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Abstract: Moduli spaces of stable parabolic bundles of parabolic degree 0 over the Rie-
mann sphere are stratified according to the Harder–Narasimhan filtration of underlying
vector bundles. Over a Zariski open subsetN0 of the open stratum depending explicitly
on a choice of parabolic weights, a real-valued functionS is defined as the regularized
critical value of the non-compactWess–Zumino–Novikov–Witten action functional. The
definition ofS depends on a suitable notion of parabolic bundle ‘uniformization map’
following from the Mehta–Seshadri and Birkhoff–Grothendieck theorems. It is shown
that−S is a primitive for a (1,0)-form ϑ onN0 associated with the uniformization data
of each intrinsic irreducible unitary logarithmic connection. Moreover, it is proved that
−S is a Kähler potential for (� − �T)|N0 , where � is the Narasimhan–Atiyah–Bott
Kähler form in N and �T is a certain linear combination of tautological (1, 1)-forms
associated with the marked points. These results provide an explicit relation between the
cohomology class [�] and tautological classes, which holds globally over certain open
chambers of parabolic weights where N0 = N .
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1. Introduction

The analytic geometry of moduli spaces of Riemann surfaces and vector bundles is
closely tied with the two-dimensional conformal field theory, formulated in the 80s by
Belavin, Polyakov and Zamolodchikov [BPZ84]. One of the fundamental models of the
theory is the quantum Liouville model, a quantization of the classical theory defined
by the Liouville action on a Riemann surface, whose Euler–Lagrange equation is the
Liouville equation that determinines the hyperbolic metric on it. Semi-classical analy-
sis of the quantum Liouville theory indicates a deep and unexpected relation between
the critical value of the Liouville action and the accessory parameters of the Fuchsian
uniformization of Riemann surfaces. A precise form of this relation, as well as an un-
expected connection with the Weil–Petersson metric on Teichmüller space, was proved
by P. Zograf and the second author in [ZT87a,ZT87b]. We refer to [Tak96,TT06] and
references therein for further results and details.

Finding an analog of such results for moduli spaces of stable parabolic bundles
on Riemann surfaces, in the spirit of [ZT89,TZ08], remained as an interesting open
problem. It is well known that such moduli spaces appear in conformal field theories
associated with the Wess–Zumino–Novikov–Witten (WZNW) action for compact Lie
groups, introduced by Novikov [Nov82] and Witten [Wit84]. Starting from the SU(2)
case [KZ84], the compact WZNWmodels have been thoroughly investigated (see, e.g.,
the monograph [FMDS97]). However, as far as the analogy in question is concerned, it
is not the compact WZNWmodels, but rather their non-compact analogs [Gaw92], that
are the appropriate candidates to consider. Non-compact WZNWmodels do not lead to
rational conformal field theories, and are in general less understood.

In the case of genus 0 this analogy can be made precise as follows. Let E∗ be a rank r
stable parabolic bundle of parabolic degree 0 over CP

1 with a fixed set of marked points
z1, . . . , zn ∈ CP

1. The Mehta–Seshadri theorem establishes the equivalence between
the notion of parabolic stability and the existence of a singular Hermitian metric on E∗
whose associated Chern connection is flat and irreducible over CP

1 \ {z1, . . . zn}, and
has logarithmic singularities at the marked points with the residues compatible with the
parabolic structure. Over the Riemann sphere, the Birkhoff–Grothendieck decomposi-
tion of holomorphic vector bundles provides an explicit trivialization on the underlying
vector bundle E , and allows to interpret the Mehta–Seshadri theorem as the existence
of a ‘parabolic bundle uniformization map’ J . It follows that the singular Hermitian
metric on E∗ can be described as a smooth map h : CP

1 \{z1, . . . , zn} → Hr , whereHr
is the space of Hermitian positive-definite r × r matrices, having prescribed asymptotic
behavior at the marked points and satisfying the equation

∂̄
(

h−1∂h
)
= 0.
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This equation is precisely the Euler–Lagrange equation of the celebrated WZNW action
functional for Hr -valued maps. Such a map h would be defined only up to the action
of the group Aut(E) of bundle automorphisms, since the latter is always non-trivial.

However, in contrast to the moduli problem for Riemann surfaces, the nature of the
moduli problem in question leads to additional geometric features. In general, the de-
pendence on a choice of parabolic weights induces wall-crossing phenomena.Moreover,
the peculiarities of genus 0 define special moduli space stratifications with an explicit
dependence on the combinatorial structure of parabolic weight polytopes. Such strati-
fications, as well as their dependence on parabolic weights, play a decisive role in the
main results of this work.

More precisely, over a moduli spaceN of stable parabolic bundles, we are lead to a
certain Zariski open subsetN0 of geometric significance. Namely, there is a stratification
of N determined by the Harder–Narasimhan filtration associated with the Birkhoff–
Grothendieck splitting type of a holomorphic vector bundle on CP

1, which depends
on a choice of parabolic weights. Over its Zariski open stratum with a fixed Birkhoff–
Grothendieck splitting type EN0 there is an open subsetN0 such that over it a consistent
choice of representatives of Aut

(
EN0

)
-orbits for J and h can be made. We refer to

N0 as the regular locus. As the moduli space N , the regular locus depends rather
nontrivially on the choice of parabolic weights. For the purposes of this paper we note
that in many cases there exist open chambers in the weight polytopes whereN0 = N .
On the regular locus N0, the explicit choice of the maps h : CP

1 \ {z1, . . . , zn} → Hr
allows us to define a smooth real-valued functionS : N0 → R as the critical values of
the WZNW action, and a smooth (1, 0)-form ϑ onN0, associated with the logarithmic
connection d +h−1∂h. Our first main result, Theorem 1, is the following explicit relation
on N0,

∂S = −ϑ.

The moduli space N carries the Narasimhan–Atiyah–Bott Kähler form � and the
(1, 1)-forms �i j , which are the first Chern forms of tautological line bundles associ-
ated with the marked points. Our second main result, Theorem 2, establishes a relation
between these natural objects and the (1, 0)-form ϑ on N0. Namely,

∂̄ϑ = 2
√−1 (�−�T) |N0 , �T =

∑
βi j�i j ,

where βi j depend linearly on the parabolic weights and the bundle splitting coefficients.
Together, Theorems 1 and 2 imply that −S is a Kähler potential over N0 for the
difference between the (1,1)-forms� and�T (Corollary 1). It expresses the cohomology
class [�] on N0 as a concrete linear combination of tautological classes [�i j ]. This
result establishes a new relation between non-compact WZNWmodels and the analytic
geometry of moduli spaces.

The paper is organized as follows. In Sect. 2 we review the Mehta–Seshadri theorem
for stable parabolic bundle E∗ onCP

1, introduce bundle uniformizationmaps and related
geometric structures— the singularHermitianmetric and unitary logarithmic connection
on E∗. In Sect. 3 we remind the complex analytic theory of themoduli spaceN of stable
parabolic bundles, and define the regular locusN0 and the (1, 0)-form ϑ . In Sect. 4 we
give a construction of the regularizedWZNWaction, and in Sect. 5 we prove Theorems 1
and 2.
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2. Parabolic Bundles and Logarithmic Connections

2.1. Parabolic bundles. A parabolic bundle E∗ of rank r on CP
1 and a fixed set of

marked points z1, . . . , zn ∈ CP
1 is a holomorphic vector bundle E together with a

parabolic structure —complete descending flags1 Ezi = Fi1 ⊃ Fi2 ⊃ · · · ⊃ Fir ⊃ {0}
in the fibers Ezi , i = 1, . . . , n, with weights 0 ≤ αi1 < αi2 < · · · < αir < 1. The
parabolic degree of a parabolic bundle E∗ is defined as

par deg E∗ = d +
n∑

i=1

r∑
j=1

αi j ,

where d = deg E is the degree of the vector bundle E . A morphism f : E∗ → E ′∗
of parabolic vector bundles is a morphism of holomorphic vector bundles such that for
every zi , f (Fi j ) ⊂ F ′ik+1 whenever αi j > α′ik . A parabolic subbundle F∗ of E∗ is a
subbundle F ⊂ E such that for every zi the parabolic structure in F∗ is induced from
the parabolic structure in E∗ by restriction.

A parabolic bundle E∗ of parabolic degree 0 is stable (resp. semi-stable) if every
proper parabolic subbundle F∗ of E∗ satisfies par deg F∗ < 0. (resp. ≤ 0). When E∗ is
stable, its group Par Aut E∗ of parabolic automorphisms consists of nonzeromultiples of
the identity. A theorem ofMehta–Seshadri [MS80] generalizes the celebrated theorem of
Narasimhan–Seshadri [NS65] for stable vector bundles on a compact Riemann surface
to the case of parabolic bundles. It states that when 2g − 2 + n > 0, stable parabolic
bundles over a compact Riemann surface X of genus g are precisely those associated
with irreducible unitary representations of the fundamental group of the non-compact
Riemann surface X0 = X \ {z1, . . . , zn}.

The precise formulation in the special case X = CP
1 is the following. Let

H = {τ ∈ C : Im τ > 0}
be the Poincaré half-plane model of the Lobatchevsky plane and let X0 = CP

1 \
{z1, . . . , zn}, where the normalization zn−2 = 0, zn−1 = 1 and zn = ∞ is always
assumed. By the uniformization theorem,

X0 ∼= 	\H,

where 	 is a torsion-free Fuchsian group generated by n parabolic transformations
S1, . . . , Sn satisfying the single relation

S1 . . . Sn = 1

and having the property that their fixed points τ1, . . . , τn ∈ R ∪ {∞} are mapped to
z1, . . . , zn ∈ CP

1 and τn−2 = 0, τn−1 = 1 and τn = ∞. The uniformization map —
a classical Klein’s Hauptmodul (or Hauptfunktion) — is a complex-analytic covering
J : H → X0 which is 	-automorphic and takes every value in C \ {z1, . . . , zn−3, 0, 1}
exactly once in the fundamental domain of the group 	. It extends to the holomorphic
map J : H∗ → CP

1, where H
∗ is the union of H with all cusps for 	.

Given a set of parabolic weights {αi j }, let Wi = diag(αi1, . . . , αir ) and Di =
e2π

√−1 Wi for each i = 1, . . . , n. A unitary representation ρ : 	 → U(r) is called
admissible if for each i = 1, . . . , n we have ρ(Si ) = Ui DiU

−1
i with Ui ∈ SU(r).

1 In general, one considers arbitrary flags and weights with multiplicities.
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Clearly each Ui is defined only up to right multiplication by a diagonal matrix. Thus
an admissible unitary representation ρ defines a set of points [U1], . . . , [Un] in the
homogeneous spaces of conjugacy classes of D1, . . . , Dn in U(r), which are isomor-
phic to SU(r)/U (1)r−1. The group 	 acts on the trivial bundle H × C

r over H by
(τ, v) 
→ (γ τ, ρ(γ )v), defining a local system Eρ

0 = 	\(H × C
r ) → 	\H ∼= X0.

Eρ
0 extends to a holomorphic vector bundle Eρ over CP

1 together with a collection of
flags at the fibers over the marked points induced by the data [Ui ], and determines a
semi-stable parabolic bundle Eρ∗ which is stable when ρ is irreducible, in such a way
that Eρ1∗ ∼= Eρ2∗ if and only if ρ1 ∼= ρ2 (see [MS80] for details).

The Mehta–Seshadri theorem asserts that the converse is also true, namely, that for
every stable parabolic bundle E∗ of parabolic degree 0 there is an irreducible admissible
representation ρ such that E∗ ∼= Eρ∗ .

By the Birkhoff–Grothendieck theorem, every holomorphic vector bundle E of rank
r over CP

1 is isomorphic to a direct sum of line bundles,

E ∼=
r⊕

j=1
O(m j ), m1 ≤ m2 ≤ · · · ≤ mr .

Such an isomorphism depends on a choice of point in CP
1, which we assume to be∞.

Let N = diag(m1, . . . , mr ). Upon the choice of a second point, e.g. 0 ∈ CP
1, the bundle

E is determined by the transition function2

g(z) = zN = diag(zm1, . . . , zmr ),

defined on the intersectionC
∗ of the chartsC = CP

1\{∞} andC
∗∪{∞} = CP

1\{0} of
CP

1. We will denote such a bundle-splitting canonical form by EN . It follows that every
parabolic bundle E∗ → CP

1 is isomorphic to a parabolic bundle of the form (EN )∗.
The endomorphisms of E are global sections of the bundle End E = E∨⊗ E , where

E∨ is the dual to E . When X = CP
1, the Riemann–Roch theorem for vector bundles

states

dim Ȟ0(CP
1,End E)− dim Ȟ1(CP

1,End E) = r2.

It follows that dim Ȟ0(CP
1,End E) attains its minimal value r2 if and only

if dim Ȟ1(CP
1,End E) = dim Ȟ0(CP

1,O(−2)⊗ End E) = 0 or equivalently, if and
only if |m j − mk | ≤ 1 for all j, k = 1, . . . , r . Such bundles are called evenly-split
[Bel01,Bis02]. For every d ∈ Z and r > 1 there is a a unique evenly-split bundle EN0

of degree d and rank r up to isomorphism:

EN0 = O(m)r−p ⊕O(m + 1)p, (2.1)

where d = mr + p, 0 ≤ p < r , and

N0 = diag(m, . . . , m︸ ︷︷ ︸
r−p

, m + 1, . . . , m + 1︸ ︷︷ ︸
p

).

Let Aut E denote the group of holomorphic bundle automorphisms of a vector bundle
E . When r | d we have that Aut EN0

∼= GL(r, C). Otherwise, in terms of the affine

2 In what follows zN , q N , etc., will always stand for the corresponding diagonal matrices.
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trivialization over C, Aut EN0 gets identified with a group of matrix-valued polynomials
of block-lower triangular type. Namely, if r � | d, it follows that

Aut EN0 = PN0 � NN0 , (2.2)

where PN0 is the subgroup of block-lower triangular matrices relative to the partition
(r− p, p), and NN0 is the normal subgroup of functions having the following (r− p, p)

block form

g(z) =
(

Ir−p 0
zC Ip

)
, where C is an arbitrary p × (r − p) matrix.

It follows from this characterization that when p �= 0, the group Aut EN0 preserves the
second summand in the decomposition (2.1). Whence in such case every evenly-split
bundle E has a subbundle O(m + 1)p ↪→ E , which is independent of the isomorphism
E ∼= EN0 . Moreover, the corresponding Harder–Narasimhan filtration of the bundle E
reduces to

E ⊃ O(m + 1)p ⊃ {0}.
For any z ∈ CP

1, let Vz = O(m + 1)p|z ⊂ Ez be the fiber at z, P(Vz) ⊂ GL(Ez) be
its parabolic subgroup, and N(Vz) be its unipotent radical. Invariantly, restriction to the
fibers E0, E∞ determines the isomorphisms PN0

∼= P(V0), NN0
∼= N(V∞).

The vector bundle Eρ can also be described in terms of another set of transition
functions (cf. [NS65, Remark 6.2]). Namely, since X0 is non-compact, by a theorem of
Stein the holomorphic vector bundle Eρ

0 is trivial. Hence there is a holomorphic function
G : H → GL(r, C) satisfying

G(γ τ) = G(τ )ρ(γ )−1, ∀γ ∈ 	,

so that the bundle map G ◦ J−1 : Eρ
0 → X0 ×C

r is an isomorphism. For any choice of
representatives U1, . . . , Un , the function G can be written in the neighborhood of each
τi as

G(σiτ) = Gi (q) q−Wi U−1
i . (2.3)

Here Gi (q) are holomorphic and invertible in some punctured neighborhood of q =
0, q−Wi = diag(e−2π

√−1αi1τ , . . . , e−2π
√−1αir τ ) and σi ∈ PSL(2, R) are such that

σi (∞) = τi and σ−1i Siσi =
(
1 ±1
0 1

)
, i = 1, . . . , n. Let U = {U0,U1, . . . ,Un} be an

open cover of CP
1 where U0 = X0, and for i ≥ 1, Ui are sufficiently small open disks

around zi so that Ui j = ∅ for i, j �= 0, i �= j . By the definition of the bundle Eρ (see
[MS80]), local trivializations of Eρ over Ui are given by the maps ψi ◦ J−1, where
ψi (σiτ) = q−Wi U−1

i . Whence the transition functions g0i : U0i → GL(r, C) of the
bundle Eρ for the cover U are given by the formula

g0i = Gi ◦ σ−1i ◦ J−1, i = 1, . . . , n.

The definition of Eρ and the maximum principle imply that Ȟ0(CP
1, Eρ) ∼= (Cr )ρ ,

where the right-hand side denotes the subspace of ρ-invariant vectors in C
r . Hence

m j < 0 for all j = 1, . . . , r whenρ is irreducible.Moreover, if 0 < αi1 for i = 1, . . . , n,
we have that

E∨ ∼= Ẽ ⊗O(n),
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where E = Eρ , Ẽ = E ρ̄ and ρ̄ = tρ−1 is the contragradient representation to ρ. This
follows from the comparison of the transition functions t g−10i for E∨ with those of Ẽ
which correspond to the function t G−1. Hence if E∗ is a stable parabolic bundle of
parabolic degree 0 whose parabolic weights satisfy 0 < αi1 for each i = 1, . . . , n, then
necessarily

−n < m j < 0, j = 1, . . . , r.

2.2. Parabolic bundle uniformization map. The parabolic structures on a given bundle
splitting EN that arise from an admissible representation can be described by means of a
uniformization map of parabolic bundles. When any such parabolic bundle is stable, the
uniformization map provides a complex-analytic interpretation of the Mehta–Seshadri
theorem, and can be thought of as a matrix analog of the classical Klein’s Hauptmodul
J .

Lemma 1. Let ρ : 	 → U(r) be an admissible representation such that Eρ ∼= EN .
Given a choice of representatives U1, . . . , Un ∈ SU(r) there is a holomorphic function
Y : H → GL(r, C) satisfying

Y (γ τ) = Y (τ )ρ(γ )−1, ∀ γ ∈ 	, τ ∈ H, (2.4)

and having the Fourier series expansions

Y (σiτ) =
( ∞∑

k=0
Ci (k)qk

)
q−Wi U−1

i , i = 1, . . . , n − 1, (2.5)

and

Y (σnτ) = q−N

( ∞∑
k=0

Cn(k)qk

)
q−Wn U−1

n , (2.6)

where Ci (0) ∈ GL(r, C) for i = 1, . . . , n. The set ϒ(ρ) of all functions Y with these
properties is in one-to-one correspondence with the set of all isomorphisms Eρ ∼= EN ,
and is a principal homogeneous space for the automorphism groupAut EN of the bundle
splitting EN .

Proof. Consider the function G, the open cover U , and the transition functions g0i
defined before. The existence of the function Y is a consequence of the equivalence of
bundles defined by the transition functions g0i and the Birkhoff–Grothendieck transition
function g(z) = zN . It follows that there exist holomorphic functions g0 : U0 →
GL(r, C) and gi : Ui → GL(r, C), i = 1, . . . , n, such that

g0i = g0 g−1i , i �= n and g0n = g0 zN g−1n .

Put Y = (g0 ◦ J )−1 G. It follows from (2.3) that Y (τ ) has Fourier series expansions
(2.5) and (2.6). Conversely, a choice of map Y : H → GL(r, C) satisfying (2.4)-(2.6)
determines an isomorphism Eρ ∼= EN .

If U ′
i = Ui Vi with diagonal Vi ∈ SU(r), the Fourier series expansions (2.5) and

(2.6) would have Fourier coefficients C ′i (k) = Ci (k)V−1i , i = 1, . . . , n. Thus, the set
ϒ(ρ) only depends on ρ, and is in bijective correspondence with the set of isomorphisms
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Eρ ∼= EN by definition. The set of isomorphisms Eρ ∼= EN is a principal homogeneous
space for Aut EN , therefore Y1 and Y2 are two functions satisfying (2.4)–(2.6) if and
only if Y1 · Y−12 = g ◦ J , where g is the local form over C of an automorphism of EN .
��
Remark 1. Every element Y ∈ ϒ(ρ)may be considered as a matrix analog of the Klein’s
Hauptmodul. It follows from (2.4) that the map

Eρ
0 � [τ, v] 
→J (τ, v) = (J (τ ), Y (τ )v) ∈ EN |X0

establishes the isomorphism between the local system Eρ
0 over 	\H and the restriction

EN |X0 . Properties (2.5)–(2.6) ensure that J extends to an isomorphism of parabolic
bundles Eρ∗ ∼= (EN )∗ which plays the role of a bundle uniformization map. In particular,
the ordered frames defined by the matrices C1(0), . . . , Cn(0) determine the correspond-
ing flags on the fibers (EN )z1, . . . , (EN )zn .

2.3. Singular Hermitian metrics and unitary logarithmic connections. Denote by D
the divisor z1 + · · · + zn in CP

1. A logarithmic connection on a holomorphic bundle
E → CP

1 is a map of sheaves

∇ : O(E) → O (
E ⊗ KCP1(D)

)

that is C-linear and satisfies the Leibniz rule with respect to the OCP1 -module structure
on O(E). With every logarithmic connection ∇ there is an associated set of residues
{Reszi∇ ∈ End Ezi : i = 1, . . . , n} (see [Del70,Sim90,BL11]). A choice of the
base point z0 ∈ CP

1 and local holomorphic frames near each z1, . . . , zn determines a
monodromy representation for a logarithmic connection ∇. Its conjugacy class is an
invariant of ∇.

A logarithmic connection ∇ on the underlying bundle E of a parabolic bundle E∗ is
said to be adapted to the parabolic structure of E∗ if for every i = 1, . . . , n, Reszi∇ is
semisimplewith eigenvalues 0 < αi1 < . . . < αir < 1andeigenlines Li1, . . . , Lir , such
that the corresponding flag subspaces are Fi j = Li j ⊕ · · · ⊕ Lir for each j = 1, . . . , r .

The space C (E∗) of logarithmic connections adapted to E∗ is nonempty if E∗ is an
indecomposable parabolic vector bundle of parabolic degree zero (see [BL11, Proposi-
tion 4.1]), and is an affine space modeled on the vector space of (strongly) parabolic
Higgs fields on E∗ — a subspace

Ȟ0
(
CP

1, (Par End E∗)∨ ⊗ KCP1

)
⊂ Ȟ0

(
CP

1,End E ⊗ KCP1(D)
)

,

consisting of End E-valued meromorphic (1, 0)-forms � on CP
1 with at most simple

poles on D, whose residues Reszi � are nilpotent and preserve the flags on Ezi for all
marked points.3

It follows from the Mehta–Seshadri theorem that every stable parabolic bundle E∗
admits a logarithmic connection adapted to E∗ with monodromy given by an irreducible
admissible representation ρ. Under the isomorphism E∗ ∼= Eρ∗ , the standard Hermitian

3 It can be verified that for any complete weighted flag F on an r -dimensional vector space V , the set of
semisimple endomorphisms of V preserving F with fixed eigenvalues 0 < α1 < · · · < αr < 1 is an affine
space for the unipotent radical n(F) ⊂ p(F) of the parabolic Lie algebra of F , and the latter is the space of
nilpotent endomorphisms preserving F .
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inner product in C
r and the trivial connection d on H × C

r define a Hermitian metric
h0 in the local system E0 ∼= Eρ

0 = 	\(H × C
r ) with corresponding flat Chern con-

nection ∇0 = d + A0, so that A0 = h−10 ∂h0 in terms of a holomorphic frame on X0.
These structures extend to a singular Hermitian metric4 hE and a logarithmic connection
∇E = d + AE in the bundle Eρ . In terms of the local trivialization maps ψi over the
neighborhoods Ui of zi considered before, hE and AE are given by

hi = |ζi |2Wi and Ai = h−1i ∂hi = Wi

ζi
dζi , where ζi = q ◦ σ−1i .

Both hE and ∇E can also be described in terms of the splitting EN . Namely, the
isomorphismJ in Remark 1 gives a trivialization of Eρ over U0, which extends to C.
Put Y (z) = Y (J−1(z)). It follows from the Fourier series expansion of J (τ ) (see, e.g.,
[ZT87a, Lemma 2]) and (2.4)–(2.5) thatY (z) is a ‘multi-valued’ meromorphic function
on CP

1 with the following behavior near the points zi ,

Y (z) =
(

Ci (0) +
∞∑

k=1
C̃i (k)(z − zi )

k

)
e−Wi log(z−zi )U−1

i , i �= n, (2.7)

and near zn = ∞,

Y (z) = zN

(
Cn(0) +

∞∑
k=1

C̃n(k)z−k

)
eWn log zU−1

n . (2.8)

The corresponding Hermitian metric hE in this trivialization is given by the matrix-
valued function

h(z, z̄) = (Y (z)Y (z)∗)−1, (2.9)

where Y ∗ =t Ȳ is the Hermitian conjugate of Y , and the logarithmic connection ∇E
by the matrix-valued (1, 0)-form

A(z)dz = Y (z)(Y (z)−1)′dz = −Y ′(z)Y (z)−1dz. (2.10)

It follows from Eq. (2.7) that the matrix-valued function A = −Y ′Y −1 is holomorphic
on X0 with simple poles at the points zi , i �= n:

A(z) = Ai

z − zi
+ O(1), where Ai = Ci (0)Wi Ci (0)

−1,

Moreover, it follows from (2.8) that as z →∞,

z−N A(z)zN +
N

z
= − An

z
+ O

(
1

z2

)
, where An = Cn(0)WnCn(0)−1.

4 A gauge-theoretic approach to the Mehta–Seshadri theorem is presented in [Biq91], where such singular
Hermitian metrics are called adapted to a parabolic structure.
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3. The Complex Analytic Theory of the Moduli Space

In what follows, N will denote a moduli space of rank r stable parabolic bundles of
parabolic degree 0 over CP

1, depending on a choice of admissible parabolic weights
W = {W1, . . . , Wn}. Necessary and sufficient conditions (in the form of parabolic
weight inequalities) for a choice of admissible parabolic weights to determine a non-
empty moduli space are described in [Bel01,Bis02], and we will assume that they are
satisfied henceforth. According to the Mehta–Seshadri theorem,N is real-analytically
isomorphic to the U(r)-character variety

N ∼= K = Hom(	,U(r))0/U(r),

of equivalence classes of admissible irreducible unitary representations, and for generic
parabolic weights is a complex manifold of dimension

dimCN = 1
2n(r2 − 1)− r2 + 1. (3.1)

For every choice of degree −nr < d < 0, the parabolic weight inequalities, granting
the existence of a non-empty moduli spaceN , determine a polytope containing a finite
collection of semi-stability walls, whose complement is a finite set of open chambers.
For any choice of parabolic weights in an open chamber, every semistable parabolic
bundle of parabolic degree 0 is strictly stable, and the induced moduli space N is a
compact complex manifold. The biholomorphic type of N is an invariant of the open
chamber [BH95].

3.1. The complex structure. The special Hermitian metric hE0 in the local system E0
(Sect. 2.3) determines a Hermitian metric hEnd E0 in the induced local system End E0 ∼=
EAd ρ
0 , where Ad ρ := Ad ◦ρ is the induced adjoint representation in EndC

r , which
together with the hyperbolic metric on X0 defines the Hodge ∗-operator on the (p, q)-
forms on X0 with values in End E0. Denote by H p,q(X,End E0) the corresponding
spaces of square integrable harmonic (p, q)-forms on X0 with values in End E0.5

The deformation theory identifies the holomorphic tangent space T{E∗}N at a point
{E∗} ∈ N with the complex vector space Ȟ1

(
CP

1,Par End E∗
)
modeling infinites-

imal deformations of the parabolic bundle structure of a representative E∗, while the
holomorphic cotangent space T ∗{E∗}N is identified with the vector space

Ȟ0
(
CP

1, (Par End E∗)∨ ⊗ KCP1
)
of parabolic Higgs fields on E∗. The isomorphism

of these vector spaces with spaces of square integrable End E0-valued harmonic forms
on X0 follows from Dolbeault’s theorem and the structure of the bundle Par End E∗
of parabolic endomorphisms,6 and as in the usual stable bundle case [NS64], T{E∗}N
is also identified with H 0,1(X0,End E0) (see [MS80] and [TZ08] for details). Corre-
spondingly, T ∗{E∗}N is identified with H 1,0(X0,End E0). The duality pairing

H 0,1(X0,End E0)⊗H 1,0(X0,End E0) → C

5 We use the same normalization for the inner product on (p, q)-forms and for the Hodge ∗-operator as in
[ZT89,TZ08].

6 It is implicit in [MS80] that for any admissible representation ρ, Par End Eρ∗ = EAd ρ .
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is given by

(ν, θ) 
→
∫

X0

ν ∧ θ, ν ∈H 0,1(X0,End E0), θ ∈H 1,0(X0,End E0), (3.2)

where ∧ denotes the composition of the wedge product of matrix-valued forms and the
trace map tr : End E0 → C.

3.2. Automorphic forms of weight 2with the representationAd ρ. Letρ be an admissible
representation of 	. By definition, a matrix-valued automorphic form of weight 2 for
the group 	 with the representation Ad ρ is a holomorphic r × r matrix-valued function
f : H → EndC

r , satisfying

f (γ τ)γ ′(τ ) = Ad ρ(γ ) f (τ ) = ρ(γ ) f (τ )ρ(γ )−1, γ ∈ 	.

An automorphic form is said to be regular if

lim
τ→∞ f (σiτ)σ ′i (τ ) (3.3)

exists for all i = 1, . . . , n. Equivalently, since 0 < αi1 < · · · < αir < 1,

f (σiτ)σ ′i (τ ) = Ui q
Wi

( ∞∑
k=0

Bi (k)qk

)
q−Wi U−1

i , (3.4)

for every i = 1, . . . , n,where thematricesUi ∈ SU(r) satisfyρ(Si ) = Ui e2π
√−1 Wi U−1

i ,
and the matrices Bi (0) are lower triangular, i.e. Bi (0) ∈ b(r). Denote by M2(	,Ad ρ)

the space of regular matrix-valued automorphic forms of weight 2 for 	 with the repre-
sentation Ad ρ. The subspace

S2(	,Ad ρ) ⊂M2(	,Ad ρ)

of cusp forms is defined by the conditions

lim
τ→∞ f (σiτ)σ ′i (τ ) = 0 for all i = 1, . . . , n,

or equivalently, by the matrices Bi (0) being strictly lower triangular, Bi (0) ∈ n(r).
The spaceS2(	,Ad ρ) of cusp forms of weight 2 carries a natural inner product, the

Petersson inner product, given by the formula

〈 f1, f2〉 = 2
∫∫

D

tr( f1(τ ) f2(τ )∗)d2τ, f1, f2 ∈ S2(	,Ad ρ),

where D is a fundamental domain of 	 in H and d2τ =
√−1
2 dτ ∧ d τ̄ . The integral

is absolutely convergent when at least one of f1, f2 ∈ M2(	,Ad ρ) is a cusp form.
There is a projection P :M2(	,Ad ρ) 
→ S2(	,Ad ρ), uniquely characterized by the
property

〈P( f ), g〉 = 〈 f, g〉 for all f ∈M2(	,Ad ρ) and g ∈ S2(	,Ad ρ).
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As an immediate consequence of the Mehta–Seshadri theorem, when ρ is irreducible,
there is an isometric isomorphism

S2(	,Ad ρ) � T ∗
Eρ∗
N .

Indeed, it follows from Lemma 1 and the Fourier series expansions of J (τ ) (see, e.g.,
[ZT87a, Lemma 2]) that for every Y ∈ ϒ(ρ), the map

S2(	,Ad ρ) � f 
→ F ∈H 1,0(X0,End E0),

where

F(z) = Y (J−1(z)) f (J−1(z))(J−1)′(z)Y (J−1(z))−1,

is an isomorphism.7 The map f 
→ F is also an isomorphism between the vector spaces
of cusp forms and parabolic Higgs fields, realized in the affine trivialization of EN over
C. Similarly, there is an isomorphism

S2(	,Ad ρ) � TEρ∗N ,

whereS2(	,Ad ρ) is the vector space of Hermitian conjugates f ∗ of f ∈ S2(	,Ad ρ).
The corresponding map

S2(	,Ad ρ) � f ∗ 
→ F∗ ∈H 1,0(X0,End E0) � Ȟ1
(
CP

1,Par End Eρ∗
)

is given by

F∗(z) = Y (J−1(z)) f ∗(J−1(z))(J−1)′(z)Y (J−1(z))−1.

As a consequence of the above, the dimension formula

dimS2(	,Ad ρ) = 1

2
n(r2 − r)− r2 + 1,

implying (3.1), can be obtained as a special case of the general formula in [Hej83,
Corollary 4.2 on p. 485] (cf. [Men17], where a proof is given in terms of the Riemann–
Roch theorem for vector-valued automorphic forms).

3.3. Automorphic forms for stable bundles. It is a classical result that for a Riemann
surface X0 of type (0, n), the Schwarzian derivative of the uniformization map J :
H 
→ X0 is a regular automorphic form of weight 4 for 	, which does not depend on
a particular choice of J in the orbit of the automorphism group PSL(2, C) of X0 (see,
e.g., [ZT87a]). For a stable parabolic bundle Eρ∗ , the analog of the uniformization map is
given by the function Y (τ ) from Lemma 1, which realizes the isomorphism Eρ ∼= EN ,
and the analog of the Schwarzian derivative is given by the logarithmic derivative

A (Y )(τ ) = −Y (τ )−1Y ′(τ ). (3.5)

7 The factor of 2 in the definition of the Petersson inner product reflects the normalization of the inner
product of (p, q)-forms in [ZT89,TZ08].
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It follows from Lemma 1 that for every Y ∈ ϒ(ρ), the functionA (Y ) is an automorphic
form of weight 2 for the representation Ad ρ, satisfying the regularity condition (3.3)
for i = 1, . . . , n − 1. For i = n the function A (Y ) has asymptotics

A (Y )(σnτ) = 2π
√−1Un(Wn + qWn Cn(0)

−1NCn(0)q−Wn )U−1
n + o(1) (3.6)

as τ → ∞, which do not immediately guarantee its regularity at i = n and hence that
A (Y ) ∈M2(	,Ad ρ). The automorphism group Aut EN acts on the setA2(	,Ad ρ) =
{A (Y ) : Y ∈ ϒ(ρ)} by the formula

g ·A (Y ) = A − Y−1(g ◦ J )−1(g ◦ J )′Y. (3.7)

It is a fundamental question whether for a given Y ∈ ϒ(ρ) there is a unique g ∈
Aut EN such that g ·A (Y ) ∈M2(	,Ad ρ), and whether such a choice would depend
continuously on moduli parameters. The existence and uniqueness of a regular orbit
representative is equivalent to the solvability of the Riemann–Hilbert problem for ρ

(see [Men18, Section 6.2]). However, such a choice could not be done consistently on
the whole moduli space. The possibility of a maximal consistent choice determines a
Zariski open subset N0 ⊆ N in the open Harder–Narasimhan stratum of evenly-split
stable parabolic bundles in N , on which there would be a unique g ∈ Aut EN0 such
that g ·A (Y ) ∈M2(	,Ad ρ). We will call N0 the regular locus.

Namely, suppose that N = N0 and consider first the simplest case p = 0, so that
r | d and N0 = m Ir . In this case Aut EN0

∼= GL(r, C), so that by (3.7) the function
A (Y ) is independent of the choice of Y ∈ ϒ(ρ) and determines a unique automorphic
form A of weight 2, and it follows from (3.6) that A ∈M2(	,Ad ρ).

The case 0 < p < r , i.e. r � | d, is more subtle. In order to define the Zariski open
subset N0 ⊆ N where A2(	,Ad ρ) contains exactly one regular automorphic form
for each {Eρ∗ } ∈ N0, we are required to impose an additional condition on the flags
over E∞. Namely, let F (E∞) be the complete flag manifold on E∞ and Grr−p(E∞)

be the Grassmannian of (r − p)-planes in E∞, together with the natural projection
pr∞ : F (E∞) → Grr−p(E∞). Restriction of the unique subbundle O(m + 1)p ↪→ E
to the fiber E∞ determines a special p-plane V∞ ⊂ E∞. Denote by Gr0r−p(E∞) �

Grr−p(E∞) the Zariski open subset consisting of (r − p)-planes V ′z satisfying

V ′∞ ∩ V∞ = {0}. (3.8)

Under a choice of Mehta–Seshadri uniformization mapJ , the p-plane V∞ ⊂ E∞ gets
identified with the span of {er−p+1, . . . , er } ⊂ C

r , and the Zariski open condition (3.8)
is equivalent to the existence of a unique factorization Cn(0) = M�0DL , where �0 is
the permutation matrix of the product of transpositions (1, r)(2, r − 1) . . . ("r/2#, r −
"r/2# + 1), and

M =
(

Ir−p 0
A Ip

)
, D =

(
Dp 0
0 Dr−p

)
, L =

(
Ip 0
B Ir−p

)
, (3.9)

which is a consequence of theBruhat decomposition for the groupGL(r, C) (see [Men18,
Lemma 2, Remarks 4 & 8]), so that the product DL belongs to the stabilizer of the span
of {er−p+1, . . . , er }.
Definition 1. The regular locus N0 ⊆ N is the set of isomorphism classes of evenly-
split stable parabolic bundles {E∗} whose flags at∞ project onto Gr0r−p(E∞).
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In particular, when r | d, the second condition is vacuous and N0 is just the open
Harder–Narasimhan stratum of evenly-split parabolic bundles. The next couple of results
and their consequences justify our definition of the regular locus.

Lemma 2. Let ρ : 	 → U(r) be a fixed admissible irreducible representation with{
Eρ∗
} ∈ N0. Then A2(	,Ad ρ)∩M2(	,Ad ρ) consists of a unique element A depend-

ing smoothly on moduli, whose constant terms at the cusps when r | d are

Bi (0) =
{
2π
√−1Wi i = 1, · · · , n − 1,

2π
√−1(Wn + N0) i = n.

(3.10)

and when r � | d,

Bi (0) =
{
2π
√−1Wi i = 1, . . . , n − 1,

2π
√−1 (Wn + Ad (�0L)−1 (N0)

)
i = n.

(3.11)

where

L =
(

Ip 0
B Ir−p

)
,

for some (r − p) × p matrix B, and �0 is the permutation matrix of the product of
transpositions (1, r)(2, r − 1) . . . ("r/2#, r − "r/2# + 1).

Proof. Recall that the flag at∞ is equivalently determined by the ordered frame of the
matrix Cn(0). The case r | d has already been described, and the formulas (3.10) are
an immediate consequence of the Fourier series expansions (2.5)–(2.6) in Lemma 1 for
any choice Y ∈ ϒ(ρ). When r � | d, it follows from (3.6) that A (Y ) ∈ M2(	,Ad ρ) if
and only if the matrix AdCn(0)−1(N0) is lower triangular. Consider the factorization
Cn(0) = M�0DL described before. Since �0D�−1

0 is block-diagonal of block type
(r − p, p), it commutes with N0. Consequently, AdCn(0)−1(N0) is lower triangular if
and only if M = Ir , in which case it equals Ad (�0L)−1 (N0). It follows from (3.7) that
the subgroup PN0 ⊂ Aut EN0 acts trivially on A2(	,Ad ρ), while the subgroup NN0

acts by the transformations

M 
→ g(z) · M =
(

Ir−p 0
A + C Ip

)
, g(z) ∈ NN0 .

In particular, there is a unique g(z) ∈ NN0 such that M = Ir .8 Formulas (3.11) then
follow from (2.5)–(2.6) and (3.6), and the corresponding regular automorphic form
A (Y ) depends smoothly on moduli. ��
Definition 2. Let ϑ denote the (1, 0)-form onN0 defined pointwise at any given

{
Eρ∗
} ∈

N0 as ϑ = P(A ) ∈ S2(	,Ad ρ), i.e.

ϑEρ∗ (ν) = 〈A , ν∗〉 = 2
∫∫

D

tr(A ν)d2τ, ν ∈ S2(	,Ad ρ). (3.12)

8 It follows that Gr0r−p(E∞) is a principal homogeneous space for the subgroupNN0 [Men18, Corollary 1],
and the block A provides coordinates for it. The smooth dependence of the Riemann–Hilbert correspondence
on moduli of irreducible admissible representations implies that the normalization A = 0 on N0 would also
depend smoothly on moduli.
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Lemma 3. For any given {Eρ∗ } ∈ N0, let A be normalized as in Lemma 2. Then there
is a unique representative Y ∈ ϒ(ρ) satisfying A (Y ) = A , and such that when r | d,
the Fourier series expansions (2.6) take the form

Y (σnτ) =
(

Ir +
∞∑

k=1
Cn(k)qk

)
q−(Wn+N0)U−1

n , (3.13)

and when r � | d,

Y (σnτ) =
(

�0 +
∞∑

k=1
Cn(k)qk

)
q−(Wn+N ′0)U−1

n , (3.14)

where N ′0 = Ad(�0)
−1(N0).

Proof. When r | d, there is a unique normalization Cn(0) = I , and the result follows
since N0 is a multiple of the identity.

Assume now that r � | d. Using q−N0 = �0q−N ′0�−1
0 , we rewrite the Fourier expan-

sion (2.6) as

Y (σnτ) =
∞∑

k=0
�0q−N ′0�−1

0 Cn(k)qk q−Wn U−1
n . (3.15)

Since N ′0 = diag(m + 1, . . . , m + 1︸ ︷︷ ︸
p

, m, . . . , m︸ ︷︷ ︸
r−p

), we have

q−N ′0
(

A B
C D

)
=
(

A q−1B
qC D

)
q−N ′0 (3.16)

for any block (p, r − p) matrix

(
A B
C D

)
. Using this formula, we can move q−N ′0 to the

right of the matrices Cn(k) in (3.15) and get a new expansion

Y (σnτ) =
∞∑

k=0
C ′n(k)qk q−(Wn+N ′0)U−1

n .

According to Lemma 2, an NN0 -orbit of Cn(0) contains a unique representative �0DL ,
so that

C ′n(0) = �0

(
Dp B ′
0 Dr−p

)
,

where the p× (r − p) block B ′ comes from the corresponding p× (r − p) block in the
matrix�−1

0 Cn(1). Since the remaining group of bundle automorphisms PN0 ⊂ Aut EN0

consists of block (r − p, p) matrices of the form

g =
(

D′r−p 0
C ′ D′p

)
,

it follows that there is a unique g ∈ PN0 such that C ′n(0) = �0. ��
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3.4. Complex coordinates and Kähler form. Although we only consider the case of
CP

1, the subsequent results are valid for any compact Riemann surface X with Fuchsian
model X0 = X \ {z1, . . . , zn} ∼= 	 \H, and were developed in [ZT89,TZ08]. Namely,
let ρ : 	 → U(r) be an admissible irreducible representation. We have the following
result.

Proposition 1. For each ν ∈ S2(	,Ad ρ) and ε ∈ C sufficiently close to 0, there is a
unique solution f εν : H → GL(r, C) of the differential equation

f −1 fτ = εν (3.17)

with the following properties.

(i) f εν(γ τ) = ρεν(γ ) f (τ )ρ(γ )−1 ∀γ ∈ 	, where ρεν : 	 → U(r) is an admissible
irreducible representation;

(ii) det f εν(τ0) = 1 for some fixed τ0 ∈ H;
(iii) f εν is regular at the cusps, that is

lim
τ→τi

f εν(τ ) <∞, i = 1, . . . , n.

f εν is real analytic in ε, and is analogous to a corresponding quasiconformal map-
ping in Teichmüller theory (see [ZT87a]). Under the special choice of bundle uni-
formization maps Yεν following from Lemma 3, it defines a parabolic bundle map
Fεν := (

Yεν f ενY−1
) ◦ J−1 by requiring the commutativity of the diagram of parabolic

bundles

H
∗ × C

r∗
f εν

��

J
��

H
∗ × C

r∗
Jεν
��

Eρ∗
Fεν

�� Eρεν

∗

(3.18)

It follows from Lemma 3 that det Fεν(J (τ0)) = 1, since (det Yεν/ det Y ) ◦ J is a holo-
morphic function on CP

1 whose value at∞ is equal to 1.
Given a basis ν1, . . . , νd for H 0,1(X,End Eρ

0 ), let ν = ε1ν1 + · · · + εdνd , with
εi ∈ C, i = 1, . . . , d, be sufficiently small. The induced mapping (ε1, . . . , εd) 
→
{Eρν

∗ } provides a coordinate chart on N in the neighborhood of the point {Eρ∗ }. These
coordinates transform holomorphically and endow N with the structure of a complex
manifold (in direct analogy to Bers’ coordinates on Teichmüller spaces). The differ-
ential of such coordinate transformations is the linear mapping H 0,1(X,End Eρ

0 ) →
H 0,1

(
X,End Eρν

0

)
explicitly given by the formula

μ 
→ Pν(Ad f ν(μ)), μ ∈H 0,1(X,End Eρ
0 ). (3.19)

Here Pν is the orthogonal projection onto H 0,1
(

X,End Eρν

0

)
, while Ad f ν(μ) :=

f νμ( f ν)−1 is understood as afiberwise linearmappingEnd Eρ
0 → End Eρν

0 (see [TZ08]
for details). Themoduli spaceN carries a Hermitianmetric given by the Petersson inner
product and the isomorphism T{Eρ∗ }N � S2(	,Ad ρ). This metric is analogous to the
Weil-Petersson metric on Teichmüller space, and for the moduli spaces of stable bundles
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of fixed rank and degree was introduced in [Nar70,AB83]. This metric is Kähler [TZ08]
and we denote its Kähler form by �:

�

(
∂

∂ε(μ)
,

∂

∂ε(ν)

)
=
√−1
2
〈μ, ν〉.

Here
∂

∂ε(μ)
and

∂

∂ε(ν)
are the holomorphic and antiholomorphic tangent vectors at

{E∗} ∈ N corresponding to μ, ν ∈H 0,1(X,End E0) respectively.

3.5. Variational formulas. Here we collect the necessary variational formulas. Except
for Lemma 5, these formulas are proved in [ZT89,TZ08]. For ν ∈ T{Eρ∗ }N �
S2(	,Ad ρ) put

ḟ+ = ∂ f εν

∂ε

∣∣∣∣
ε=0

and ḟ− = ∂ f εν

∂ε̄

∣∣∣∣
ε=0

.

Lemma 4 (Vanishingof thefirst variationof theHermitianmetric). Forν ∈ S2(	,Ad ρ)

we have

∂

∂ε

(
( f εν)∗ f εν

)∣∣∣∣
ε=0

= ∂

∂ε̄

(
( f εν)∗ f εν

)∣∣∣∣
ε=0

= 0 (3.20)

and also
(

ḟ+
)
τ̄
= ν,

(
ḟ−
)
τ̄
= 0, (3.21)(

ḟ+
)
τ
= 0,

(
ḟ−
)
τ
= −ν∗. (3.22)

Let C → N be the holomorphic affine bundle modeled on T ∗N , whose fiber over
a given {E∗} ∈ N corresponds to the affine space C (E∗). There is a ∂̄-operator on
the space of smooth sections 	 (N ,C ) and taking values in �1,1(N ), defining the
notion of holomorphicity of a global section. The theorem of Mehta–Seshadri provides
a special section sMS, which we call the Mehta–Seshadri section, given by logarithmic
connections with irreducible unitary monodromy. The section sMS is not holomorphic.
Its non-holomorphicity is measured by the Narasimhan–Atiyah–Bott Kähler form. The
next proposition is an analog of [ZT89, Theorem 1] for parabolic bundles. As in [ZT89],
its proof can be deduced from the variational formulas (3.22).

Proposition 2. For any moduli spaceN of stable parabolic bundles, the Mehta–Seshadri
section sMS : N → C satisfies

∂̄sMS = −2�.

For a given {Eρ∗ } ∈ N0, ν ∈ S2(	,Ad ρ), and ε sufficiently small, consider the
families of normalized maps Yεν as in Lemma 3, and the parabolic bundle maps Fεν :
Eρ∗ → Eρεν

∗ . Put

Ẏ+ = ∂Yεν

∂ε

∣∣∣∣
ε=0

, Ẏ− = ∂Yεν

∂ε̄

∣∣∣∣
ε=0

,
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and

E+ = Y−1Ẏ+, E− = Y−1Ẏ−. (3.23)

Denote by hεν = (YενY ∗
εν)

−1 the local family of Hermitianmetrics on the bundles Eρεν
,

where Yεν = Yεν ◦ J−1.

Lemma 5. Over the regular locus N0, we have

Fεν = Ir + ε Ḟ + o(|ε|), (3.24)

where

Ḟ = −h−1ḣ+ = −h−1 ∂hεν

∂ε

∣∣∣∣
ε=0

, (3.25)

is a smooth endomorphism of EN0 satisfying

(Ḟ ◦ J )τ̄ = YνY−1. (3.26)

Proof. Consider the equation

Yεν · f εν = (Fεν ◦ J ) · Y,

which follows from (3.18), and differentiate it with respect to ε and ε̄ at ε = 0. We
obtain

Y
(
E+ + ḟ+

)
Y−1 = Ḟ+ ◦ J, (3.27)

and

Y
(
E− + ḟ−

)
Y−1 = Ḟ− ◦ J. (3.28)

It follows from (3.21) that the left hand side of (3.28) is holomorphic in τ . Moreover, the
function E− + ḟ− = Y−1(Ḟ− ◦ J )Y is Ad ρ-automorphic and is bounded at the cusps,
i.e., is a parabolic endomorphism of Eρ∗ . Therefore, E− + ḟ− = cI = Ḟ− and it folows
from the normalization of Fεν that indeed Ḟ− = 0, which gives (3.24) with Ḟ = Ḟ+.

To prove (3.25), consider the equation

(Y−1)∗( f εν)∗ f ενY−1 = (
(Fεν)∗hεν Fεν

) ◦ J,

differentiate it with respect to ε at ε = 0 and use Lemma 4. Finally, (3.26) immediately
follows from (3.27) and (3.21). ��

For each pair of harmonic forms μ, ν ∈ H 0,1
(
X0,End Eρ

0

)
we define a smooth

L2-section fμν of End Eρ
0 by the formula

fμν = �−10 (∗[∗μ, ν]) , (3.29)

where �0 is the restriction of the Laplace operator � to the orthogonal complement
of the identity endomorphism (the kernel of �) in the Hilbert space of L2-sections of
End Eρ

0 (see [TZ08] for details). The family

μεν = Pεν

(
Ad f εν(μ)

)
,
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for sufficiently small ε, determines the tangent vector field ∂/∂ε(μ) to the complex curve{
Eρεν} ⊂ N . Let

L ν̄μ = ∂

∂ε̄

∣∣∣∣
ε=0

Ad
(

f εν
)−1 (

μεν
)

be the corresponding Lie derivative. We have (see [TZ08])

L ν̄μ = ∂̄ fμν̄ . (3.30)

3.6. Tautological line bundles over N . For each marked point zi ∈ CP
1 and j =

1, . . . , r , let �i j be the holomorphic line bundle over N whose fiber over {E∗} ∈ N
is the complex line Ei j/Ei j+1. The isomorphism E∗ ∼= Eρ∗ identifies such fiber with

the complex line Li j , the eigenspace for the eigenvalue e2π
√−1αi j of ρ(Si ), and the

Hermitian metric on Li j , induced by the standard Euclidean metric on C
r , determines a

naturalHermitianmetric ‖·‖i j on �i j . The line bundles �i j overN are called tautological
line bundles.

Let �i j = c1(�i j , ‖ · ‖i j )
9 be the first Chern form of the tautological line bundle �i j

with respect to the Hermitian metric ‖ · ‖i j . It was proved in [TZ08, Lemma 4]) that

�i j

(
∂

∂ε(μ)
,

∂

∂ε(ν)

)
=
√−1
2π

tr
(

Fi
μνvi j

)
, (3.31)

where Fi
μν ∈ EndC

r are the leading terms of the asymptotics of fμν(σiτ) at the cusps,

fμν(σiτ) = Fi
μν + o(1) as Im τ →∞, (3.32)

and

vi j = ui j ⊗ ūi j − Ir/r ∈ EndC
r , j = 1, . . . , r, (3.33)

where ρ(Si )ui j = e2π
√−1αi j ui j , ‖ui j‖ = 1, and ūi j stands for the componentwise

complex conjugate of ui j . The matrices vi j span the subspace of traceless matrices in
ker (Ad ρ (Si )− Ir ) ⊂ EndC

r , and the matrices Fi
μν̄ are traceless and satisfy

tr
(

Fi
μν̄v

)
= 0 v /∈ ker (Ad ρ (Si )− Ir ) .

(See [TZ08] for details and the relation of the (1, 1)-forms �i j on N with the matrix-
valued Eisenstein–Maass series.)

9 In [TZ08], the normalization c1(�i j , ‖ · ‖i j ) = 2

π
�i j is used instead.
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4. The WZNW Action

4.1. Zero curvature equation and WZNW functional. Given an open set U ⊆ C, let
E = U × C

r be a holomorphically trivial vector bundle of rank r . A Hermitian metric
on E is then a smooth map h : U → Hr , where Hr is the homogeneous space of
Hermitian and positive-definite r × r matrices. The zero-curvature equation for the
corresponding Chern connection d + h−1∂h has the form

∂̄(h−1∂h) = 0. (4.1)

Equation (4.1) is the Euler–Lagrange equation for the Wess–Zumino–Novikov–Witten
(WZNW) functional, introduced by Novikov [Nov82] and Witten [Wit84] in the case
when the target space is a compact simply-connected Lie group G. Namely, for smooth
maps g : CP

1 → G consider the functional

S[g] = S0[g] + W [g],
where

S0[g] =
√−1
2

∫∫

CP1

tr
(

g−1∂g ∧ g−1∂̄g
)

,

and

W [g] = 1

6
√−1

∫

Bg

�,

where Bg is any smooth 3-chain in G with the boundary g(CP
1). Here� is the invariant

3-form on G,

� = tr(θ ∧ θ ∧ θ),

where θ = g−1dg is theMaurer–Cartan form.10 The difference between any two choices
Bg − B ′g is a 3-cycle in G, and since

∫

Bg−B′g
� ∈ 48π2

Z,

it follows that S[g] is defined only modulo 8π2
√−1Z. Though the action functional

S[g] is not single-valued, its Euler–Lagrange equation is well-defined, and is given by
the corresponding analog of Eq. (4.1).

In physics, the action functional S[g] determines the so-calledWZNWmodel, a two-
dimensional nonlinear sigma-model with target space G. S0[g] plays the role of kinetic
energy and W [g] is the celebrated Wess–Zumino topological term (see [FMDS97] for
details). In turn, in the present situation, Eq. (4.1) is the Euler–Lagrange equation for
a non-compact WZNW model [Gaw92], where the target is instead the homogeneous
spaceHr ∼= GL(r, C)/U(r) for the non-compact Lie group GL(r, C), and whose action
functional will now be described in detail.

10 The form � is closed and 1
48π2 [�] is a generator of H3(G, Z).
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4.2. Cholesky decomposition. The homogeneous space Hr has natural global coordi-
nates given by the so-called Cholesky decomposition. Namely, every h ∈ Hr admits
a unique decomposition h = b∗b, where b is upper triangular with positive diagonal
elements. The coordinates of Hr are then given by the matrix elements of b. Equiva-
lently, the Cholesky decomposition can be written as h = c∗ac, where a is diagonal and
positive, and c is unipotent, in such a way that b = √ac.

Explicitly, represent a matrix h ∈ Hr as h = M∗M for some M ∈ GL(r, C) and

denote by M
l1...l j

l ′1...l ′j
the j × j matrix obtained from M by selecting l1, . . . , l j rows and

l ′1, . . . , l ′j columns. Then

a j = Q j j

Q j−1 j−1
, c jk = Q jk

Q j j
, (4.2)

where

Q jk =
∑

l1<···<l j

det
(

M
l1...l j
1... j−1 j

)
det

(
M

l1...l j
1... j−1k

)
, (4.3)

which is essentially the Gram–Schmidt orthogonalization process.
Since Hr is contractible, the restriction of the 3-form � to Hr (which we continue

to denote by �) is exact. It turns out that its primitive can be written down explicitly in
terms of the Cholesky decomposition.

Lemma 6. On Hr we have

� = 3d tr(θ1 ∧ θ∗1 ), (4.4)

where θ1 = db b−1.

Proof. Since θ = h−1dh = b−1((b∗)−1db∗ + db b−1)b we get

� = tr(θ1 ∧ θ1 ∧ θ1 + 3θ1 ∧ θ1 ∧ θ∗1 + 3θ∗1 ∧ θ∗1 ∧ θ1 + θ∗1 ∧ θ∗1 ∧ θ∗1 )

= 3 tr(θ1 ∧ θ1 ∧ θ∗1 + θ∗1 ∧ θ∗1 ∧ θ1).

Here we have used that since b = √ac with diagonal a and unipotent c,

tr(θ1 ∧ θ1 ∧ θ1) = 1

8
tr(da ∧ da ∧ da) = 0

and similarly, tr(θ∗1 ∧ θ∗1 ∧ θ∗1 ) = 0. Using the Maurer–Cartan equations dθ1 = θ1 ∧ θ1
and dθ∗1 = −θ∗1 ∧ θ∗1 , we obtain (4.4). ��

4.3. The WZNW functional for singular metrics. Using a choice of Birkhoff–
Grothendieck splitting E ∼= EN of a stable parabolic bundle E∗ on CP

1, one can think
of a singular Hermitian metric hE adapted to a parabolic structure as a smooth map
h : X0 → Hr satisfying (4.1) and having prescribed asymptotic behavior at z1, . . . , zn .

Namely, it follows from (2.7) that

hE (z, z̄) = Gi (z)
∗|z − zi |2Wi Gi (z), (4.5)
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in a neighborhood of zi , i = 1, . . . , n − 1, where Gi (z) are holomorphic and such that
Gi (zi ) = Ci (0)−1. When {E∗} ∈ N0, the corresponding hE in given by (2.9), where
the map Y is normalized as in Lemma 3. Then it follows from formulas (3.13)–(3.14)
that in a neighborhood of∞,

hE (z, z̄) = Gn(z)∗|z|−2W ′
n Gn(z), (4.6)

where Gn(z) is holomorphic at∞, Gn(∞) = Ir , and

W ′
n =

{
Wn + N0 if r | d
Ad(�0)(Wn) + N0 if r � | d

Consider the class of functionsLzi , definedonaneighborhoodof each zi by the following
uniformly convergent series

fi0(z)gi0(z̄) +
∞∑

l=1
fil(z)gil(z̄)|z − zi |λil ,

where the functions fil are holomorphic, gil are antiholomorphic, and λil > 0 for
i = 1, . . . , n − 1 and λnl < 0. Then the functions Q jk(z, z̄), 1 ≤ j < k ≤ r , induced
from (4.3), have the following form in a neighborhood of each z1, . . . , zn :

Q jk(z, z̄) = |z − zi |2κi j pi jk(z, z̄),

where κi j = ∑ j
l=1 αil for i = 1, . . . , n − 1, κnj = −∑ j

l=1 α′il , and pi jk ∈ Lzi . It
follows from (4.2) that the functions a j and c jk have the following asymptotics in a
neighborhood of z1, . . . , zn :

a j (z, z̄) =

⎧⎪⎪⎨
⎪⎪⎩

|z − zi |2αi j
pi j j (z, z̄)

pi j−1 j−1(z, z̄)
i = 1, . . . , n − 1,

|z|−2α′nj
pnj j (z, z̄)

pnj−1 j−1(z, z̄)
i = n,

(4.7)

and

c jk(z, z̄) = pi jk(z, z̄)

pi j j (z, z̄)
. (4.8)

For any given {E∗} ∈ N0, let us denote by C (E∗; X0,Hr ) the space of smooth
maps h : X0 → Hr with asymptotics (4.5)–(4.6) for some local smooth functions
G1, . . . , Gn , such that

[Mi ] = [Ci (0)] ∈ GL(r, C)/B(r), i = 1, . . . , n − 1,

where Mi = Gi (zi )
−1, and Gn(∞) = Ir . We will now define the WZNW functional

S : C (E∗; X0,Hr ) → R, whose unique critical point will be the singular Hermitian
metric hE on E∗. Namely, for δ > 0 let

Xδ = C \
(

n−1⋃
i=1
{|z − zi | < δ} ∪

{
|z| > 1

δ

})
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with boundary ∂ Xδ = ⋃n
i=1 Ciδ . Each component Ciδ carries a naturally induced ori-

entation. Define

S0δ[h] =
√−1
2

∫∫

Xδ

tr
(

h−1∂h ∧ h−1∂̄h
)

+

√−1
2

n−1∑
i=1

∫

Ciδ

tr
(

Wi |z − zi |−2Wi M∗
i hMi

)( dz

z − zi
− dz̄

z̄ − z̄i

)

+

√−1
2

∫

Cnδ

tr
(

W ′
n|z|2W ′

n h
)(dz

z
− dz̄

z̄

)

and

Wδ[h] = −
√−1
2

∫∫

Xδ

tr
(
h∗(θ1) ∧ h∗(θ∗1 )

)
,

and put

Sδ[h] = S0δ[h] + Wδ[h] + 2π log δ

r∑
j=1

n−1∑
i=1

α2
i j + 2π log δ

r∑
j=1

α′2nj .

We have the following result.

Proposition 3. For any {Eρ∗ } ∈ N0 and any h ∈ C (E∗; X0,Hr ), the limit

S[h] = lim
δ→0

Sδ[h] (4.9)

is well-defined. The Euler–Lagrange equation for the functional

S : C (E∗; X0,Hr ) → R

is the zero-curvature equation (4.1).

Proof. We will only prove that the limit exists. The derivation of the Euler–Lagrange
equation is standard and accounts for the introduction of the boundary terms in S0δ[h].
The details are left to the reader.

From formulas (4.5)-(4.6) we get the following asymptotic formulas in the neighbor-
hood of each zi :

tr(h−1hzh−1hz̄) =

⎧⎪⎨
⎪⎩

1

|z − zi |2
(
tr
(

W 2
i

)
+ O

(|z − zi |κi
))

i = 1, . . . , n − 1

1

|z|2
(
tr
(

W ′2
n

)
+ O

(|z|κn
))

i = n

where

κi =
{
2(αi1 − αir + 1) > 0 i = 1, . . . , n − 1
2max{α′nj − α′nk − 2} < 0 i = n
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which determine the regularization of the kinetic term in theWZNWaction. It is straight-
forward to verify that the limits as δ → 0 of the boundary terms of S0δ[h] exist. On the
other hand, the topological term needs no regularization, i.e. the integral

√−1
2

∫∫

CP1

tr
(

bz̄b−1(bz̄b−1)∗ − bzb−1(bzb−1)∗
)

dz ∧ dz̄

is already absolutely convergent. Indeed, using the Cholesky decomposition h = c∗ac
we obtain the following Cartan decompositions

bh−1hzb−1 = u + d + l and bh−1hz̄b−1 = l∗ + d∗ + u∗,

where

d = aza−1, u = a1/2czc−1a−1/2, l = (a1/2cz̄c−1a−1/2)∗

are the corresponding diagonal, upper triangular and lower triangular components. hence

tr(h−1hzh−1hz̄) = ‖d + u + l‖2 = ‖d‖2 + ‖u‖2 + ‖l‖2, where ‖g‖2 = tr(gg∗).

From (4.7) we obtain the following asymptotics

d(z, z̄) =

⎧⎪⎨
⎪⎩

Wi

z − zi
+ O(1) as z → zi , i = 1, . . . , n − 1,

−W ′
n

z
+ O

(∣∣∣z−2
∣∣∣
)

as z →∞.

Therefore the integrals
√−1
2

∫∫

Xδ

‖d‖2dz ∧ dz̄ and

√−1
2

∫∫

Xδ

tr(h−1hzh−1hz̄)dz ∧ dz̄

diverge identically, so that
√−1
2

∫∫

CP1

(‖u‖2 + ‖l‖2)dz ∧ dz̄ = lim
δ→0

√−1
2

∫∫

Xδ

(‖u‖2 + ‖l‖2)dz ∧ dz̄ <∞.

Since tr
(
bz̄b−1(bz̄b−1)∗ − bzb−1(bzb−1)∗

) = ‖l‖2−‖u‖2, we conclude that the topo-
logical term in the WZNW action is absolutely convergent. ��
Remark 2. The density of the WZNW functional described before corresponds to an
explicit realization of the second Bott–Chern form on a trivial Hermitian vector bundle
[PT14,Tak16]. It was already noted in [Don92] that, in the case of a trivial vector bundle,
theWZNWfunctional provides a concrete realization ofDonaldson’s functional [Don85,
Don87]. As a consequence of the Birkhoff–Grothendieck theorem, such a realization
becomes meaningful in the study of moduli spaces of parabolic bundles in genus 0.

5. Main Results

Let S : N0 → R be the function defined on each {Eρ∗ } ∈ N0 as the critical value of
the functional S : C (E∗; X0,Hr ) → R in Proposition 3.
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5.1. The first variation of the WZNW action. The following result is an analog of The-
orem 1 in [ZT87a] for vector bundles.

Theorem 1. The function S : N0 → R is smooth and satisfies

∂S = −ϑ, (5.1)

where ϑ is the (1, 0)-form on N0 defined in (3.12). In other words, for every ν ∈
S2(	,Ad ρ),

∂S (hεν)

∂ε

∣∣∣∣
ε=0

= −2
∫∫

	\H
tr (A ν) d2τ.

Proof. It is sufficient to verify that

lim
δ→0

∂Sδ(hεν)

∂ε

∣∣∣∣
ε=0

= −ϑ(ν),

uniformly in a neighborhood of every {E∗} ∈ N0, which we show by a straightforward,
though tedious, computation. Namely, using Lemma 5 and Stokes theorem, we have

∂S0δ(hεν)

∂ε

∣∣∣∣
ε=0

= −
√−1
2

∫∫

Xδ

tr
(

Ḟ
(
2∂̄
(

h−1∂h
)
+ h−1dh ∧ h−1dh

))

+

√−1
2

∫

∂ Xδ

tr
(

Ḟ
(
2h−1∂h − h−1dh

))

−
√−1
2

n−1∑
i=1

∫

Ciδ

tr
(

Wi |z − zi |−2Wi φ̇i+

)( dz

z − zi
− dz̄

z̄ − z̄i

)

+

√−1
2

∫

Cnδ

tr
(

W ′
n|z|2W ′

n ḣ+

)(dz

z
− dz̄

z̄

)
,

where

φ̇i+ =
∂ (Ci (0)εν)∗ hενCi (0)εν

∂ε

∣∣∣∣
ε=0

, i = 1, . . . , n − 1.

Next, put

ḃ+ = ∂bεν

∂ε

∣∣∣∣
ε=0

and ḃ− = ∂bεν

∂ε̄

∣∣∣∣
ε=0

.

Using the identity Ḟ = −b−1
(

ḃ+b−1 +
(
ḃ−b−1

)∗)
b, we obtain

∂Wδ(hεν)

∂ε

∣∣∣∣
ε=0

=
√−1
2

∫∫

Xδ

tr
(

Ḟh−1dh ∧ h−1dh
)

+

√−1
2

∫

∂ Xδ

tr
((

ḃ−b−1
)∗

θ1 − ḃ+b−1θ∗1
)
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Using that ∂̄(h−1∂h) ≡ 0, the identity h−1dh = b−1(θ1+θ∗1 )b, the relation b = √ac,
and putting everything together, we obtain

∂Sδ(hεν)

∂ε

∣∣∣∣
ε=0

=
√−1
2

∫

∂ Xδ

tr
(

Ḟ(2h−1∂h − h−1dh)
)

+

√−1
2

∫

∂ Xδ

tr
((

ḃ−b−1
)∗

θ1 − ḃ+b−1θ∗1
)

−
√−1
2

n−1∑
i=1

∫

Ciδ

tr
(

Wi |z − zi |−2Wi φ̇i+

)( dz

z − zi
− dz̄

z̄ − z̄i

)

+

√−1
2

∫

Cnδ

tr
(

W ′
n|z|2W ′

n φ̇n+

)(dz

z
− dz̄

z̄

)

=

⎧⎪⎨
⎪⎩
√−1

∫

∂ Xδ

tr
(

Ḟh−1∂h
)

−
√−1
2

n−1∑
i=1

∫

Ciδ

tr
(

Wi |z − zi |−2Wi φ̇i+

)( dz

z − zi
− dz̄

z̄ − z̄i

)

+

√−1
2

∫

Cnδ

tr
(

W ′
n|z|2W ′

n φ̇n+

)(dz

z
− dz̄

z̄

)
⎫⎪⎬
⎪⎭

+

√−1
2

∫

∂ Xδ

tr
(

a−1ȧ+a−1da
)
+
√−1

∫

∂ Xδ

tr
((

ċ−c−1
)∗

adcc−1a−1
)

= I1 + I2 + I3,

where

ȧ+ = ∂aεν

∂ε

∣∣∣∣
ε=0

ċ− = ∂cεν

∂ε̄

∣∣∣∣
ε=0

.

Here we denoted by I1 the sum of integrals inside the curly brackets, and by I2 and I3 the
two integrals in the last line. We will consider each of these integrals separately. Stokes
theorem, a change of variables and (3.26) give

√−1
∫

∂ Xδ

tr
(

Ḟh−1∂h
)
= √−1

∫∫

Xδ

tr
(
∂̄ Ḟ ∧ h−1∂h

)
= −2

∫∫

Dδ

tr (A ν) d2τ

where Dδ = J−1(Xδ) ∩ D. Moreover, since

φi
+ =

{
o(1), i = 1, . . . , n − 1,
o
(|z|−1) , i = n,
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it follows from the cusp form condition that

I1 = −ϑ(ν) + o(1) as δ → 0.

In order to estimate the integral I2, we observe that

tr
(

ȧ+a−1daa−1
)
=

r∑
j=1

˙(
log a j

)
+d log a j ,

and it follows from (4.7) that each ˙(
log a j

)
+ is regular on CP

1. Hence the residue
contributions from each summand of tr

(
ȧ+a−1daa−1

)
cancel out individually. Hence

I2 = o(1) as δ → 0.
Next, we estimate the integral I3. It follows from (4.7)–(4.8) that near z1, . . . , zn−1,

tr
(
(ċ−c−1)∗adcc−1a−1

)
=
∑
j<k

(
φi jkdz + ψi jkd z̄

) |z − zi |2(αi j−αik ),

where φi jk, ψi jk ∈ Lzi , while near∞,

tr
(
(ċ−c−1)∗adcc−1a−1

)
=
∑
j<k

(
φnjkdz + ψnjkd z̄

) |z|−2(α′nj−α′nk ),

where φnjk, ψnjk ∈ Lzn . It is readily verified that if φ ∈ Lzi , i = 1, . . . , n, then
∫

∂Ui

φdz = |z − zi |2 f (|z − zi |),
∫

∂Ui

φdz̄ = |z − zi |2g(|z − zi |),

with regular functions f, g. Consequently, since for j < k, αi j − αik > −1, and
α′nj − α′nk > −1 as {Eρ∗ } ∈ N0, we conclude that I3 = o(1) as δ → 0. Therefore,

∂Sδ

∂ε

∣∣∣∣
ε=0

= −ϑ(ν) + o(1) as δ → 0.

Finally, notice that the function Yεν is continuously differentiable in ε and its Fourier
coefficients have the same property (in particular this also holds for the constant terms).
Since every single factor in the integrals I1, I2, and I3 explicitly depends on thederivatives
of Yεν and Fεν at ε = 0, we conclude that each of the corresponding remainders can be
estimated uniformly in a neighborhood of {E∗} inN0. ��

5.2. The second variation of the WZNW action. The next result is an analog of Theorem
1 in [ZT89] for parabolic bundles.

Theorem 2. The (1, 0)-form ϑ on N0 satisfies

∂̄ϑ = 2
√−1 (�−�T)|N0

, (5.2)

where

�T =
n∑

i=1

r∑
j=1

βi j�i j
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and

βi j = 2π2αi j , i = 1, . . . , n − 1, (5.3)

βnj =
{
2π2

(
αnj + m j

)
if r | d

2π2
(
αnj + mr− j+1

)
if r � | d

(5.4)

Proof. As in the proof of Theorem 1 in [ZT89], consider the family

μεν = Pεν

(
Ad f εν(μ)

)
,

which for sufficiently small ε determines the tangent vector field ∂/∂ε(μ) to the complex
curve

{
Eρεν} ⊂ N . Let Aεν be the corresponding family of weight 2 regular forms

associated with the 1-form ϑ , where A0 = A . We have

ϑ

(
∂

∂ε(μ)

)
= lim

δ→0
2
∫∫

Dδ

tr
(
Aενμ

εν
)

d2τ

= lim
δ→0

2
∫∫

Dδ

tr
(
Ad( f εν)−1(Aεν)Ad( f εν)−1(μεν)

)
d2τ

and

∂

∂ε̄

∣∣∣∣
ε=0

ϑ

(
∂

∂ε(μ)

)
= lim

δ→0
2
∫∫

Dδ

tr (L ν̄A μ +A L ν̄μ) d2τ, (5.5)

where

L ν̄A = ∂

∂ε̄

∣∣∣∣
ε=0

Ad
(

f εν
)−1

(Aεν) .

It follows from (3.18) that
(

f εν
)−1

Aεν f εν + Y−1
(
Fεν

)−1 (
Fεν

τ ◦ J
)

Y = (
f εν
)−1

f εν
τ +A

which, in virtue of variational formulas (3.22) and Lemma 5, implies that

L ν̄A = −ν∗. (5.6)

Using formulas (3.30) and (5.6), we obtain

∂

∂ε̄

∣∣∣∣
ε=0

ϑ

(
∂

∂ε(μ)

)
= lim

δ→0

⎛
⎜⎝−2

∫∫

Dδ

tr
(
μν∗

)
d2τ + 2

∫∫

Dδ

tr

(
A

∂ fμν̄

∂τ̄

)
d2τ

⎞
⎟⎠

= −〈μ, ν〉 − lim
δ→0

√−1
∫

∂ Dδ

tr
(
A fμν̄

)
dτ.

It follows from the asymptotic formula (3.4) and formula (3.32) that

∫

∂ Dδ

tr
(
A fμν̄

)
dτ =

n∑
i=1

tr
(
Ad(Ui )(Bi (0))Fi

μν̄

)
+ o(1).
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From the explicit form (3.10)–(3.11) of the matrices Bi (0) in Lemma 2 and formula
(3.33) we get

Ad(Ui ) (Bi (0)) = 2π
√−1

⎛
⎝ tr(Wi )

r
Ir +

r∑
j=1

αi jvi j

⎞
⎠ , i = 1, . . . , n − 1,

and

Ad(Un) (Bn(0)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2π
√−1

⎛
⎝ tr(Wn + N0)

r
Ir +

r∑
j=1

(αnj + m j )vi j

⎞
⎠ if r | d,

2π
√−1

⎛
⎝M0 +

r∑
j=1

(αnj + mr− j+1)vnj

⎞
⎠ if r � | d,

where

M0 = tr(Wn + N ′0)
r

Ir − Ad(Un)(L − Ir ).

Hence, considering the trace properties of Fi
μν̄ described in Sect. 3.6, we obtain

tr
(
Ad(Ui )(Bi (0))Fi

μν̄

)
=
√−1

π

r∑
j=1

βi j tr
(

Fi
μν̄vi j

)
,

where βi j are given by (5.3)–(5.4). Finally, using (3.31) we conclude that

∂̄ϑ

(
∂

∂ε(μ)
,

∂

∂ε(ν)

)
= ∂

∂ε̄

∣∣∣∣
ε=0

ϑ

(
∂

∂ε(μ)

)

= 2
√−1

(
�

(
∂

∂ε(μ)
,

∂

∂ε(ν)

)
−�T

(
∂

∂ε(μ)
,

∂

∂ε(ν)

))
.

��

5.3. Applications. Combining Theorems 1 and 2, we obtain

Corollary 1. The real-valued function −S : N0 → R is a Kähler potential for
(�−�T)|N0

, the restriction of the difference between the natural Kähler form � and
�T on N to the regular locus N0, i.e.,

∂∂̄S = 2
√−1 (�−�T)|N0

. (5.7)

In particular, on N0 we have the following identity of de Rham cohomology classes

[�] = [�T] .

Furthermore, the result holds globally on any open chamber of parabolic weights for
which N0 = N .
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Remark 3. The computation of the first Chern form for moduli spaces of stable parabolic
bundles determined in [TZ08, Corollary 1] gives

c1
(
λ, ‖ · ‖Q

) = − r

π2�−
n∑

i=1

r∑
j,k=1
j �=k

sgn(αi j − αik)(1− 2|αi j − αik |)�i j

(the formula applies in full generality, since the determinant of a vector bundle onCP
1 is

always fixed in the moduli problem). In the simplest case r = 2, we have the additional
relation �i2 = −�i1. In genus 0, the previous identity can be compared with (5.7),
yielding the following relation for the first Chern form of det T ∗N on any open weight
chamber for which N0 = N :

c1
(
det T ∗N

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2
n∑

i=1
c1 (�i2) if d is even,

−2
n−1∑
i=1

c1 (�i2) + 2c1 (�n2) if d is odd.

(5.8)

Remark 4. Corollary 1 reduces the computation of symplectic volumes for the
Narasimhan–Atiyah–Bott Kähler form to the intersection theory of tautological forms
wheneverN0 = N (cf. [TZ08]). These volumes were first computed byWitten [Wit91]
for the group SU(2) in terms of theVerlinde formula (note that the piecewise-polynomial
volume dependence on the parabolic weights is concealed in the explicit form of Wit-
ten’s computation). It follows that a sensible construction of explicit geometric models
for moduli spaces of parabolic bundles on the sphere, as well as the algebraic geometry
of their tautological classes, would serve to reduce the problem of computation of sym-
plectic volumes to a combinatorial one, while making the behavior of the latter under
wall-crossing explicit. The implementation of this idea is under investigation by the first
author, and will appear separately.
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