. Then A(g) =

∑∞
n=1 nanz

n−1 and
∫∫

D

|A(g ◦ α−1)|2d2z =

∫∫

D

|A(g) ◦ α−1(α−1)′ + A(α−1)|2d2z

=

∫∫

D

|A(g) −A(α)|2d2z =

∫∫

D

∣∣∣∣A(g) − 2w̄

1 − zw̄

∣∣∣∣
2

d2z

=

∫∫

D

|A(g)|2d2z − 4Re


w

∫∫

D

A(g)(z)

∞∑

n=1

(wz̄)n−1d2z




+4|w|2
∫∫

D

∣∣∣∣∣

∞∑

n=1

(wz̄)n−1

∣∣∣∣∣

2

d2z.

The last two terms give

−4πRe

( ∞∑

n=1

anw
n

)
+ 4π

∞∑

n=1

|w|2n
n

= −4π log |g′(w)| + 4π log |g′(0)| − 4π log(1 − |w|2).
On the other hand, we have

(g ◦ α−1)′(0) = g′(α−1(0))(α−1)′(0) = (1 − |w|2)g′(w).

This concludes the proof. �

Theorem 4.5. The real-valued function S̃1 : T0(1) → R is differentiable at

every point [ν] ∈ T0(1). In terms of the Bers coordinates εµ on the chart

Vν,
∂S̃1

∂εµ
([ν]) = 2

∫∫

D∗

S(gν)(z)µ(z)d2z.

2This is why it is more convenient to use the model T (1) ≃ L∞(D)1/ ∼.
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Proof. We are using the model T (1) ≃ L∞(D)1. For [ν] ∈ T0(1) choose a
representative ν ∈ L∞(D)1 which is a product of elements in H−1,1(D)1,
and let wε = wεµ ◦ wν = g−1

ε ◦ fε. It follows from Lemma 2.5 in Part I that
corresponding γε = g−1

ε ◦ f ε fixes 0, 1,∞. By the above lemma,

S̃1([εµ ∗ ν]) = S̃(γε).

We have γε ◦γ−1
ν = γεκ, where κ = (α−1)∗(µ) and α = γν ◦w−1

ν ∈ PSU(1, 1).
Set f = f0, g = g0, so that g = σ ◦ gν ◦ α−1 for some σ ∈ PSL(2,C), and
define vε = f ε ◦ f−1. Since f ε is normalized, it’s Laurent expansion at ∞
has the form

f ε(z) = z +
b1
z

+
b2
z2

+ . . . .

Hence
∂

∂ε

∣∣∣∣
ε=0

vε(z) = O(z−1) as z → ∞,

and the first variations of vε have the form

∂

∂ε

∣∣∣∣
ε=0

vε(z) = − 1

π

∫∫

Ω

((g−1)∗κ)(w)

w − z
d2w,

∂

∂ε̄

∣∣∣∣
ε=0

vε(z) = 0,

where Ω = g(D). Since γεκ fixes 0, 1,∞, we also have

∂

∂ε

∣∣∣∣
ε=0

γεκ(z) = − 1

π

∫∫

D

z(z − 1)κ(w)

(w − z)w(w − 1)
d2w,

∂

∂ε̄

∣∣∣∣
ε=0

γεκ(z) = − 1

π

∫∫

D

z(z − 1)κ(w)

(1 − w̄z)w̄(1 − w̄)
d2w.

Using f ε = vε ◦ f , we obtain

A(f ε) = A(vε) ◦ ff ′ + A(f).

Applying the variational formulas for vε, we have

∂

∂ε

∣∣∣∣
ε=0

A(vε)(z) =
∂2

∂z2

∂

∂ε

∣∣∣∣
ε=0

vε(z) = − 2

π

∫∫

Ω

((g−1)∗κ)(w)

(w − z)3
d2w,

and hence

∂

∂ε

∣∣∣∣
ε=0

∫∫

D∗

|A(f ε)|2 d2z = − 2

π

∫∫

D∗

∫∫

D

κ(w)g′(w)2f ′(z)
(g(w) − f(z))3

A(f)(z)d2wd2z = I1.

Similarly, using

gε ◦ γεκ = vε ◦ g,
we have

g′ε ◦ γεκ(γεκ)z = v′ε ◦ g g′,
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and

A(gε) ◦ γεκ(γεκ)z + A(γεκ) = A(vε) ◦ g g′ + A(g),

where

A(γεκ) =
(γεκ)zz
(γεκ)z

.

Hence we have

∂

∂ε

∣∣∣∣
ε=0

g′ε(0) = −g′′(0)
(
∂

∂ε

∣∣∣∣
ε=0

γεκ

)
(0) − g′(0)

∂

∂z

(
∂

∂ε

∣∣∣∣
ε=0

γεκ

)
(0)

+ g′(0)
∂

∂z

(
∂

∂ε

∣∣∣∣
ε=0

vε

)
(0)

=
g′(0)
π

∫∫

D

κ(w)

(
1

w2
− 1

w(w − 1)
− g′(w)2

g(w)2

)
d2w,

and

∂

∂ε

∣∣∣∣
ε=0

g′ε(0) = −g′′(0)
(
∂

∂ε̄

∣∣∣∣
ε=0

γεκ

)
(0) − g′(0)

∂

∂z

(
∂

∂ε̄

∣∣∣∣
ε=0

γεκ

)
(0)

=
g′(0)
π

∫∫

D

κ(w)

w(w − 1)
d2w,

as well as

∂

∂ε

∣∣∣
ε=0

A(gε) ◦ γεκ(γεκ)z =

(
∂

∂ε

∣∣∣∣
ε=0

A(vε)

)
◦ gg′ − ∂

∂ε

∣∣∣∣
ε=0

A(γεκ)

= − 2

π

∫∫

D

κ(w)

(
g′(w)2g′(z)

(g(w) − g(z))3
− 1

(w − z)3

)
d2w,

and

∂

∂ε

∣∣∣∣
ε=0

A(gε) ◦ γεκ(γεκ)z = − ∂

∂ε̄

∣∣∣∣
ε=0

A(γεκ) =
2

π

∫∫

D

κ(w)

(1 − wz̄)3w
d2w.

From here we get

2π
∂

∂ε

∣∣∣∣
ε=0

log |g′ε(0)|2 = −2

∫∫

D

κ(w)

(
g′(w)2

g(w)2
− 1

w2

)
d2w = I2,
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and

∂

∂ε

∣∣∣∣
ε=0

∫∫

D

|A(gε)|2 d2z =
∂

∂ε

∣∣∣∣
ε=0

∫∫

D

|A(gε) ◦ γεκ(γεκ)z |2 (1 − |εκ|2)d2z

= − 2

π

∫∫

D

∫∫

D

κ(w)

(
g′(w)2g′(z)

(g(w) − g(z))3
− 1

(w − z)3

)
A(g)(z)d2wd2z

+
2

π

∫∫

D

∫∫

D

κ(w)A(g)(z)

w(1 − wz̄)3
d2wd2z = I3 + I4.

Let log g′(z) =
∑∞

n=0 anz
n be the power series expansion of log g′(z). Then

A(g) =
∑∞

n=1 nanz
n−1. Explicit computation gives

2

π

∫∫

D

A(g)(z)

w(1 − wz̄)3
d2z =

∞∑

n=1

n(n+ 1)anw
n−2 = A(g)′(w) +

2

w
A(g)(w).

Hence

I4 =

∫∫

D

κ(w)

(
A(g)′(w) +

2

w
A(g)(w)

)
d2w.

To compute the other terms, we define the following holomorphic function
on D,

h(w) =
1

π

∫∫

D∗

g′(w)f ′(z)
(g(w) − f(z))2

A(f)(z)d2z

+
1

π

∫∫

D

(
g′(w)g′(z)

(g(w) − g(z))2
− 1

(w − z)2

)
A(g)(z)d2z.

Then it is easy to check that

∂

∂ε

∣∣∣∣
ε=0

S̃(γε) = I1 + I2 + I3 + I4

=

∫∫

D

κ(w)

(
h′(w) −A(g)(w)h(w) − 2

g′(w)2

g(w)2
+

2

w2
+ A(g)′(w) +

2

w
A(g)(w)

)
d2w.

To finish the proof, we claim that

h(w) = A(g)(w) − 2
g′(w)

g(w)
+

2

w
,
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which is going to be proved in the next lemma. With this equation for h, it
is straightforward to compute that

∂

∂ε

∣∣∣∣
ε=0

S̃(γε) =

∫∫

D

(
2A(g)′(w) −A(g)(w)2

)
κ(w)d2w

= 2

∫∫

D

S(g)(w)κ(w)d2w = 2

∫∫

D

S(gν)(w)µ(w)d2w.

Returning back to the model T (1) = L∞(D∗)1/ ∼, we get the statement of
the theorem. �

Lemma 4.6. In the model T (1) ≃ L∞(D)1/ ∼, let γ = g−1 ◦ f be the

conformal welding corresponding to γ ∈ T0(1). Then for z ∈ D the following

identity holds

A(g)(z) − 2
g′(z)
g(z)

+
2

z
=

1

π

∫∫

D∗

g′(z)f ′(w)

(g(z) − f(w))2
A(f)(w)d2w

+
1

π

∫∫

D

(
g′(z)g′(w)

(g(w) − g(w))2
− 1

(z − w)2

)
A(g)(w)d2w.

Proof. First we consider the case when A(g) and A(f) are smooth functions
on S1. Specifically, we assume that the Beltrami differential µ corresponding
to π(γ) ∈ T0(1), is smooth on C and µ|S1 = µz̄|S1 = 0. Denote by h(z)
the right-hand side of the identity of the lemma. Changing the variables of
integration and using Stokes’ theorem, we obtain

h ◦ g−1(g−1)′(z) = − 1

π

∫∫

Ω∗

A(f−1)(w)

(z − w)2
d2w − 1

π

∫∫

Ω

A(g−1)(w)

(z − w)2
d2w

=
1

2πi

∮

C

1

(z −w)

(
A(g−1)(w) −A(f−1)(w)

)
dw̄,

where Ω = g(D),Ω∗ = f(D∗) and C = g(S1). Next, consider the relation
γ̃ ◦ g−1 = f−1, where γ̃ = γ−1, and differentiate it twice with respect to z.
Since γ̃z̄ vanishes on S1, we get the following relations on C,

γ̃z
γ̃

◦ g−1(g−1)z =
(f−1)z
f−1

,

A(γ̃) ◦ g−1(g−1)z = A(f−1) −A(g−1).

Hence

h ◦ g−1(g−1)′(z) = − 1

2πi

∮

C

1

(z − w)
(A(γ̃) ◦ g−1)(w)(g−1)w(w)dw̄

= − 1

2πi

∮

S1

1

z − g(w)
A(γ̃)(w)dw̄.
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On the other hand, since j ◦ γ̃ = γ̃ ◦ j, where j is the inversion z 7→ 1
z̄ , we

have

A(γ̃) =A(γ̃) ◦ j jz̄ − 2
γ̃z
γ̃

◦ j jz̄ + A(j̄).

Hence

h ◦ g−1(g−1)′(z) =
1

2πi

∮

S1

1

z − g(w)

(
A(γ̃)

(
1

w̄

)
1

w̄2
− 2

γ̃w
γ̃

(
1

w̄

)
1

w̄2
+

2

w̄

)
dw̄

= − 1

2πi

∮

S1

1

z − g(w)

(
A(γ̃)(w) − 2

γ̃w(w)

γ̃ (w)
+

2

w

)
dw

=
1

2πi

∮

C

1

(z − w)

(
A(g−1)(w) −A(f−1)(w) + 2

(f−1)w(w)

f−1(w)
− 2

(g−1)w(w)

g−1(w)

)
dw.

The functions

A(f−1)(z) − 2
(f−1)z(z)

f−1(z)
+

2

z
and A(g−1)(z) − 2

(g−1)z(z)

g−1(z)
+

2

z

are holomorphic on Ω∗ = f(D∗) and Ω = g(D) respectively and due to the
normalization of f ,

A(f−1)(z) − 2
(f−1)z(z)

f−1(z)
+

2

z
= O

(
1

z2

)
as z → ∞.

Thus we have by Cauchy formula

h ◦ g−1(g−1)′(z) = −
(
A(g−1)(z) − 2

(g−1)′(z)
g−1(z)

+
2

z

)

or equivalently,

h(z) = A(g)(z) − 2
g′(z)
g(z)

+
2

z
.

For a general point γ = g−1 ◦ f in T0(1), we let fn = r−1
n ◦ f ◦ rn, where

rn is the dilation z 7→ n+1
n z. Since fn is a normalized univalent function on

|z| > n
n+1 , corresponding γ−1

n = g−1
n ◦ fn ∈ T0(1) satisfies the assumptions

made in the beginning of the proof. Since A(f) ∈ A1
2(D

∗), we see that
∥∥A(ι ◦ fn ◦ ι) −A(ι ◦ f ◦ ι)

∥∥
A1

2
(D)

=

∥∥∥∥
(
A(fn) − 2

f ′n
fn

+
2

z

)
−
(
A(f)− 2

f ′

f
+

2

z

)∥∥∥∥
A1

2
(D∗)

→ 0 as n→ ∞.

By Corollary A.4 and Corollary A.6 in Appendix A we also have

lim
n→∞

‖A(gn) −A(g)‖A1
2
(D) = 0

and

lim
n→∞

∥∥∥∥
(
A(gn) − 2

g′n
gn

+
2

z

)
−
(
A(g) − 2

g′

g
+

2

z

)∥∥∥∥
A1

2
(D)

= 0.
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In particular, since convergence in A1
2(D) implies convergence in A1

∞(D), we
get

lim
n→∞

(
A(gn)(z) − 2

g′n
gn

(z) +
2

z

)
= A(g)(z) − 2

g′

g
(z) +

2

z
,

uniformly on compact subsets of D. Since we have already shown that

hn(z) = A(gn)(z) − 2
g′n
gn

(z) +
2

z
,

to finish the proof of the lemma we need to verify that limn→∞ hn(z) = h(z)
uniformly on compact subsets of D.

We denote by K1[n] and K2[n] the operators associated with the disjoint
pair of univalent functions (gn, fn), and by K1 and K2 — the operators
associated with the pair (g, f). Then

hn(z) − h(z) = −
(
K1[n]A(gn)

)
(z) +

(
K1A(g)

)
(z)

+
(
K2[n]A(fn)

)
(z) −

(
K2A(f)

)
(z).

Now using Theorem B.1 from Appendix B, and the fact that the inverse
map is continuous on T0(1), we get that

lim
n→∞

‖K1[n] −K1‖ = 0,

where ‖ ‖ stands for the norm of the Banach space B(A1
2(D), A1

2(D)). Since
‖K1[n]‖ ≤ 1, we have

∥∥∥K1[n]A(gn) −K1A(g)
∥∥∥
A1

2
(D)

≤
∥∥∥K1[n]

(
A(gn) −A(g)

)∥∥∥
A1

2
(D)

+
∥∥∥
(
K1[n] −K1

)
A(g)

∥∥∥
A1

2
(D)

≤ ‖A(gn) −A(g)‖A1
2
(D) + ‖K1[n] −K1‖‖A(g)‖A1

2
(D),

which tends to 0 as n → ∞. Consequently, limn→∞(K1[n]A(gn))(z) =

(K1A(g))(z), uniformly on compact subsets of D.
To prove the convergence of the other term in hn(z) − h(z), we let gn =

rn ◦ gn and fn = rn ◦ fn = f ◦ rn. Let Ω∗
n = fn(D

∗) = f({|z| > n+1
n }).

Since Ω∗
n ⊆ Ω∗

n+1, the sequence of domains Ωn = gn(D) is a decreasing
sequence that contains 0 and

⋂
gn(D) = g(D) = Ω. By Caratheodory kernel

theorem (see, e.g., [Pom75]), the sequence of univalent functions gn : D → C

converges uniformly on compact sets to the univalent function g : D → C. By
Weierstrass theorem, limn→∞ g′n(z) = g′(z), uniformly on compact subsets
of D. Using that the operator K2 is unaffected by a simultaneous post-
composition of f and g with α ∈ PSL(2,C) and that A(fn) = A(rn ◦ fn) =
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A(fn), we have
(
K2[n]A(fn)

)
(z) −

(
K2A(f)

)
(z)

=
1

π

∫∫

D∗

g′n(z)f
′
n(w)

(gn(z) − fn(w))2
A(fn)(w)d2w −

∫∫

D∗

g′(z)f ′(w)

(g(z) − f(w))2
A(f)(w)d2w

= un(gn(z))g
′
n(z) − u(g(z))g′(z).

Here for z ∈ Ωn = gn(D) we set

un(z) =
1

π

∫∫

D∗

f′n(w)

(z − fn(w))2
A(fn)(w)d2w = − 1

π

∫∫

Ω∗

n

A(f−1
n )(w)

(z − w)2
d2w,

and for z ∈ Ω = g(D),

u(z) =
1

π

∫∫

D

f ′(w)

(z − f(w))2
A(f)(w)d2w = − 1

π

∫∫

Ω∗

A(f−1)(w)

(z − w)2
d2w.

Let ũn = un|Ω. Using A(f−1
n ) = A(r−1

n ◦ f−1) = A(f−1) and Ω∗
n ⊂ Ω∗, we

get

ũn(z) − u(z) =
1

π

∫∫

Ω∗\Ω∗
n

A(f−1)(w)

(z − w)2
d2w.

Since Hilbert transform is an isometry, we obtain

‖ũn ◦ g g′ − u ◦ g g′‖2
A1

2
(D) =

∫∫

D

∣∣ũn(g(z))g′(z) − u(g(z))g′(z)
∣∣2 d2z

=

∫∫

Ω

|ũn(z) − u(z)|2d2z ≤
∫∫

Ω∗\Ω∗
n

|A(f−1)(z)|2d2z =

∫∫

1<|z|<n+1
n

|A(f)(z)|2d2z.

Since A(f) ∈ A1
2(D

∗), we get

lim
n→∞

‖ũn ◦ g g′ − u ◦ g g′‖A1
2
(D) = 0,

and, consequently, limn→∞ ũn(z) = u(z), uniformly on compact subsets of
Ω. For every compact subset E ⊂ D, gn(E) ⊂ Ω for n sufficiently large, and
it follows that

lim
n→∞

un(gn(z))g
′
n(z) = u(g(z))g′(z),

uniformly on E. �

Corollary 4.7. On T0(1),

∂S̃1 = 2ϑ.
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Theorem 4.8. The functions S1, S̃1,S2 on T0(1) satisfy the following rela-

tions,

S2 = − 1

12π
S1 = − 1

12π
S̃1.

In particular, in Bers coordinates εµ on the chart Vν at [ν] ∈ T0(1),

∂S1

∂εµ
([ν]) = 2

∫∫

D∗

S(gν)(z)µ(z)d2z,

where wν = g−1
ν ◦ fν is the conformal welding corresponding to [ν] ∈ T0(1).

Proof. Since S2(0) = S̃1(0) = 0, Theorems 4.1 and 4.5 immediately give

S2 = − 1

12π
S̃1.

Since the function S2 is symmetric,

S2([µ]) = S2([µ]−1),

the function S̃1 is also symmetric, so that S̃1 = S1. �

Corollary 4.9. On T0(1),
∂S1 = 2ϑ.

Remark 4.10. Returning to the model T (1) = L∞(D∗)/ ∼, let γ = g−1 ◦f ∈
T0(1). Introducing the operator K : A1

2(D) ⊕A1
2(D

∗) → A1
2(D) ⊕A1

2(D
∗),

K =

(
K1 K2

K3 K4

)
,

and the vectors

u =

(
u1

u2

)
, v =

(
v1
v2

)
∈ A1

2(D) ⊕A1
2(D

∗),

where u1 = A(ı◦f ◦ı)◦ı ı′, u2 = −A(ı◦g◦ı)◦ı ı′ and v1 = A(f), v2 = −A(g).
Applying Lemma 4.6 to γ and γ−1 and using generalized Grunsky equality,
we can succinctly rewrite the two identities as a single equation

Kū = −v.

Indeed, Lemma 4.6 applied to γ and γ−1 gives

K3ū1 +K4ū2 = −v2 and K1v̄1 +K2v̄2 = −u1,

and from generalized Grunsky equality it follows that the functions

w1(z) =

(
log

f(z)

z

)′
= −

∞∑

n=1

nb−n,0z
n−1

and

w2(z) = −
(

log
g(z)

z

)′
= −

∞∑

n=1

nbn,0z
−n−1
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satisfy the equations

K1w̄1 +K2w̄2 = w1 and K3w̄1 +K4w̄2 = w2.

Since u1 = v1 − 2w1 and u2 = v2 − 2w2, we get the equation Kū = −v.
Similarly, we get the equation Kv̄ = −u.

Remark 4.11. For C3 curves the result of Theorem 4.5 was obtained by Schif-
fer and Hawley in [SH62]. They have used a completely different approach
which can not be generalized to quasi-circles for T0(1).

The equality S2 = − 1
12πS1 can be also interpreted as a surgery type for-

mula for determinants of elliptic operators (see [BFK92, HZ99]). Namely,
let ∆ϕ be the Laplace operator of the conformal metric e2ϕ(z)|dz|2 on D

with Dirichlet boundary condition. Its zeta-function regularized determi-
nant det ∆ϕ is given by the Polyakov-Alvarez formula

(4.3) log det ∆ϕ = − 1

3π

∫∫

D

|ϕz|2d2z − 1

6π

∮

S1

ϕ(eiθ)dθ + log det ∆0.

Now let γ = g−1 ◦ f ∈ T0(1) and set, as before, g̃ = ı ◦ g ◦ ı, f̃ = ı ◦ f ◦ ı. The

metric |g̃′(z)|2|dz|2 is a pull-back of the Euclidean metric |dw|2 on Ω̃ = g̃(D)
by the conformal mapping g̃. Assume that φ(z) = 1

2 log |g̃′(z)|2 is of C1 class

on S1, and denote by ∆Ω̃ the Laplace operator of the Euclidean metric on

Ω̃ with Dirichlet boundary condition. From (4.3) we immediately get

log det ∆Ω̃ = − 1

12π

∫∫

D

|A(g̃)|2d2z − 1

3
log |g̃′(0)| + log det∆D.

Now consider the metric |̃f ′(1
z )|2|dz|2 on D — a pull-back of the flat metric

ds2 =
|dw|2

|̃f−1(w)|4

on Ω̃∗ = f̃(D∗) by the conformal mapping f̃ ◦ ı. Denoting by ∆Ω̃∗ the Laplace

operator of the metric ds2 on Ω̃∗ with Dirichlet boundary condition, we get
from (4.3),

log det∆Ω̃∗ = − 1

12π

∫∫

D∗

|A(̃f)|2d2z + log det ∆D∗ ,

where we again assumed that ϕ(z) = 1
2 log |̃f ′(1

z )|2 is of C1 class on S1. Here

∆D∗ is the Laplace operator of the metric |dw|2
|w|4 on D

∗. Note that the metric

ds2 is regular at ∞, so that ∆Ω̃∗ is an elliptic operator (cf. [HZ99]). The
following result now follows from Theorem 4.8 and the symmetry property
S1([µ]) = S1([µ

−1]).
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Corollary 4.12. Let γ = g−1 ◦ f ∈ T0(1) be of C3 class on S1. Then for

C = f(S1),

DetF (C) =
det∆Ω̃ det ∆Ω̃∗

det∆D det ∆D∗

.

Remark 4.13. The statement of Corollary 4.12 can be interpreted as a
surgery type formula in the spirit of [BFK92] for the Laplace operator of a
conformal metric on the Riemann sphere P

1, which is the Euclidean met-

ric on the interior domain Ω̃ = ı(Ω∗) and is the metric ds2 = |dw|2
|̃f−1(w)|4 on

the exterior domain Ω̃∗ = ı(Ω) (and thus is continuous on P
1). The Fred-

holm determinant DetF (C) is the inverse of the determinant of the Neumann
jump operator which corresponds to cutting of P

1 along the contour C and
considering Dirichlet boundary conditions for interior and exterior Laplace
operators (cf. [HZ99]).

5. Weil-Petersson potential

5.1. Weil-Petersson potential on T0(1). As in the case of finite dimen-
sional Teichmüller spaces [TT03a], it follows from the results of the previous
section that the function S1 is a potential for the Weil-Petersson metric on
T0(1). For the convenience of the reader, here we give the details.

Theorem 5.1. In terms of the Bers coordinates on the chart Vκ at κ ∈
T0(1),

∂2S1

∂εµε̄ν
([κ]) =

∫∫

D∗

µ(z)ν(z)ρ(z)d2z.

Proof. We have

∂2S1

∂εµε̄ν
([κ]) =

∂

∂ε̄

∣∣∣∣
ε=0

∂S1

∂εµ
([εν ∗ κ]).

Using Theorem 4.8 and the fact that at the point εν ∗ κ ∈ T0(1) the vector
field ∂

∂εµ
on the chart Vκ is represented by P (R(µ, εν)) ∈ H−1,1(D∗) on the

chart Vεν∗κ (see Section 3.3 in Part I), we get

∂S1

∂εµ
(εν ∗ κ) = 2

∫∫

D∗

S(gεν∗κ)P (R(µ, εν))d2z

= 2

∫∫

D∗

(
S(gε) ◦ wεν(wεν)2z

)
Q(R(µ, εν))(1 − |εν|2)d2z,

where g−1
ε ◦ f ε = wεν ◦ wκ, vε = f ε ◦ f−1, and Q(R(µ, εν)) was defined in

Section 7.1 in Part I. Since gε ◦ wεν = vε ◦ g, we have

S(gε) ◦ wεν(wεν)2z + S(wεν) = S(vε) ◦ g(g′)2 + S(g),(5.1)
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and it follows from the standard variational formula that

∂

∂ε̄

∣∣∣∣
ε=0

S(gε) ◦ wεν(wεν)2z =
6

π

∫∫

D∗

ν(w)

(1 − w̄z)4
d2w.

Since according to Theorem 7.4 in Part I

∂

∂ε̄

∣∣∣∣
ε=0

Q(R(µ, εν))

is an infinitesimally trivial Beltrami differential, we have

∂2

∂εµε̄ν
S1([κ]) =

12

π

∫∫

D∗

∫∫

D∗

µ(z)ν(w)

(1 − w̄z)4
d2wd2z =

∫∫

D∗

µ(z)ν(z)ρ(z)d2z.

�

Corollary 5.2. On T0(1),

∂∂̄S1 = −2iωWP ,

where ωWP is the symplectic form of the Weil-Petersson metric. In other

words, S1 is a potential of the Weil-Petersson metric on T0(1).

Remark 5.3. It follows from Corollary 3.16 and Theorem 4.8 that on T0(1),

∂∂̄ log detNΩ =
i

6π
ωWP .

In the spirit of the last remark in Section 8 of Part I, this result should be
compared to the local index theorem for families of ∂̄-operators on compact
Riemann surfaces,

∂∂̄ log det∆0 − ∂∂̄ log detN1 = − i

6π
ωWP ,

where N1 is the period matrix of 1-forms on a compact Riemann surface
X and ∆0 is the Laplace operator of the hyperbolic metric on X (see, e.g.,
[ZT87]).

Remark 5.4. It follows from Corollary 4.9 that on T0(1),

∂ϑ = 0.

Here is a direct proof of this result, following our work [TT03a]. From
equation (5.1), we have at [κ] ∈ T0(1),

(Lνϑ)(z) =
∂

∂εµ

∣∣∣∣
ε=0

S(gε) ◦ wεν(wεν)2z(z)

= −12

π

∫∫

D∗

ν(w)

(
g′(w)2g′(z)2

(g(w) − g(z))4
− 1

(w − z)4

)
d2w

= −12

π

∫∫

D∗

ν(w)
g′(w)2g′(z)2

(g(w) − g(z))4
d2w.
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Hence,

∂ϑ(µ, ν) = Lµϑ(ν) − Lνϑ(µ)

= −12

π

∫∫

D∗

∫∫

D∗

µ(w)
g′(w)2g′(z)2

(g(w) − g(z))4
ν(z)d2wd2z

+
12

π

∫∫

D∗

∫∫

D∗

ν(w)
g′(w)2g′(z)2

(g(w) − g(z))4
µ(z)d2wd2z

= 0.

5.2. Weil-Petersson potential on T (1). The 1-form ϑ does not naturally
extend to the whole Hilbert manifold T (1) (since ϑ|[µ] ∈ A2(D

∗) if and only

if [µ] ∈ T0(1)). From Theorem 2.12 we also see that T0(1) is the maximal
subset of T (1) on which the function S1 is well-defined. However, it is easy
to construct a Weil-Petersson potential on T (1) by using right translations.
Namely, we index the components of the Hilbert manifold T (1) by the set
I (uncountable) and for every α ∈ I choose [µα] ∈ Tα(1) = RµαT0(1) such
that µ0 = 0 for the component T0(1). This represents T (1) as a disjoint
union

T (1) =
⊔

α∈I
Tα(1).

Define

S([ν]) = S1([ν ∗ µ−1
α ]) for [ν] ∈ Tα(1).

It follows from the right-invariance of the Weil-Petersson metric that the
function S is a Weil-Petersson potential on T (1).

6. The period mapping

The generalization of the classical period mapping to the homogeneous
space Möb(S1)\Diff+(S1) was outlined by Kirillov and Yuriev in [KY88]
and developed by Nag [Nag92]. In particular, in [Nag92] it is explained in
what sense this is a generalization of classical period mapping as an asso-
ciation between the complex structures and corresponding spaces of holo-
morphic 1-forms. Subsequently in [NS95], Nag and Sullivan extended the
period mapping to the universal Teichmüller space T (1). Here we prove that
the Kirillov-Yuriev-Nag-Sullivan (KYNS) period mapping coincides with the

mapping P̂ defined in Remark 3.11.

6.1. KYNS period mapping. Following [NS95], let H be the real Hilbert
space

H =H1/2(S1,R)/R

=

{
f : S1 → R

∣∣∣ f(eiθ) =

∞∑′

n=−∞
cne

inθ,
∞∑

n=1

n|cn|2 <∞
}
,
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and let Θ be the symplectic form3 on H:

Θ(f, g) =
1

2π

∮

S1

gdf.

By complex linearity, the symplectic form Θ extends to the complexification
of H — the complex Hilbert space HC,

HC =H1/2(S1,C)/C

=

{
f : S1 → C

∣∣∣f(eiθ) =

∞∑′

n=−∞
cne

inθ,

∞∑′

n=−∞
|n||cn|2 <∞

}
.

With respect to this symplectic form, the Hilbert space HC has a canonical
decomposition into two closed isotropic subspaces

HC = W+ ⊕W−,

where

W+ =

{
f : S1 → C

∣∣∣ f(eiθ) =

∞∑

n=1

ane
inθ,

∞∑

n=1

n|an|2 <∞
}
,

W− =

{
g : S1 → C

∣∣∣ g(eiθ) =
∞∑

n=1

bne
−inθ,

∞∑

n=1

n|bn|2 <∞
}
.

Let D∞ be the infinite dimensional analog of Siegel disk [Sie64],

D∞ =
{
Z ∈ B(W−,W+) : Θ(Zf, g) = Θ(Zg, f) and I − ZZ̄ > 0

}
.

Here B(W−,W+) is the Banach space of all bounded linear operators from
W− to W+, and Z̄ = JZJ : W+ →W−, where J is the standard conjugation
operator on HC defined by JW+ = W−. With respect to the standard bases

{
en = 1√

n
einθ

}
n∈N

and
{
fn = 1√

n
e−inθ

}
n∈N

of the subspaces W+ and W−, an operator Z ∈ D∞ is represented by an
infinite matrix, and the condition Θ(Zf, g) = Θ(Zg, f) translates as Z = Zt.
Let Sp(H) be the group of bounded symplectomorphisms on H. Elements
of Sp(H), extended complex linearly to HC, in the basis {en}n∈N ∪ {fn}n∈N

of HC can be represented by matrices
(
A B
B̄ Ā

)
, where AA∗ −BB∗ = I, ABt = BAt.(6.1)

The group Sp(H) acts transitively on D∞ by

Z 7→ (AZ +B)(B̄Z + Ā)−1,

3We use a different sign convention since our complex structure has a different sign
compared to [KY88, Nag92, NS95].
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and the stabilizer of the point Z = 0 is the unitary subgroup U of Sp(H)
consisting of bounded symplectomorphisms with B = 0. Thus the canonical
quotient map Q : Sp(H) → D∞,

Q

((
A B
B̄ Ā

))
= (AZ +B)(B̄Z + Ā)−1

∣∣
Z=0

= BĀ−1,

induces the isomorphism

Sp(H)/U ≃ D∞.

In [NS95], Nag and Sullivan proved that the assignment

Homeoqs(S
1) ∋ γ 7→ Π̂(γ) ∈ B(HC),

where

Π̂(γ)(f) = f ◦ γ − 1

2π

∮

S1

f ◦ γdθ, f ∈ HC,

defines a right action of the group Homeoqs(S
1) on the Hilbert space HC by

symplectomorphisms. Thus the mapping

Π̂ : Homeoqs(S
1) → Sp(H)

satisfies Π̂(γ1 ◦ γ2) = Π̂(γ2)Π̂(γ1). On the other hand, an operator Π̂(γ)

preserves the subspaces W+ and W−, i.e., Π̂(γ) ∈ U , if and only if γ ∈
Möb(S1). The induced mapping

Π = Q ◦ Π̂ : T (1) = Möb(S1)\Homeoqs(S
1) → Sp(H)/U ≃ D∞

is what we call KYNS period mapping of T (1).

With respect to the basis {en}n∈N ∪ {fn}n∈N of HC, the mapping Π̂ :
Homeoqs(S

1) → Sp(H) is given by the matrix

Π̂(γ) =

(
A B,
B̄ Ā

)
, γ ∈ Homeoqs(S

1),

where

Amn(γ) =
1

2π

√
m

n

∮

S1

(γ(eiθ))ne−imθdθ,

Bmn(γ) =
1

2π

√
m

n

∮

S1

(γ(eiθ))−ne−imθdθ.

As a result, the KYNS period matrix Π : T (1) → D∞ is given by the matrix

Π([µ]) = BĀ−1, [µ] ∈ T (1),

where A = A(wµ) and B = B(wµ). On the other hand, it follows from (6.1)
that

Π̂(γ−1) = Π̂(γ)−1 =

(
A(γ)∗ −B(γ)t

−B(γ)∗ A(γ)t

)
.
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Proposition 6.1. The Grunsky matrices Bl, l = 1, 2, 3, 4, corresponding to

γ ∈ S1\Homeoqs(S
1), and the elements of the matrix Π̂(γ) are related by

B1 = BĀ−1, B2 = (A∗)−1,

B3 = Ā−1, B4 = −B∗(A∗)−1.

Proof. Let γ = g−1 ◦ f be the conformal welding of γ ∈ S1\Homeoqs(S
1),

and let Pn and Qn be the Faber polynomials associated to the pair (f, g).
Denoting by P+ : HC →W+ and P− : HC →W− the orthogonal projection
operators, we get

A∗ = P+Π̂(γ−1)
∣∣∣
W+

.

By definition of Faber polynomials, (P 0
n ◦ f)

∣∣
S1 ∈ W+, where P 0

n(z) =

Pn(z) − Pn(0) and n ≥ 1. We have on S1,

P+Π̂(γ−1)(P 0
n ◦ f) = P+

(
(P 0

n ◦ f) ◦ f−1 ◦ g
)

= P+(P 0
n ◦ g).

Since P+(P 0
n ◦ g)(eiθ) = einθ and (P 0

n ◦ f)(eiθ) = n
∑∞

m=1 b−m,ne
imθ, we

obtain
∞∑

k=1

A∗
mk(B2)kn = δmn,

i.e. A∗B2 = Id. Similarly, let Q0
n = Qn − Qn(∞). By definition of Faber

polynomials, (Q0
n ◦ f)(eiθ) − e−inθ ∈W+ for n ≥ 1. We have on S1,

P+Π̂(γ−1)((Q0
n(f(eiθ))−e−inθ) = P+

(
(Q0

n ◦ g) − (γ−1)−n
)

= −P+((γ−1)−n).

Since −B(γ−1) = Bt, we have −P+((γ−1)−n)(eiθ) =
∑∞

k=1

√
n
kBnke

ikθ.

Using Q0
n(f(eiθ)) − e−inθ = n

∑∞
m=1 b−m,−ne

imθ, we obtain

∞∑

k=1

A∗
mk(B1)kn = Bnm,

i.e., A∗B1 = Bt, which is equivalent to B1 = Bt
1 = BĀ−1. Using B3 = Bt

2

and B4(γ) = B1(γ−1) concludes the proof. �

Corollary 6.2. The KYNS period mapping Π coincides with our period

mapping P̂ defined in Remark 3.11.

Proof. Due to Proposition 6.1, B1 = BĀ−1. �

Remark 6.3. In [NS95] it was stated that the period mapping Π : T (1) →
D∞ is a holomorphic mapping of Banach manifolds. However, it was only
shown that the induced mapping DΠ of tangent spaces is complex linear
injection, which is not enough to claim holomorphy for infinite dimensional

manifolds. In Appendix B we prove that the mapping P̂ : T (1) → B(ℓ2) is
holomorphic, which completes the proof in [NS95].
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Following G. Segal [Seg81], we introduce the subgroup Sp0(H) of the
symplectic group Sp(H) for which B ∈ S2(W−,W+) — the Hilbert space
of Hilbert-Schmidt operators from W− to W+. The group Sp0(H) acts
transitively on the restricted Siegel disc

D0
∞ = D∞ ∩ S2(W−,W+).

Corollaries 6.2 and 3.9 immediately imply the following result.

Corollary 6.4. For [µ] ∈ T (1), Π([µ]) ∈ D0
∞ if and only if [µ] ∈ T0(1).

Remark 6.5. In view of the above corollary, define the restricted period
mapping

Π0 = Π|T0(1) : T0(1) → D0
∞.

Since by Corollary 6.2 Π0 = P, by Theorem 3.10 Π0 is a holomorphic
mapping of Hilbert manifolds. The homogenuous space D0

∞ carries a nat-
ural Sp0(H)-invariant Kähler metric with the Kähler potential Φ(Z) =
log Det(1−ZZ̄). It was first shown by Kirillov and Yuriev [KY88] and later
by Nag [Nag92] that the pullback of this metric to Möb(S1)\Diff+(S1) by
the period mapping coincides, up to a constant, with the Weil-Petersson
metric. It immediately follows from Corollary 6.2 that

S2 = log Det(I − ZZ̄),

so that the pullback of the natural Kähler metric on D0
∞ by the restricted

period mapping to T0(1) coincides, up to a constant, with the Weil-Petersson
metric on T0(1). Thus we have established the relations between all natural
potential functions on T0(1): up to a constant factor, they are indeed all
equal!

6.2. Embeddings into the Segal-Wilson universal Grassmannian.

Let V be an infinite-dimensional separable complex Hilbert space and let

V = V+ ⊕ V−

be its decomposition into the direct sum of infinite-dimensional closed sub-
spaces V+ and V−. The Segal-Wilson universal Grassmannian Gr(V ) [SW85,
PS86] is defined as a set of closed subspaces W of V satisfying the following
conditions.

UG1. The orthogonal projection pr+ : W → V+ is a Fredholm operator.
UG2. The orthogonal projection pr− : W → V− is a Hilbert-Schmidt op-

erator.

Equivalently, W ∈ Gr(V ), if W is the image of an operator w : V+ → W
such that pr+w is Fredholm and pr−w is Hilbert-Schmidt. The Segal-Wilson
Grassmannian Gr(V ) is a Hilbert manifold modeled on the Hilbert space
S2(V+, V−) of Hilbert-Schmidt operators from V+ to V−.

For our purposes, let V = HC and V+ = W−, V− = W+. To every
[µ] ∈ T0(1) we associate a closed subspace Wµ ⊂ HC spanned by the func-

tions wn(e
iθ) = 1√

n
Qn(f

µ(eiθ)), where wµ = g−1
µ ◦ fµ is the corresponding
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conformal welding. Explicitly, in terms of the basis {en}n∈N ∪ {fn}n∈N of
HC,

wn = fn +

∞∑

m=1

√
nmb−n,−mem, n ∈ N.

We have Wµ = w(V+), where w(fn) = wn, n ∈ N. Thus the mapping
pr+w = I — the identity operator on V+, is obviously Fredholm, and the
mapping pr−w = B1(f

µ) is Hilbert-Schmidt since [µ] ∈ T0(1). According to
Theorem 3.10, the mapping

E : T0(1) → Gr(HC)

given by E ([µ]) = Wµ is a holomorphic inclusion of T0(1) into the Segal-
Wilson universal Grassmannian. For the homogeneous space Möb(S1)\Diff+(S1)
this mapping was first considered in [KY88].

Remark 6.6. Seemingly another mapping of Möb(S1)\Diff+(S1) into the
Segal-Wilson Grassmannian was considered in [STZ99]. Namely, extend
µ ∈ L∞(D∗) by zero to D and let Vµ be the space of distrubitional solutions
of the Beltrami equation wz̄ = µwz on C having a single pole at 0. The
mapping in [STZ99] was defined by the assignment [µ] → Vµ|S1 . It is easy
to see that the space Vµ is spanned by the functions wn(z) = Qn(f

µ)(z),
n ∈ N, so that Vµ|S1 = Wµ and the mapping in [STZ99] coincides with the
Kirillov-Yuriev mapping [KY88].

Remark 6.7. The inclusion E : T0(1) → Gr(HC) is a holomorphic mapping
due to the holomorphic dependence of fµ on µ. Since fµ is holomorphic
on D, the subspaces Wµ correspond to the different uniformizations of the
same Riemann surface Ω = fµ(D) ≃ D. However, one can consider another
mapping where the associated subspaces in the universal Grassmannian cor-
respond to Riemann surfaces of different complex structure. Namely, set,
as before, V = HC and let V+ = W+ and V− = W−. We denote the corre-

sponding Segal-Wilson Grassmannian by G̃r(HC), and define the mapping

Ẽ : T0(1) → G̃r(HC)

by assigning to every point [µ] ∈ T0(1) the closed subspace W̃µ ⊂ HC

spanned by the functions w̃n(e
iθ) = 1√

n
Pn(gµ(e

iθ)), n ∈ N. We have

W̃µ = w̃(V+), where w̃(en) = w̃n, n ∈ N, and pr+w̃ = I — the identity
operator on V+ and pr−w̃ = B4(gµ) is Hilbert-Schmidt since [µ] ∈ T0(1).

The mapping Ẽ is not holomorphic. However, since JW+ = W−, where J is

the standard conjugation operator on HC, we have G̃r(HC) = J(Gr(HC)),

so that G̃r(HC) is a mirror image of Gr(HC). Denoting by I the inversion
on the topological group T0(1), we get

Ẽ = J ◦ E ◦ I.
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Remark 6.8. One can describe the “Schottky locus”, i.e., the image E (T0(1))
in the Segal-Wilson Grassmannian Gr(HC). Indeed, since the correspond-
ing points in Gr(HC) are associated with the Grunsky operators B1, it is
equivalent to the characterization of the image of the restricted period map
Π0 : T0(1) → D0

∞. Let C = {Cmn}m,n∈N ∈ D0
∞, which we realized as

symmetric, Hilbert-Schmidt operator on ℓ2 satisfying I − CC̄ > 0. Then
C ∈ Π0(T0(1)) if and only if the the following conditions are satisfied.

S1.

1 +
∞∑

m=1

Cm1√
m

zm1 − zm2
z−1
1 − z−1

2

= exp


−

∞∑

m,n=1

Cmn√
mn

zm1 z
n
2


 .

S2. There exist D = {Dmn}m,n∈N ∈ D0
∞ and B ∈ B(ℓ2) such that

I − CC̄ = BB∗ and I −DD̄ = B̄∗B̄.

S3.

1 +
∞∑

m=1

Dm1√
m

z−m1 − z−m2

z1 − z2
= exp


−

∞∑

m,n=1

Dmn√
mn

z−m1 z−n2


 .

Equations S1 and S3 are understood as infinite sequence of relations be-
tween elements of the matrices C and D obtained by comparing coefficients
of zm1 z

n
2 and z−m1 z−n2 respectively. Equations S1 and S3 are nothing but

dispersionless Hirota equations (see, e.g., [Teo03]). They are just a reformu-
lation of the definition of the Grunsky coefficients of the univalent functions
f and g and the identities

1

f(z)
+ c = Q1(f(z)) =

1

z
+

∞∑

m=1

b−1,−mz
m,

g(z)

b
+ d = P1(g(z)) = z +

∞∑

m=1

b1mz
−m,

where c and d are constants. See [Teo03] for details.

Appendix A. Hilbert manifold structure of T0(1)

Here we show that the Hilbert manifold T0(1), modeled on the Hilbert
space A2(D) ⊕ C, can also be modeled on the Hilbert space A1

2(D), which
induce the same Hilbert manifold structure. This result is parallel to the
one in the Appendix of [Teo02].

Let β be the Bers embedding T (1) →֒ A∞(D) ⊕ C,

T (1) ∋ γ = g−1 ◦ f 7→
(
S(f), 1

2A(f)(0)
)
,

and let β̂ : T (1) → A1
∞(D) be the pre-Bers embedding of T (1) into A1

∞(D),

T (1) ∋ γ = g−1 ◦ f 7→ A(f).

By Theorem 2.12, β̂(γ) ∈ A1
2(D) if and only if γ ∈ T0(1).
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Lemma A.1. The map Ψ̂ : A1
2(D) → A2(D) ⊕ C,

Ψ̂(ψ) =
(
Ψ(ψ), 1

2ψ(0)
)
,

where Ψ(ψ) = ψz − 1
2ψ

2, is a one to one holomorphic mapping on Hilbert

spaces.

Proof. Firstly, the map Ψ : A1
2(D) → A2(D) is holomorphic. That is, for

every ψ,ϕ ∈ A1
2(D), the map C ∋ t 7→ Ψ(ψ + tϕ) is holomorphic in a

neighbourhood of 0 ∈ C. Indeed,
∥∥∥∥

Ψ(ψ + tϕ) − Ψ(ψ + t0ϕ)

t− t0
− d

dt

∣∣∣
t=t0

Ψ(ψ + tϕ)

∥∥∥∥
A2(D)

=
|t− t0|

2
‖ϕ2‖A2(D) ≤

|t− t0|
4

‖ϕ‖A1
∞

(D)‖ϕ‖A1
2
(D) = O(|t− t0|).

Secondly, by Lemma 2.3,

|ψ(0)| ≤
√

1

π
‖ψ‖A1

2
(D),

so that ψ 7→ 1
2ψ(0) is a bounded complex-linear map. The injectivity of Ψ̂

has been proved in the Appendix of [Teo02]. �

Corollary A.2. The set β̂(T0(1)) ⊂ A1
2(D) is open in A1

2(D).

Proof. It readily follows from the results in Section 3.3 of Part I that β(T0(1))
is open in A2(D)⊕C. The assertion now follows from the lemma above since

β̂(T0(1)) = Ψ̂−1
(
β(T0(1))

)
. �

Theorem A.3. The embeddings β : T0(1) →֒ A2(D) ⊕ C and β̂ : T0(1) →֒
A1

2(D) induce the same Hilbert manifold structure on T0(1).

Proof. The map Ψ̂ : β̂(T0(1)) → β(T0(1)) is a holomorphic bijection between

complex manifolds. To show that Ψ̂ is biholomorphic, by inverse function

theorem (see, e.g., [Lan95]) we need to prove that for every ψ ∈ β̂(T0(1)) the

linear map DψΨ̂ is a topological isomorphism between the Hilbert spaces

A1
2(D) and A2(D) ⊕ C. Let γ = g−1 ◦ f ∈ T0(1) and ψ = A(f) ∈ β̂(T0(1)).

The linear map DψΨ̂ : A1
2(D) → A2(D) ⊕ C is given by

ϕ 7→
(
ϕz − ψϕ, 1

2ϕ(0)
)
.

For every (φ, c) ∈ A2(D) ⊕ C, the holomorphic function ϕ on D, defined by

ϕ(z) = f ′(z)

(∫ z

0

φ(u)

f ′(u)
du+ 2c

)
,

satisfies

ϕz − ψϕ = φ and 1
2ϕ(0) = c.
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We claim that ϕ ∈ A1
2(D), so that the map DψΨ̂ is onto. Indeed, repeating

the proof of Lemma 2.11, we get for z ∈ D,

|φ(z)|2 ≥ 1
2 |ϕz |2 − |ψ(z)|2|ϕ(z)|2.

By Becker-Pommerenke theorem, there exists r′ > 0 such that

|(1 − |z|2)ψ(z)| ≤ 1

2
√

2
for all r′ < |z| < 1.

Thus for r′ < |z| < 1,

2(1 − |z|2)2|φ(z)|2 ≥ (1 − |z|2)2|ϕz(z)|2 − 1
4 |ϕ(z)|2,

and the result follows as in the proof of Lemma 2.11. Uniqueness theorem for
differential equations guarantees that the map DψΨ̂ is one-to-one. Finally,
by using the same arguments as in the proof of Lemma 2.5 and Lemma 2.3,
there exists C > 0 such that for all ϕ ∈ A1

2(D),

‖DψΨ̂(ϕ)‖A2(D) ≤ C‖ϕ‖A1
2
(D).

Hence DψΨ̂ is a bounded linear bijection between Hilbert spaces. �

Corollary A.4. Let {γn}∞n=1 be a sequence of points in T0(1), γn = g−1
n ◦fn,

and let γ = g−1 ◦ f ∈ T0(1). Then the following conditions are equivalent.

(i) In T0(1) topology,

lim
n→∞

γn = γ.

(ii) In A1
2(D) topology,

lim
n→∞

A(fn)(z) = A(f)(z).

(iii) In A1
2(D

∗) topology,

lim
n→∞

(
A(gn)(z) − 2

g′n(z)
gn(z)

+
2

z

)
= A(g)(z) − 2

g′(z)
g(z)

+
2

z
.

Proof. The equivalence (i)⇔(ii) follows from Theorem A.3. Since T0(1) is a
topological group, limn→∞ γn = γ if and only if limn→∞ γ−1

n = γ−1. Now

let j(z) = 1
z̄ and let r be the dilation z 7→ g′(∞) z. We have γ−1 = g̃−1 ◦ f̃ ,

where f̃ = r ◦ j ◦ g ◦ j and

A(f̃) = A(r ◦ j ◦ g ◦ j) =

(
A(g) − 2

g′

g
+ 2j̄

)
◦ jjz̄ ,

so that the equivalence (i)⇔(iii) follows from the equivalence (i)⇔(ii). �

Next, consider the mappings β∗ : T0(1) → A2(D
∗),

β∗(γ) = β(γ−1) ◦ jj2z̄ = S(g),

and β̂∗ : T0(1) → A1
2(D

∗),

β̂∗(γ) = A(g),
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where γ = g−1 ◦ f ∈ T0(1). Also, consider the mapping Ψ∗ : A1
2(D

∗) →
A2(D

∗), defined by
Ψ∗(ψ) = ψz − 1

2ψ
2,

and let

Ã1
2(D

∗) =

{
ψ ∈ A1

2(D
∗) : ψ(z) = O

(
1

z3

)
as z → ∞

}
.

We have the following result.

Lemma A.5.

(i) The map Ψ∗ : A1
2(D

∗) → A2(D
∗) is a holomorphic mapping on

Hilbert spaces and its restriction to the subspace Ã1
2(D

∗) is injective.

(ii) The set β̂∗(T0(1)) = β̂∗(T0(1)) is open in A1
2(D

∗).

Proof. Holomorphy of Ψ∗ is proved along the same lines as Lemma A.1.
From the proof of Theorem A.5 in [Teo02] it follows that the restriction of

the map Ψ∗ to the subspace Ã1
2(D

∗) is one to one. To prove part (ii), observe

that β∗ = Ψ∗ ◦ β̂∗ and β∗(T0(1)) = β∗(T0(1)). Since β̂∗(T0(1)), β̂
∗(T0(1)) ∈

Ã1
2(D

∗) and the restriction of Ψ∗ to Ã1
2(D

∗) is injective, we have the equality

β̂∗(T0(1)) = β̂∗(T0(1)). The proof that this set is open in A1
2(D

∗) is analogous
to the proof of Corollary A.2. �

Corollary A.6. Let {γn}∞n=1, γn = g−1
n ◦fn, be a sequence of points in T0(1)

such that

lim
n→∞

γn = γ = g−1 ◦ f ∈ T0(1).

Then the following statements hold.

(i) In A2(D
∗) topology,

lim
n→∞

S(gn) = S(g).

(ii) In A1
2(D

∗) topology,

lim
n→∞

A(gn) = A(g).

Proof. Since T0(1) is a topological group, limn→∞ γ−1
n = γ−1 = g̃−1 ◦ f̃ . We

have f̃ = r ◦ j ◦ g ◦ j, so that

S(f̃) = S(g) ◦ jj2z̄ ,
which proves part (i). Part (ii) follows from Lemma A.5. �

Appendix B. The period mapping P̂

Let S∞ be the closed ideal of compact operators in the Banach algebra
B(ℓ2) of bounded operators on ℓ2. Here we prove that the period mapping

P̂ : T (1) → B(ℓ2), defined in Remark 3.11, is a holomorphic mapping of
complex Banach manifolds and that

P̂
−1(S∞) = S = Möb(S1)\Homeos(S

1).
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Theorem B.1. The inclusion P̂ : T (1) → B(ℓ2) is a holomorphic mapping

of Banach manifolds.

Proof. As in the proof of Theorem 3.10, we will show that for every [ν] ∈
T (1) and µ ∈ Ω−1,1(D∗), the map C ∋ t 7→ B1(t) = B1(f

ν+tµ) is holomorphic
in a neighborhood of t = 0 in C. Choose δ > 0 so that ‖ν+ tµ‖∞ < 1 for all
|t| < δ. For every t0 such that |t0| < δ, let δ1 be such that 0 < δ1 < δ − |t0|.
Then for all |t− t0| < δ1, we have as in Theorem 3.10,

(
Kν+tµ

1 −Kν+t0µ
1 − (t− t0)

d

dt

∣∣∣∣
t=t0

Kν+tµ
1

)
(z,w)

=
(t− t0)

2

2πi

∮

|ζ−t0|=δ1

Kν+ζµ
1 (z,w)

(ζ − t)(ζ − t0)2
dζ.

This gives
∥∥∥∥∥
B1(f

ν+tµ) −B1(f
ν+t0µ)

t− t0
− d

dt

∣∣∣∣
t=t0

B1(f
ν+tµ)

∥∥∥∥∥

= sup
‖u‖2=1



∫∫

D

∣∣∣∣∣∣

∫∫

D

t− t0
2πi

∮

|ζ−t0|=δ1

Kν+ζµ
1 (z,w)u(w)

(ζ − t)(ζ − t0)2
dζd2w

∣∣∣∣∣∣

2

d2z




1/2

≤ |t− t0|
2π

sup
‖u‖2=1

(∫∫

D

(∮

|ζ−t0|=δ1

|dζ|
|ζ − t|2|ζ − t0|4

)

(∮

|ζ−t0|=δ1

∣∣∣∣∣∣

∫∫

D

Kν+ζµ
1 (z,w)u(w)d2w

∣∣∣∣∣∣

2

|dζ|
)
d2z

)1/2

=
|t− t0|

2π

(∮

|ζ−t0|=δ1

|dζ|
|ζ − t|2|ζ − t0|4

)1/2

sup
‖u‖2=1

(∮

|ζ−t0|=δ1
‖Kν+ζµ

1 ū‖2
2|dζ|

)1/2

.

Since ‖K1‖ < 1, we obtain
∥∥∥∥∥
B1(f

ν+tµ) −B1(f
ν+t0µ)

t− t0
− d

dt

∣∣∣∣
t=t0

B1(f
ν+tµ)

∥∥∥∥∥

≤ |t− t0|
2π

(∮

|ζ−t0|=δ1

|dζ|
|ζ − t|2|ζ − t0|4

∮

|ζ−t0|=δ1
|dζ|

)1/2

= O(t− t0) as t→ t0.

�

To prove that P̂(S) ⊂ S∞, we first give a characterization of the subman-
ifold S = Möb(S1)\Homeos(S

1) of T (1). It has been shown by Gardiner and
Sullivan [GS92] that β(S) = A0

∞(D) ∩ β(T (1)), where β : T (1) → A∞(D) is
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the Bers embedding and A0
∞(D) is the subspace of the Banach space A∞(D),

defined by

A0
∞(D) =

{
φ ∈ A∞(D) : lim

|z|→1−
(1 − |z|2)2φ(z) = 0

}
.

Analogous to Theorem A.1 in Part I, we have the following result.

Lemma B.2. The closure of the homogeneous space Möb(S1)\Diff+(S1) ⊂
T (1) in the Banach manifold topology is the Banach submanifold S of T (1).

Proof. For φ ∈ A0
∞(D) ∩ β(T (1)), let φn = φ ◦ rn, where rn is the dilation

z 7→ n
n+1z, n ∈ N. Since φ ∈ A0

∞(D), for every ε > 0 there exists 0 < r < 1
such that

sup
r≤|z|≤1

(1 − |z|2)2|φ(z)| < ε

4
.

Thus there exists N ′ such that

sup
r′≤|z|≤1

(1 − |z|2)2|φn(z)| <
ε

4

for n > N ′, where r′ = 1+r
2 . The sequence {φn} converges uniformly to φ

on compact subsets of D, so that there exists N ′′ such that

sup
|z|≤r′

(1 − |z|2)2|φn(z) − φ(z)| < ε

2
for n > N ′′.

Thus ‖φn − φ‖∞ < ε for n > N = max{N ′, N ′′}, so that

lim
n→∞

φn = φ

in the A∞(D) topology. Since β(T (1)) is open in A∞(D), φn ∈ β(T (1))
for large enough n. The functions φn are smooth on S1 (in fact analytic),
so that corresponding γn ∈ Möb(S1)\Homeoqs(S

1) are also smooth on S1.

This proves that Möb(S1)\Diff+(S1) = S. �

Remark B.3. Together with Theorem A.1 in Part I, Lemma B.2 explains the
distinguished role of the embedded manifold Möb(S1)\Diff+(S1) →֒ T (1) in
Teichmüller theory. Its closure in T (1) under the Banach manifold topology
is the Banach submanifold S, whereas its closure under the Hilbert manifold
topology is the Hilbert submanifold T0(1).

Theorem B.4. The image of the Banach submanifold S under the KYNS

period mapping P̂ : T (1) → B(ℓ2) is given by

P̂(S) = S∞ ∩ P̂(T (1)),

where S∞ is the space of compact operators on ℓ2.

Proof. It is easy to show that P̂(S) ⊂ S∞. Indeed, by Theorem 3.6,

P̂(Möb(S1)\Diff+(S1)) ⊂ S2 ⊂ S∞. Since the mapping P̂ is continu-
ous (actually, holomorphic), using Lemma B.2 proves the claim.
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To prove the converse inclusion P̂−1(S∞ ∩ P̂(T (1))) ⊂ S, we use meth-
ods developed by Brazilevic in [Bra65]. Let U be the space of univa-
lent functions on D. Following [Bra65], consider the following function
F : U × U × D → R,

F(f1, f2)(z) =
√
π(1 − |z|2)



∫∫

D

|K1(f1)(z,w) −K1(f2)(z,w)|2 d2w




1/2

.

When f1 = f and f2 = id — the identity mapping, we denote

F(f)(z) = F(f, id)(z) =
√
π(1 − |z|2)K1(z, z)

1/2.

In [Bra65], Brazilevic has introduced a new metric on U ,

d(f1, f2) = sup
z∈D

F(f1, f2)(z),

and has shown that

‖S(f1) − S(f2)‖∞ ≤ 6d(f1, f2).

For fixed ζ ∈ D, consider the kernel

K1(f)(z, ζ) =
1

π

∞∑

n=1

n

( ∞∑

m=1

mb−n,−mζ
m−1

)
zn−1

as a holomorphic function on D. By Grunsky inequality,

‖K1(f)( · , ζ)‖2
2 = K1(f)(ζ, ζ) =

1

π

∞∑

n=1

n

∣∣∣∣∣

∞∑

m=1

mb−n,−mζ
m−1

∣∣∣∣∣

2

≤ 1

π

∞∑

n=1

n|ζ|2n−2 =
1

π(1 − |ζ|2)2 <∞,

so that K1(f)( · , ζ) ∈ A1
2(D). For fixed ζ ∈ D and f1, f2 ∈ U we define

ψ(f1, f2; ζ)(z) = K1(f1)(z, ζ) −K1(f2)(z, ζ).

Then ψ(f1, f2, ζ) ∈ A1
2(D). For ψ(f1, f2; ζ) 6= 0 we set

u(f1, f2; ζ) =
ψ(f1, f2; ζ)

‖ψ(f1, f2; ζ)‖2
,

and for ψ(f1, f2, ζ) = 0 we set u(f1, f2; ζ) = 0. The following lemma gener-
alizes Brazilevic’s result [Bra65].

Lemma B.5. For f1, f2 ∈ U and z ∈ D,

(1 − |z|2)2 |S(f1)(z) − S(f2)(z)| ≤ 6F(f1, f2)(z) ≤ 6‖K1(f1) −K1(f2)‖.

Proof. We use the same approach as in [Bra65]. Since for λ1, λ2 ∈ PSL(2,C),
S(λ1◦f) = S(f), K1(λ1◦f) = K1(f), and F(λ1◦f1, λ2◦f2)(z) = F(f1, f2)(z),
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it is sufficient to consider only f ∈ U normalized by f(0) = 0 and f ′(0) = 1.
We have for fixed z ∈ D,

(1 − |z|2)2S(f)(z) = S(λ(f)z ◦ f ◦ σz)(0)

and

F(f1, f2)(z) = F(λ(f1)z ◦ f1 ◦ σz, λ(f2)z ◦ f2 ◦ σz)(0),

where σz ∈ Möb(S1) and λ(f)z ∈ PSL(2,C) are given by4

σz(w) =
w + z

1 + wz̄
and λ(f)z(w) =

w − f(z)

f ′(z)(1 − |z|2) .

Since for a normalized f ∈ U the univalent function λ(f)z ◦f ◦σz is also nor-
malized, for the first inequality we need only to show that for any normalized
f ∈ U ,

|S(f1)(0) − S(f2)(0)| ≤ 6F(f1, f2)(0).

Since

S(f)(z) = 6 lim
w→z

(
f ′(z)f ′(w)

(f(z) − f(w))2
− 1

(z − w)2

)
= −6

∞∑

n,m=1

nmb−n,−mz
n+m−2,

we have

|S(f1)(0) − S(f2)(0)| = 6|b−1,−1(f1) − b−1,−1(f2)|.
On the other hand, it is straightforward to compute that

F(f1, f2)
2(0) = π

∫∫

D

|K1(f1)(0, w) −K1(f2)(0, w)|2d2w

=
∞∑

m=1

m|b−1,−m(f1) − b−1,−m(f2)|2,

and the first inequality follows.
Next we observe that

(B.1) F(f1, f2)(z) =
√
π‖(K1(f1) −K1(f2))u(f1, f2; z)‖A1

∞
(D).

Indeed, by Cauchy-Schwarz inequality,
(
(K1(f1) −K1(f2))ψ(f1, f2; z)

)
(w)

=

∫∫

D

(K1(f1)(w, ζ) −K1(f2)(w, ζ)) (K1(f1)(ζ, z) −K1(f2)(ζ, z))d
2ζ

≤ ‖ψ(f1, f2; z)‖2 ‖ψ(f1, f2;w)‖2,

4Here subscript z does not denote a derivative.
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with the equality for w = z. Hence
∥∥∥(K1(f1) −K1(f2))ψ(f1, f2; z)

∥∥∥
A1

∞
(D)

= (1 − |z|2)
∫∫

D

|K1(f1)(ζ, z) −K1(f2)(ζ, z)|2 d2ζ

= (1 − |z|2)‖ψ(f1, f2; z)‖2
2 = F(f1, f2)(z)

‖ψ(f1, f2; z)‖2√
π

.

Finally, using (B.1) and the estimate in Lemma 2.3, we get

(B.2) F(f1, f2)(z) ≤ ‖(K1(f1)−K1(f2))u(f1, f2; z)‖2 ≤ ‖K1(f1)−K1(f2)‖.
�

Remark B.6. It immediately follows from Lemma B.5 that

‖S(f1) − S(f2)‖∞ ≤ 6d(f1, f2) ≤ 6‖K1(f1) −K1(f2)‖,
which is a stronger version of Brazilevic’s result [Bra65]. In case f1 = f and
f2 = id we have

‖S(f)‖∞ ≤ 6d(f) ≤ 6‖K1(f)‖,
where d(f) = d(f, id). Since ‖K1(f)‖ ≤ 1, where equality holds if and only
if C\f(D) has Lebesgue measure zero, this recovers another result in [Bra65]
that d(f) ≤ 1 for f ∈ U , and d(f) = 1 implies that C \ f(D) has Lebesgue
measure zero.

Given a normalized univalent function f : D → C, let fn : D → C be the
normalized univalent function defined by fn = r−1

n ◦ f ◦ rn, where rn is the
dilation z 7→ n

n+1z. Since fn is analytic on S1, we have

lim
|z|→1−

(1 − |z|2)2S(fn)(z) = 0,

lim
|ζ|→1−

(1 − |ζ|2)K1(fn)(z, ζ) = 0,

and also

lim
|ζ|→1−

∥∥(1 − |ζ|2)K1(fn)( · , ζ)
∥∥2

2
= lim

|ζ|→1−
(1 − |ζ|2)2K1(fn)(ζ, ζ) = 0.

Lemma B.7. Let f : D → C be a normalized univalent function and let

{fn}∞n=1 be the sequence of normalized univalent functions defined above.

Then

lim
n→∞

K1(fn) = K1(f)

in the strong operator topology.

Proof. For ψ ∈ A1
2(D) set ψn = rn ◦ ψ ◦ rn. It is elementary to show that

lim
n→∞

‖ψ − ψn‖2 = 0.
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For (K1(f)ψ̄)n = rn ◦ (K1(f)ψ̄) ◦ rn we have,

K1(fn)ψ̄n = (K1(f)ψ̄)n − rn ◦ (K1(f)ψ(1 − χn)) ◦ rn,
where χn is the characteristic function of the disk Dn = rn(D). Using this
identity and the inequalities ‖K1(f)‖ ≤ 1, ‖ψn‖2 ≤ ‖ψ‖2, we obtain

‖(K1(f) −K1(fn))ψ̄‖2 ≤ ‖K1(f)ψ̄ −K1(fn)ψ̄n‖2 + ‖K1(fn)(ψn − ψ)‖2

≤ ‖K1(f)ψ̄ − (K1(f)ψ̄)n‖2 + ‖K1(f)(ψ(1 − χn))‖2 + ‖ψ − ψn‖2

≤ ‖K1(f)ψ̄ − (K1(f)ψ̄)n‖2 + ‖ψ(1 − χn)‖2 + ‖ψ − ψn‖2.

Since ψ ∈ A1
2(D),

lim
n→∞

‖ψ(1 − χn)‖2 = 0,

and we get the assertion of the lemma. �

Lemma B.8. Let γ = g−1 ◦ f ∈ T (1) be such that K1(f) is a compact

operator. Then for every sequence {ζm}∞m=1 of points in D, the corresponding

sequence of functions {um}∞m=1 in A1
2(D), where

um(z) = (1 − |ζm|2)K1(f)(z, ζm), z ∈ D,

contains a convergent subsequence in A1
2(D).

Proof. Consider the following sequence of functions,

vm(z) = z−2(1 − |ζm|2)K3(f)(z−1, ζm) ∈ A1
2(D).

Using the formula

K3(ζ, ζ) + K4(ζ, ζ) =
1

π(1 − |ζ|2)2 ,

which follows from the operator identity K3 + K4 = I, and the inequality
K4(ζ, ζ) ≥ 0, we get

‖vm‖2
2 = (1 − |ζm|2)2K3(ζm, ζm) ≤ 1

π
.

Now consider the operator K̃3(f) : A1
2(D) → A1

2(D), defined by the kernel

K̃3(f)(z,w) = z−2K3(f)
(
z−1, w

)
.

In the standard basis for A1
2(D) it is given by the matrix B3(f) and, therefore,

is a topological isomorphism. Setting K(f) = K1(f)K̃3(f)−1, we get

um = K(f)vm.

Since the operator K(f) is compact and the sequence {vm}∞m=1 is bounded,
the statement follows. �

Now we can finish the proof of the Theorem. Suppose that for [µ] ∈ T (1)
the corresponding operator K1(f) is compact but [µ] /∈ S. According to
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Remark 2.7, this implies that there exist ε > 0 and a sequence ζm ∈ D

satisfying

|ζm| > 1 − 1

m
and (1 − |ζm|2)2|S(f)(ζm)| ≥ ε.

By Lemma B.8, there exists a subsequence ζmk
such that the sequence of

functions

umk
(z) = (1 − |ζmk

|2)K1(f)(z, ζmk
)

converges to u ∈ A1
2(D) in A1

2(D). Since

lim
|ζ|→1−

(1 − |ζ|2)K1(fn)(z, ζ) = 0,

for any n ∈ N, the sequence of functions

(1 − |ζmk
|2)ψ(f, fn; ζmk

) = (1 − |ζmk
|2) (K1(f)( · , ζmk

) −K1(fn)( · , ζmk
))

also converges to u as k → ∞. From Lemma B.5 and (B.2) we get the
following inequality

(1 − |ζmk
|2)2 |S(f)(ζmk

) − S(fn)(ζmk
)| ≤ 6

∥∥∥(K1(f) −K1(fn)) u(f, fn; ζmk
)
∥∥∥

2
,

which for ψ(f, fn, ζmk
) = 0 is an equality. Now passing to the limit k → ∞

for fixed n ∈ N, we obtain

ε ≤ 6 ‖(K1(f) −K1(fn)) ū‖2 ,

where

u =
u

‖u‖2
6= 0.

However, according to Lemma B.7,

lim
n→∞

‖(K1(f) −K1(fn)) ū‖2 = 0.

This contradiction proves that [µ] ∈ S. �

Remark B.9. For [µ] ∈ S the proof of Lemma B.2 shows that

lim
n→∞

S(fn) = S(f)

in A∞(D) topology. Since the period mapping P̂ is continuous,

lim
n→∞

K1(fn) = K1(f)

in the norm topology on B(A1
2(D), A1

2(D)).

The following commutative diagram displays the properties of the tower
of embedded manifolds T0(1) →֒ S →֒ T (1) under the KYNS period mapping

P̂, the pre-Bers embedding β̂ and the Bers embedding β = Ψ ◦ β̂,



58 LEON A. TAKHTAJAN AND LEE-PENG TEO

S2(ℓ
2) −−−−→ S∞(ℓ2) −−−−→ B(ℓ2)

xP

xP̂

xP̂

T0(1) −−−−→ S −−−−→ T (1)
yβ̂

yβ̂
yβ̂

A1
2(D) −−−−→ A1,0

∞ (D) −−−−→ A1
∞(D)

yΨ

yΨ

yΨ

A2(D) −−−−→ A0
∞(D) −−−−→ A∞(D)

Here A1,0
∞ (D) is the closed subspace of A1

∞(D), defined by

A1,0
∞ (D) =

{
ψ ∈ A1

∞(D) : lim
|z|→1−

(1 − |z|2)ψ(z) = 0

}
.

All horizontal maps are embeddings, and all vertical maps are holomorphic
mappings of Banach and Hilbert manifolds respectively. All these properties
have been proved already, except for the simple fact Ψ(A1,0

∞ (D)) ⊂ A0
∞(D),

which easily follows from Cauchy integral formula.
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