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Abstract: Moduli spaces of stable parabolic bundles of parabolic degree 0 over the Rie-
mann sphere are stratified according to the Harder—Narasimhan filtration of underlying
vector bundles. Over a Zariski open subset .4( of the open stratum depending explicitly
on a choice of parabolic weights, a real-valued function . is defined as the regularized
critical value of the non-compact Wess—Zumino—Novikov—Witten action functional. The
definition of .’ depends on a suitable notion of parabolic bundle ‘uniformization map’
following from the Mehta—Seshadri and Birkhoff—Grothendieck theorems. It is shown
that —.¢ is a primitive for a (1,0)-form ¢ on .4 associated with the uniformization data
of each intrinsic irreducible unitary logarithmic connection. Moreover, it is proved that
—. is a Kihler potential for (& — Q7)]_y;, where €2 is the Narasimhan—Atiyah—Bott
Kihler form in 4" and Qr is a certain linear combination of tautological (1, 1)-forms
associated with the marked points. These results provide an explicit relation between the
cohomology class [€2] and tautological classes, which holds globally over certain open
chambers of parabolic weights where A4 = /.
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1. Introduction

The analytic geometry of moduli spaces of Riemann surfaces and vector bundles is
closely tied with the two-dimensional conformal field theory, formulated in the 80s by
Belavin, Polyakov and Zamolodchikov [BPZ84]. One of the fundamental models of the
theory is the quantum Liouville model, a quantization of the classical theory defined
by the Liouville action on a Riemann surface, whose Euler—Lagrange equation is the
Liouville equation that determinines the hyperbolic metric on it. Semi-classical analy-
sis of the quantum Liouville theory indicates a deep and unexpected relation between
the critical value of the Liouville action and the accessory parameters of the Fuchsian
uniformization of Riemann surfaces. A precise form of this relation, as well as an un-
expected connection with the Weil-Petersson metric on Teichmiiller space, was proved
by P. Zograf and the second author in [ZT87a,ZT87b]. We refer to [Tak96,TT06] and
references therein for further results and details.

Finding an analog of such results for moduli spaces of stable parabolic bundles
on Riemann surfaces, in the spirit of [ZT89,TZ08], remained as an interesting open
problem. It is well known that such moduli spaces appear in conformal field theories
associated with the Wess—Zumino—Novikov—Witten (WZNW) action for compact Lie
groups, introduced by Novikov [Nov82] and Witten [Wit84]. Starting from the SU(2)
case [KZ84], the compact WZNW models have been thoroughly investigated (see, e.g.,
the monograph [FMDS97]). However, as far as the analogy in question is concerned, it
is not the compact WZNW models, but rather their non-compact analogs [Gaw92], that
are the appropriate candidates to consider. Non-compact WZNW models do not lead to
rational conformal field theories, and are in general less understood.

In the case of genus 0 this analogy can be made precise as follows. Let E, be a rank r
stable parabolic bundle of parabolic degree 0 over CPP! with a fixed set of marked points
Zly ..., 2n € CP!. The Mehta—Seshadri theorem establishes the equivalence between
the notion of parabolic stability and the existence of a singular Hermitian metric on E,
whose associated Chern connection is flat and irreducible over CP' \ {z1, ...z,}, and
has logarithmic singularities at the marked points with the residues compatible with the
parabolic structure. Over the Riemann sphere, the Birkhoff-Grothendieck decomposi-
tion of holomorphic vector bundles provides an explicit trivialization on the underlying
vector bundle E, and allows to interpret the Mehta—Seshadri theorem as the existence
of a ‘parabolic bundle uniformization map’ _#. It follows that the singular Hermitian
metric on £, can be described as a smooth map /4 : CP! \{z1,...,2n} = H,, where H,
is the space of Hermitian positive-definite » x r matrices, having prescribed asymptotic
behavior at the marked points and satisfying the equation

5(h_18h> —0.



Logarithmic Connections and WZNW Action

This equation is precisely the Euler—Lagrange equation of the celebrated WZNW action
functional for H, -valued maps. Such a map & would be defined only up to the action
of the group Aut(E) of bundle automorphisms, since the latter is always non-trivial.

However, in contrast to the moduli problem for Riemann surfaces, the nature of the
moduli problem in question leads to additional geometric features. In general, the de-
pendence on a choice of parabolic weights induces wall-crossing phenomena. Moreover,
the peculiarities of genus 0 define special moduli space stratifications with an explicit
dependence on the combinatorial structure of parabolic weight polytopes. Such strati-
fications, as well as their dependence on parabolic weights, play a decisive role in the
main results of this work.

More precisely, over a moduli space .4 of stable parabolic bundles, we are lead to a
certain Zariski open subset .4 of geometric significance. Namely, there is a stratification
of .4 determined by the Harder—Narasimhan filtration associated with the Birkhoff—
Grothendieck splitting type of a holomorphic vector bundle on CP', which depends
on a choice of parabolic weights. Over its Zariski open stratum with a fixed Birkhoff—
Grothendieck splitting type E y, there is an open subset .4 such that over it a consistent
choice of representatives of Aut (Ey,)-orbits for _# and i can be made. We refer to
A0 as the regular locus. As the moduli space .4/, the regular locus depends rather
nontrivially on the choice of parabolic weights. For the purposes of this paper we note
that in many cases there exist open chambers in the weight polytopes where Ay = A".
On the regular locus .4, the explicit choice of the maps i : CP' \ {z1,...,z,} = H,
allows us to define a smooth real-valued function . : .43 — R as the critical values of
the WZNW action, and a smooth (1, 0)-form ¢ on .4(, associated with the logarithmic
connection d +h~'dh. Our first main result, Theorem 1, is the following explicit relation

on A9,
9. = —0.

The moduli space .4 carries the Narasimhan—Atiyah-Bott Kéhler form €2 and the
(1, 1)-forms £2;;, which are the first Chern forms of tautological line bundles associ-
ated with the marked points. Our second main result, Theorem 2, establishes a relation
between these natural objects and the (1, 0)-form ¢ on .4j. Namely,

W =2/-1(Q=QD |y Qr=) B

where B;; depend linearly on the parabolic weights and the bundle splitting coefficients.
Together, Theorems 1 and 2 imply that —.% is a Kihler potential over .4 for the
difference between the (1,1)-forms €2 and QT (Corollary 1). It expresses the cohomology
class [©2] on .4 as a concrete linear combination of tautological classes [€2;;]. This
result establishes a new relation between non-compact WZNW models and the analytic
geometry of moduli spaces.

The paper is organized as follows. In Sect. 2 we review the Mehta—Seshadri theorem
for stable parabolic bundle E, on CP!, introduce bundle uniformization maps and related
geometric structures — the singular Hermitian metric and unitary logarithmic connection
on E,. In Sect. 3 we remind the complex analytic theory of the moduli space .4 of stable
parabolic bundles, and define the regular locus .44 and the (1, 0)-form ¢. In Sect. 4 we
give a construction of the regularized WZNW action, and in Sect. 5 we prove Theorems 1
and 2.
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2. Parabolic Bundles and Logarithmic Connections

2.1. Parabolic bundles. A parabolic bundle E, of rank r on CP! and a fixed set of

marked points z1,...,z, € CP' is a holomorphic vector bundle E together with a
parabolic structure — complete descending flags' E,, = F;1 D Fi, D --- D F; D {0}
in the fibers E;,, i = 1, ..., n, with weights 0 < o;; < oj2 < --- < «; < 1. The

parabolic degree of a parabolic bundle E, is defined as

n r
pardeg E, = d+ZZaij7

i=1 j=1

where d = deg E is the degree of the vector bundle E. A morphism f : E, — E|
of parabolic vector bundles is a morphism of holomorphic vector bundles such that for
every z;, f(Fij) C E’kJrl whenever o;; > ozlfk. A parabolic subbundle F, of E, is a
subbundle F C E such that for every z; the parabolic structure in Fj is induced from
the parabolic structure in E, by restriction.

A parabolic bundle E, of parabolic degree O is stable (resp. semi-stable) if every
proper parabolic subbundle F of E, satisfies par deg F, < 0. (resp. < 0). When E, is
stable, its group Par Aut E, of parabolic automorphisms consists of nonzero multiples of
the identity. A theorem of Mehta—Seshadri [MS80] generalizes the celebrated theorem of
Narasimhan—Seshadri [NS65] for stable vector bundles on a compact Riemann surface
to the case of parabolic bundles. It states that when 2g — 2 + n > 0, stable parabolic
bundles over a compact Riemann surface X of genus g are precisely those associated
with irreducible unitary representations of the fundamental group of the non-compact
Riemann surface Xo = X \ {z1, ..., 2,}.

The precise formulation in the special case X = CP! is the following. Let

H={teC:Imt > 0}

be the Poincaré half-plane model of the Lobatchevsky plane and let Xg = CP! \
{z1,..., zn}, where the normalization z,—» = 0,z,—1 = 1| and z;, = o0 is always
assumed. By the uniformization theorem,

Xo = M\H,

where I is a torsion-free Fuchsian group generated by n parabolic transformations
St, ..., Sy satisfying the single relation

S1...8% =1
and having the property that their fixed points 71, ..., 7, € R U {oo} are mapped to
Zy...,2n € CP'and 7,_o = 0, 7,_; = 1 and 7, = oo. The uniformization map —
a classical Klein’s Hauptmodul (or Hauptfunktion) — is a complex-analytic covering
J : H — Xg which is I'-automorphic and takes every value in C \ {zy, ..., z,—3,0, 1}

exactly once in the fundamental domain of the group I". It extends to the holomorphic
map J : H* — CP!, where H* is the union of H with all cusps for T'.

Given a set of parabolic weights {o;;}, let W; = diag(a;1, ..., ;) and D; =
e2"V=IWi for each i = 1,...,n. A unitary representation p : I' — U(r) is called
admissible if for each i = 1,...,n we have p(S;) = U,-Dl-Ul._l with U; € SU(r).

Un general, one considers arbitrary flags and weights with multiplicities.
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Clearly each U; is defined only up to right multiplication by a diagonal matrix. Thus
an admissible unitary representation p defines a set of points [Ui], ..., [U,] in the
homogeneous spaces of conjugacy classes of Dy, ..., D, in U(r), which are isomor-
phic to SU(r)/U(1)"~'. The group I acts on the trivial bundle H x C” over H by
(tr,v) — (yt, p(y)v), defining a local system Eg =TI\Hx C) - I'H = X).
Eg extends to a holomorphic vector bundle E” over CP! together with a collection of
flags at the fibers over the marked points induced by the data [U;], and determines a
semi-stable parabolic bundle Ef which is stable when p is irreducible, in such a way
that E{' = E? if and only if p; = p; (see [MS80] for details).

The Mehta—Seshadri theorem asserts that the converse is also true, namely, that for
every stable parabolic bundle E, of parabolic degree 0 there is an irreducible admissible
representation p such that E, = E.

By the Birkhoff—Grothendieck theorem, every holomorphic vector bundle E of rank
r over CP! is isomorphic to a direct sum of line bundles,

.
E;@O(mj), mp <mpy <o <my.
j=1

Such an isomorphism depends on a choice of point in CP!, which we assume to be co.
Let N = diag(my, ..., m,). Upon the choice of a second point, e.g. 0 € CP!, the bundle
E is determined by the transition function®

g(z) =z = diag(z™, ..., ™),

defined on the intersection C* of the charts C = CP!\ {co} and C*U{oo} = CP!\ {0} of
CP'. We will denote such a bundle-splitting canonical form by E . It follows that every
parabolic bundle E, — CP! is isomorphic to a parabolic bundle of the form (Ey),.

The endomorphisms of E are global sections of the bundle End E = EY ® E, where
EV is the dual to E. When X = CP!, the Riemann—Roch theorem for vector bundles
states

dim H°(CP', End E) — dim H'(CP', End E) = r>.

It follows that dim H O0(CP!,End E) attains its minimal value r2? if and only
if dim H'(CP', End E) = dim H(CP', ©(—2) ® End E) = 0 or equivalently, if and
only if [m; — my| < 1forall j,k = 1,...,r. Such bundles are called evenly-split
[Bel01,Bis02]. For every d € Z and r > 1 there is a a unique evenly-split bundle E,
of degree d and rank r up to isomorphism:

En, =0m)" P & O@m+ 1)?, 2.1)
whered = mr +p, 0 < p <r, and
No =diagim, ..., m,m+1,...,m+1).
——— ——
r—p p

Let Aut E denote the group of holomorphic bundle automorphisms of a vector bundle
E. When r | d we have that Aut Ey, = GL(r, C). Otherwise, in terms of the affine

2 In what follows z 1V, gV, etc., will always stand for the corresponding diagonal matrices.
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trivialization over C, Aut E y, gets identified with a group of matrix-valued polynomials
of block-lower triangular type. Namely, if r f d, it follows that

Aut EN() = PN() X NN()? 2.2)

where Py, is the subgroup of block-lower triangular matrices relative to the partition
(r — p, p), and Ny, is the normal subgroup of functions having the following (» — p, p)
block form

g(x) = (Ir_p O) , where C is an arbitrary p x (r — p) matrix.
zC I,

It follows from this characterization that when p # 0, the group Aut Ey, preserves the

second summand in the decomposition (2.1). Whence in such case every evenly-split

bundle E has a subbundle O(m + 1)? — E, which is independent of the isomorphism

E = Ey,. Moreover, the corresponding Harder-Narasimhan filtration of the bundle E

reduces to

E D> O@m+1)? > {0}.

For any z € CP!, let V, = O(m + 1)?|, C E. be the fiber at z, P(V,) C GL(E,) be
its parabolic subgroup, and N(V;) be its unipotent radical. Invariantly, restriction to the
fibers Eo, Eo determines the isomorphisms Py, = P(Vp), Ny, = N(Vso).

The vector bundle E” can also be described in terms of another set of transition
functions (cf. [NS65, Remark 6.2]). Namely, since X is non-compact, by a theorem of
Stein the holomorphic vector bundle Eg is trivial. Hence there is a holomorphic function
G : H — GL(r, C) satisfying

G(yt)=G@py)™', VyeTl,

so that the bundle map G o J ! : Eg — Xo x C" is an isomorphism. For any choice of
representatives Uy, ..., U,, the function G can be written in the neighborhood of each
7 as

Gloit) = Gilg) g~ U . 2.3)

Here G;(q) are holomorphic and invertible in some punctured neighborhood of g =
0, ¢ = diag(e 2"V-leiit ¢ =27Y=1eirT) and o; € PSL(2, R) are such that
oi(c0) = 1; and aflS,-o,- = (o). i=1,....n.Letld = (%, . ..., %) bean
open cover of CP! where % = X, and for i > 1, % are sufficiently small open disks
around z; so that %; = @ fori, j # 0, i # j. By the definition of the bundle E” (see
[MS80]), local trivializations of E” over %; are given by the maps v; o J —1 where
Yi(oit) = q~ iUl._l. Whence the transition functions go; : %; — GL(r, C) of the
bundle E for the cover U are given by the formula

gOi:Gioa;]OJ_l, l=1,,n

The definition of E” and the maximum principle imply that HO(CP!, EP) = (TP,
where the right-hand side denotes the subspace of p-invariant vectors in C". Hence
mj < Oforall j = 1,...,r when pisirreducible. Moreover, if 0 < o; fori = 1,...,n,
we have that

EVZE®On),
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where E = EP, E = EP and p = 'p~ ! is the contragradient representation to p. This
follows from the comparison of the transition functions ’ g&l for EV with those of E
which correspond to the function 'G~!. Hence if E, is a stable parabolic bundle of
parabolic degree O whose parabolic weights satisfy 0 < «;; foreachi =1, ..., n, then
necessarily

-n<mj <0, j=1...,r

2.2. Parabolic bundle uniformization map. The parabolic structures on a given bundle
splitting Ey that arise from an admissible representation can be described by means of a
uniformization map of parabolic bundles. When any such parabolic bundle is stable, the
uniformization map provides a complex-analytic interpretation of the Mehta—Seshadri
theorem, and can be thought of as a matrix analog of the classical Klein’s Hauptmodul
J.

Lemma 1. Let p : ' — U(r) be an admissible representation such that EP = Ey.
Given a choice of representatives Uy, . .., U, € SU(r) there is a holomorphic function
Y : H — GL(r, C) satisfying

Y(y1)=Y@)py) ', Vyerl, reH, (2.4)

and having the Fourier series expansions

Y(oi7) = (ZCi(k)qk> g Ut i=1,n—1, (2.5)
k=0
and
Y(out) =g~V (Z Cn(k)qk) g Ut (2.6)
k=0

where C;(0) € GL(r,C) fori = 1, ..., n. The set Y (p) of all functions Y with these
properties is in one-to-one correspondence with the set of all isomorphisms EP = Ey;,
and is a principal homogeneous space for the automorphism group Aut E y of the bundle
splitting En.

Proof. Consider the function G, the open cover U, and the transition functions go;
defined before. The existence of the function Y is a consequence of the equivalence of
bundles defined by the transition functions g¢; and the Birkhoff—-Grothendieck transition
function g(z) = zV. It follows that there exist holomorphic functions go : % —
GL(r,C)and g; : % — GL(r,C),i =1, ..., n, such that

goi =808 '+ i#n and gon=goz"g, .

Put Y = (goo J)~' G. It follows from (2.3) that Y (t) has Fourier series expansions
(2.5) and (2.6). Conversely, a choice of map Y : H — GL(r, C) satisfying (2.4)-(2.6)
determines an isomorphism E* = Ey.

If Ui’ = U;V; with diagonal V; € SU(r), the Fourier series expansions (2.5) and
(2.6) would have Fourier coefficients C;(k) = C; (k) Vi_l, i = 1,...,n. Thus, the set
Y (p) only depends on p, and is in bijective correspondence with the set of isomorphisms
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E? = Ey by definition. The set of isomorphisms E” = Ey is a principal homogeneous
space for Aut E, therefore Y7 and Y, are two functions satisfying (2.4)—(2.6) if and
only if ¥; - Y2_l = g o J, where g is the local form over C of an automorphism of E.
O

Remark 1. Every elementY € Y (p) may be considered as a matrix analog of the Klein’s
Hauptmodul. It follows from (2.4) that the map

Ey s [t,vl> Z(t,v) = (J(1), Y(1)v) € Enlx,

establishes the isomorphism between the local system Eg over I'\H and the restriction
Enlx,- Properties (2.5)—(2.6) ensure that _# extends to an isomorphism of parabolic
bundles Ef = (Ey), which plays the role of a bundle uniformization map. In particular,
the ordered frames defined by the matrices C1(0), ..., C,(0) determine the correspond-
ing flags on the fibers (En);,, ..., (En)z,-

2.3. Singular Hermitian metrics and unitary logarithmic connections. Denote by D
the divisor z1 + - - - + z,, in CP'. A logarithmic connection on a holomorphic bundle
E — CP' is a map of sheaves

V:O(E) — O (E ® Kcpi (D))

that is C-linear and satisfies the Leibniz rule with respect to the O¢pi-module structure
on O(E). With every logarithmic connection V there is an associated set of residues
{Res;;V € EndE,, : i = 1,...,n} (see [Del70,Sim90,BL11]). A choice of the
base point zg € CP! and local holomorphic frames near each z1, ..., z, determines a
monodromy representation for a logarithmic connection V. Its conjugacy class is an
invariant of V.

A logarithmic connection V on the underlying bundle E of a parabolic bundle E is
said to be adapted to the parabolic structure of E, if foreveryi =1,...,n,Res; Vis
semisimple witheigenvalues0 < ;1 < ... < o < landeigenlines L;y, ..., Lj»,such
that the corresponding flag subspaces are F;; = L;j @ --- @ L;, foreach j =1,...,r.

The space € (E) of logarithmic connections adapted to E is nonempty if E, is an
indecomposable parabolic vector bundle of parabolic degree zero (see [BL11, Proposi-
tion 4.1]), and is an affine space modeled on the vector space of (strongly) parabolic
Higgs fields on E, — a subspace

A ((C]P’l, (ParEnd Ey)” ® K(Cpl) c H° ((C]P’l, End E ® Kcpi (D)) :

consisting of End E-valued meromorphic (1, 0)-forms ® on CP' with at most simple
poles on D, whose residues Res;, & are nilpotent and preserve the flags on E;; for all
marked points.>

It follows from the Mehta—Seshadri theorem that every stable parabolic bundle E.
admits a logarithmic connection adapted to E, with monodromy given by an irreducible
admissible representation p. Under the isomorphism E, = EX, the standard Hermitian

3 1t can be verified that for any complete weighted flag F' on an r-dimensional vector space V, the set of
semisimple endomorphisms of V preserving F with fixed eigenvalues 0 < «] < --- < « < 11is an affine
space for the unipotent radical n(F) C p(F') of the parabolic Lie algebra of F, and the latter is the space of
nilpotent endomorphisms preserving F.
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inner product in C" and the trivial connection d on H x C” define a Hermitian metric
ho in the local system Eq = Eg = I'\(H x C") with corresponding flat Chern con-

nection Vo = d + Ao, so that Ag = h ! dhg in terms of a holomorphic frame on Xj.

These structures extend to a singular Hermitian metric* / ; and a logarithmic connection
Ve = d + Ag in the bundle E”. In terms of the local trivialization maps v; over the
neighborhoods %; of z; considered before, hg and Ag are given by

W.
hi = 161*% and Aizhflahiz?’dgi, where ¢ =goo .
i

Both g and Vg can also be described in terms of the splitting E. Namely, the
isomorphism _¢ in Remark 1 gives a trivialization of E” over %, which extends to C.
Put % (z) = Y (J~!(2)). It follows from the Fourier series expansion of J (1) (see, e.g.,
[ZT87a, Lemma 2]) and (2.4)—(2.5) that %/ (z) is a ‘multi-valued’ meromorphic function
on CP! with the following behavior near the points z;,

o0
Y(z) = (C,- )+ Cit(z - z,-)") e~ WiloeG=sdy =1 j oL, (27
k=1
and near z,, = 00,
m ~
() =7" (Cn(O) +> Cn (k)z_k> eWnlogzgy =1, (2.8)
k=1

The corresponding Hermitian metric hg in this trivialization is given by the matrix-
valued function

h(z,2) = (# @)% ()"}, (2.9)

where %* ='% is the Hermitian conjugate of %, and the logarithmic connection Vg
by the matrix-valued (1, 0)-form

ARz =Y () () VYdz = - ()% () dz. (2.10)

It follows from Eq. (2.7) that the matrix-valued function A = —%"’% ~! is holomorphic
on X with simple poles at the points z;, i # n:

i

A(z) = +0(1), where A; = C;(0O)W;C;(0)"",

1

Moreover, it follows from (2.8) that as z — oo,

-N v, N An 1 -1
tNA@N + = =-"+0( ), where A, = Ci(OW,Ca(0).
Z Z Z

‘A gauge-theoretic approach to the Mehta—Seshadri theorem is presented in [Biq91], where such singular
Hermitian metrics are called adapted to a parabolic structure.
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3. The Complex Analytic Theory of the Moduli Space

In what follows, .#” will denote a moduli space of rank r stable parabolic bundles of
parabolic degree 0 over CP!, depending on a choice of admissible parabolic weights
W = {Wi,..., W,}. Necessary and sufficient conditions (in the form of parabolic
weight inequalities) for a choice of admissible parabolic weights to determine a non-
empty moduli space are described in [Bel01,Bis02], and we will assume that they are
satisfied henceforth. According to the Mehta—Seshadri theorem, .4 is real-analytically
isomorphic to the U(r)-character variety

N = % =Hom(T, Ur))°/U(r),

of equivalence classes of admissible irreducible unitary representations, and for generic
parabolic weights is a complex manifold of dimension

dimc A = In(r? — 1) —r? + 1. (3.1)

For every choice of degree —nr < d < 0, the parabolic weight inequalities, granting
the existence of a non-empty moduli space .4, determine a polytope containing a finite
collection of semi-stability walls, whose complement is a finite set of open chambers.
For any choice of parabolic weights in an open chamber, every semistable parabolic
bundle of parabolic degree 0 is strictly stable, and the induced moduli space ./ is a
compact complex manifold. The biholomorphic type of .4 is an invariant of the open
chamber [BH95].

3.1. The complex structure. The special Hermitian metric 4 g, in the local system Eg
(Sect. 2.3) determines a Hermitian metric /ignq £, in the induced local system End E¢ =

Eg dp , where Ad p := Adop is the induced adjoint representation in End C”, which
together with the hyperbolic metric on X defines the Hodge -operator on the (p, g)-
forms on X¢ with values in End Eq. Denote by #7:9(X, End Eg) the corresponding
spaces of square integrable harmonic (p, ¢)-forms on X with values in End Eg.>

The deformation theory identifies the holomorphic tangent space T{g,}-/#" at a point

{E.} € ./ with the complex vector space H! ((CIP’I, Par End E*) modeling infinites-
imal deformations of the parabolic bundle structure of a representative E,, while the
holomorphic cotangent space T{’E*}JV is identified with the vector space

H° (CP', (ParEnd E,)" ® K¢p1) of parabolic Higgs fields on E,. The isomorphism
of these vector spaces with spaces of square integrable End Ep-valued harmonic forms
on X follows from Dolbeault’s theorem and the structure of the bundle Par End E .
of parabolic endomorphisms,6 and as in the usual stable bundle case [NS64], Tg,}- V"
is also identified with .77 O*I(Xo, End Eg) (see [MS80] and [TZ08] for details). Corre-
spondingly, T{’%* },/V is identified with .7#71:%(X, End Eg). The duality pairing

#%1 (X, End Eg) ® "% (X, End Eg) — C

5 We use the same normalization for the inner product on (p, g)-forms and for the Hodge *-operator as in
[ZT89,TZ08].

6 Ttis implicit in [MS80] that for any admissible representation p, Par End Ef = EAdp,
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is given by
v, 0) > /v AB, ve#" (X, End Ep), 6 € #0(Xo, End Ey), (3.2)

Xo

where A denotes the composition of the wedge product of matrix-valued forms and the
trace map tr : End Eg — C.

3.2. Automorphic forms of weight 2 with the representation Ad p. Let p be an admissible
representation of I'. By definition, a matrix-valued automorphic form of weight 2 for
the group I" with the representation Ad p is a holomorphic r x r matrix-valued function
f H — End C’, satisfying

Fyoy' (@) =Adp(y) f) =p) f(@p(y)”", yel.

An automorphic form is said to be regular if

lim f(0;7)0] (1) (3.3)
T—>00
exists foralli =1, ..., n. Equivalently, since 0 < oj; < -+ < ¢y < 1,
(0.¢]
foiv)a] (@) = Uig" (Z B; (k)q") g ", (3.4)

foreveryi = 1, ..., n,where the matrices U; € SU(r) satisfy p(S;) = U; 2TV=IW U
and the matrlces B (O) are lower triangular, i.e. B;(0) € b(r). Denote by 9, (I, Ad p)
the space of regular matrix-valued automorphic forms of weight 2 for I" with the repre-
sentation Ad p. The subspace

G (I, Ad p) C MH(I, Ad p)
of cusp forms is defined by the conditions

lim f(oit)o/(t) =0 forall i=1,...,n,
T—>00

or equivalently, by the matrices B; (0) being strictly lower triangular, B; (0) € n(r).
The space G, (I, Ad p) of cusp forms of weight 2 carries a natural inner product, the
Petersson inner product, given by the formula

(fi. f2) = 2[/ w(f1(0) ()T, fi, f2 € Ga(T, Adp),
D

where D is a fundamental domain of I" in H and d’t = ‘/led T A dt. The integral
is absolutely convergent when at least one of f1, fo € Ma(I", Ad p) is a cusp form.
There is a projection P : M (I", Ad p) — G2(T", Ad p), uniquely characterized by the

property
(P(f),8) =(f g forall feMy(I',Adp) and g € S2(T, Adp).
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As an immediate consequence of the Mehta—Seshadri theorem, when p is irreducible,
there is an isometric isomorphism

&2(T, Ad p) = Tjp N .

Indeed, it follows from Lemma 1 and the Fourier series expansions of J(t) (see, e.g.,
[ZT87a, Lemma 2]) that for every Y € Y (p), the map

ST, Adp) 5 f > F € #"°(Xo, End Ey),
where
FQ=YU ') @) Yoru @™,

is an isomorphism.” The map f + F is also an isomorphism between the vector spaces
of cusp forms and parabolic Higgs fields, realized in the affine trivialization of Ey over
C. Similarly, there is an isomorphism

2T, Adp) = Typ N,

where G, (T, Ad p) is the vector space of Hermitian conjugates f* of f € &,(T", Ad p).
The corresponding map

S, (T, Adp) 5 f* > F* € #"9(X,, End Eg) ~ H' ((C]P’l, Par End Ef)
is given by

F@)=YU ') ' @Y @ru e

As a consequence of the above, the dimension formula
. I 5 )
dlmGQ(F, Adp) = 5n(r _r)_r +1,

implying (3.1), can be obtained as a special case of the general formula in [Hej83,
Corollary 4.2 on p. 485] (cf. [Men17], where a proof is given in terms of the Riemann—
Roch theorem for vector-valued automorphic forms).

3.3. Automorphic forms for stable bundles. 1t is a classical result that for a Riemann
surface X¢ of type (0, n), the Schwarzian derivative of the uniformization map J :
H — Xp is a regular automorphic form of weight 4 for I', which does not depend on
a particular choice of J in the orbit of the automorphism group PSL(2, C) of X (see,
e.g., [ZT87a]). For a stable parabolic bundle EZ, the analog of the uniformization map is
given by the function Y (7) from Lemma 1, which realizes the isomorphism E? = Ey,
and the analog of the Schwarzian derivative is given by the logarithmic derivative

dY)(1t)=-Y(@) 'Y (7). (3.5)

7 The factor of 2 in the definition of the Petersson inner product reflects the normalization of the inner
product of (p, g)-forms in [ZT89,TZ08].
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It follows from Lemma 1 that for every ¥ € Y (p), the function <7 (Y) is an automorphic
form of weight 2 for the representation Ad p, satisfying the regularity condition (3.3)
fori =1,...,n— 1. Fori = n the function <7 (Y) has asymptotics

A (Y)(0nT) = 20/ =1U,(Wy + " C,(0)'NC,(0)g ") U +0(1)  (3.6)

as T — oo, which do not immediately guarantee its regularity at i = n and hence that
A (Y) € My(T, Ad p). The automorphism group Aut E acts on the set 4> (I", Ad p) =
{/(Y) : Y € Y(p)} by the formula

g- dY)=o —Y Ygol) N (gol)Y. (3.7)

It is a fundamental question whether for a given ¥ € Y (p) there is a unique g €
Aut E such that g - &7(Y) € 9 (T, Ad p), and whether such a choice would depend
continuously on moduli parameters. The existence and uniqueness of a regular orbit
representative is equivalent to the solvability of the Riemann—Hilbert problem for p
(see [Menl8, Section 6.2]). However, such a choice could not be done consistently on
the whole moduli space. The possibility of a maximal consistent choice determines a
Zariski open subset .45 € .4 in the open Harder—Narasimhan stratum of evenly-split
stable parabolic bundles in .4", on which there would be a unique g € Aut Ey, such
that g - &/ (Y) € My (T, Ad p). We will call 4 the regular locus.

Namely, suppose that N = Ny and consider first the simplest case p = 0, so that
r | d and No = ml,. In this case Aut Ey, = GL(r, C), so that by (3.7) the function
<7 (Y) is independent of the choice of ¥ € Y (p) and determines a unique automorphic
form o7 of weight 2, and it follows from (3.6) that .7 € M, (", Ad p).

The case 0 < p < r,i.e.r Jd, is more subtle. In order to define the Zariski open
subset Ay € A4 where 2 (I, Ad p) contains exactly one regular automorphic form
for each {EY} € .4, we are required to impose an additional condition on the flags
over Eo. Namely, let .7 (E~) be the complete flag manifold on E, and Gr,_ p(Eco)
be the Grassmannian of (r — p)-planes in E, together with the natural projection
Pl | F (Ex) = Gr,—,(Es). Restriction of the unique subbundle O(m + 1)? — E
to the fiber £, determines a special p-plane Vo, C E«. Denote by Gr?_ p(Exc) &

Gr,_,(E) the Zariski open subset consisting of (r — p)-planes V satisfying
Vi, N Vs = {0} (3.8)

Under a choice of Mehta—Seshadri uniformization map _#, the p-plane Vo, C E gets
identified with the span of {e,_ 41, ..., €.} C C", and the Zariski open condition (3.8)
is equivalent to the existence of a unique factorization C, (0) = MTlgDL, where Iy is
the permutation matrix of the product of transpositions (1, r)(2,r — 1)...(|r/2],r —
lr/2] + 1), and

(L, 0 (D, O (I, O
M_<A I,,)’ D_<O D)’ L= BI._,)’ (3.9)
which is a consequence of the Bruhat decomposition for the group GL(r, C) (see [Men18,
Lemma 2, Remarks 4 & 8]), so that the product D L belongs to the stabilizer of the span

Of{er7p+]’~--,er}'

Definition 1. The regular locus .45 € ./ is the set of isomorphism classes of evenly-
split stable parabolic bundles { E.} whose flags at oo project onto Gr9_ p(Eoo).
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In particular, when r | d, the second condition is vacuous and .4 is just the open
Harder—Narasimhan stratum of evenly-split parabolic bundles. The next couple of results
and their consequences justify our definition of the regular locus.

Lemma 2. Let p : ' — U(r) be a fixed admissible irreducible representation with
{Ef} € N9. Then 205 (T", Ad p) NN (T, Ad p) consists of a unique element <7 depend-
ing smoothly on moduli, whose constant terms at the cusps when r | d are

2 /=1W; i=1,---,n—1,
Bl(o)—{zn\/_—l(WHNo) P (3.10)
and whenr [ d,
o2 d/=1W; i=1,....,n—1,
B’(O)_{2n«/—1(Wn+Ad(H0L)_1 (No)) i=n. G.1D
where

— IP 0
L= <B Ir—p>’

for some (r — p) x p matrix B, and Tl is the permutation matrix of the product of
transpositions (1, r)2,r — 1)...(lr/2],r — [r/2] +1).

Proof. Recall that the flag at oo is equivalently determined by the ordered frame of the
matrix C,(0). The case r | d has already been described, and the formulas (3.10) are
an immediate consequence of the Fourier series expansions (2.5)—(2.6) in Lemma 1 for
any choice Y € Y (p). When r } d, it follows from (3.6) that o7 (Y) € M (T", Ad p) if
and only if the matrix Ad C,, (0)~1(Np) is lower triangular. Consider the factorization
Cy(0) = MTIgDL described before. Since [To DIT; Uis block-diagonal of block type
(r — p, p), it commutes with Ny. Consequently, Ad C,, 0)~ (M) is lower triangular if
and only if M = I, in which case it equals Ad (HOL)_l (Np). It follows from (3.7) that
the subgroup Py, C Aut Ey, acts trivially on 2 (I", Ad p), while the subgroup Ny,
acts by the transformations

— Ir_[’ 0
MHg(Z)M—(A_'_CIp)v g(Z)GNNO’

In particular, there is a unique g(z) € Ny, such that M = I..3 Formulas (3.11) then
follow from (2.5)-(2.6) and (3.6), and the corresponding regular automorphic form
<7 (Y) depends smoothly on moduli. O

Definition 2. Let ¢ denote the (1, 0)-form on .4 defined pointwise at any given {E 4 } €
M as v = P(of) € Go(I', Ad p), i.e.

9pr(v) = (o, v*) = 2[/ tr(/v)d*r, v e Gy(T, Adp). (3.12)
D

8 Tt follows that Gr97 » (Eoo) is a principal homogeneous space for the subgroup Ny, [Men18, Corollary 1],
and the block A provides coordinates for it. The smooth dependence of the Riemann—Hilbert correspondence
on moduli of irreducible admissible representations implies that the normalization A = 0 on .4{ would also
depend smoothly on moduli.
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Lemma 3. For any given {EY} € A, let o/ be normalized as in Lemma 2. Then there
is a unique representative Y € Y (p) satisfying </ (Y) = </, and such that when r | d,
the Fourier series expansions (2.6) take the form

o
Y(0,7) = <1r +> C,,(k)qk) g~ WwtNogy =1, (3.13)
k=1
and whenr f d,
[e¢)
Y (0,7) = (Ho +Y ¢y (k)q") g~ Moy (3.14)
k=1

where N, = Ad(TTp) ™! (Ny).

Proof. When r | d, there is a unique normalization C, (0) = I, and the result follows
since Ny is a multiple of the identity.

Assume now that r f d. Using g V0 = l'[oq_Né Hal, we rewrite the Fourier expan-
sion (2.6) as
(0.¢]
Y(ouT) =) Tog ™I, ' Catg* g™ U, " (3.15)
k=0
Since Ny = diag(m +1,...,m+1,m, ..., m), we have
—_—
p r=p
N (A B _ A qfl B _N!
q °<C D) = (qC p )1 " (3.16)
. (AB . . N
for any block (p, r — p) matrix cpl Using this formula, we can move ¢~ "0 to the

right of the matrices C, (k) in (3.15) and get a new expansion

o
Y(onT) =Y Chlhgh g~ MrNou
k=0

According to Lemma 2, an Ny, -orbit of C, (0) contains a unique representative [1gDL,

so that
D, B
Cl)=T1I P ,
2 (0) 0 ( 0 Dr—p>

where the p x (r — p) block B’ comes from the corresponding p x (r — p) block in the
matrix I 1€, (1). Since the remaining group of bundle automorphisms Py, C Aut E,
consists of block (» — p, p) matrices of the form

it follows that there is a unique g € Py, such that C,,(0) = ITp. O
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3.4. Complex coordinates and Kdhler form. Although we only consider the case of
CP!, the subsequent results are valid for any compact Riemann surface X with Fuchsian
model Xo = X \ {z1,...,2,} = ' \ H, and were developed in [ZT89,TZ08]. Namely,
let p : I' — U(r) be an admissible irreducible representation. We have the following
result.

Proposition 1. For each v € G,(I", Ad p) and ¢ € C sufficiently close to 0, there is a
unique solution f¢' : H — GL(r, C) of the differential equation

Tl fr=ev (3.17)

with the following properties.

Q) fE(y1) = p W) f@p(y)~Y Vy €T, where p?¥ : T — U(r) is an admissible
irreducible representation;
(ii) det £V (to) = 1 for some fixed 19 € H;
(iii) f*Y is regular at the cusps, that is

lim f®(t) <oo, i=1,...,n.
T—T;

f8V is real analytic in ¢, and is analogous to a corresponding quasiconformal map-
ping in Teichmiiller theory (see [ZT87a]). Under the special choice of bundle uni-
formization maps Y, following from Lemma 3, it defines a parabolic bundle map
F® = (Y, f€Y ') 0 J~! by requiring the commutativity of the diagram of parabolic
bundles
* r fEU * r
H* x C, —— H* x C, (3.18)
g
Ef FSU Efal)
It follows from Lemma 3 that det F¢"(J(tp)) = 1, since (det Y,/ det Y) o J is a holo-
morphic function on CP! whose value at oo is equal to 1.
Given a basis vy, ..., vg for (X, End Ef), let v = e1v; + -+ + g4vq, With
g € C, i =1,...,d, be sufficiently small. The induced mapping (e1, ..., &) —
{E?"} provides a coordinate chart on .4 in the neighborhood of the point { Ef}. These
coordinates transform holomorphically and endow .4~ with the structure of a complex

manifold (in direct analogy to Bers’ coordinates on Teichmiiller spaces). The differ-
ential of such coordinate transformations is the linear mapping 2! (X, End Eg ) —

201 (X ,End E} V) explicitly given by the formula
1 Po(Ad f' (), pe #%N (X, End EY). (3.19)

Here P, is the orthogonal projection onto 770! (X , End E(/)) U), while Ad f¥(u) =

V(") "isunderstood as a fiberwise linear mapping End Eg — End Eg ' (see [TZ08]
for details). The moduli space .4 carries a Hermitian metric given by the Petersson inner
product and the isomorphism 7 e, 4" =~ G (T, Ad p). This metric is analogous to the
Weil-Petersson metric on Teichmiiller space, and for the moduli spaces of stable bundles
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of fixed rank and degree was introduced in [Nar70, AB83]. This metric is Kihler [TZ08]
and we denote its Kidhler form by €:

Q( o 9 )_ﬁ
9 9eny )

Here

d
and —— are the holomorphic and antiholomorphic tangent vectors at
de(u) de(v)

{(E.} € & corresponding to , v € %1 (X, End E) respectively.

3.5. Variational formulas. Here we collect the necessary variational formulas. Except
for Lemma 5, these formulas are proved in [ZT89,TZ08]. For v € T{ E;f}'/V ~

G, (T, Ad p) put

afS\)
- de

. a eV
and f_ = f

e=0 de

fr

e=0

Lemma 4 (Vanishing of the first variation of the Hermitian metric). Forv € G, (I, Ad p)
we have

0 EVUNk £EV _ i EVUNK LEV _
3 ((F* %) iy (CFE* FeY) o 0 (3.20)
and also
(f);=v.  (f2); =0 321)
(f), =0, (f2),=—v" (3.22)

Let 6 — 4 be the holomorphic affine bundle modeled on T*.4", whose fiber over
a given {E,} € ./ corresponds to the affine space € (E,). There is a d-operator on
the space of smooth sections I' (4", %) and taking values in Q! (_#"), defining the
notion of holomorphicity of a global section. The theorem of Mehta—Seshadri provides
a special section sys, which we call the Mehta—Seshadri section, given by logarithmic
connections with irreducible unitary monodromy. The section sy is not holomorphic.
Its non-holomorphicity is measured by the Narasimhan—Atiyah—Bott Kéhler form. The
next proposition is an analog of [ZT89, Theorem 1] for parabolic bundles. As in [ZT89],
its proof can be deduced from the variational formulas (3.22).

Proposition 2. Forany moduli space N of stable parabolic bundles, the Mehta—Seshadri
section syis - A — € satisfies

dsms = —2.

For a given {E{} € ), v € G,(T, Adp), and ¢ sufficiently small, consider the
families of normalized maps Y, as in Lemma 3, and the parabolic bundle maps F*" :

EP — Efau.Put
_ Y , Ve

Y, = , Yo - ,
e |.— e |.—
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and
& =yly,, & =vy_. (3.23)

Denote by 7" = (%, %.%)~! the local family of Hermitian metrics on the bundles E P
where %, =Yg, 0 J ™~ 1.

Lemma 5. Over the regular locus Ny, we have

F® =1, +¢F +o(le)), (3.24)
where
. . JheY
F=—h"th,=-n"" , (3.25)
de e=0
is a smooth endomorphism of E y, satisfying
(Fol);: =Yvy L. (3.26)

Proof. Consider the equation
Yav'fev:(FSUOJ)'Yy

which follows from (3.18), and differentiate it with respect to ¢ and € at ¢ = 0. We
obtain

Y(&+ fi)Y '=Fiol, (3.27)
and
Y(Eo+f)Y ' =F ol (3.28)

It follows from (3.21) that the left hand side of (3.28) is holomorphic in 7. Moreover, the

function &_ + f_ =Y N(F_oJ)Y is Ad p- automorphic and is bounded at the cusps,

i.e., is a parabolic endomorphism of EX. Therefore, &~ + fo=cl=F_ and it folows

from the normalization of F¢" that indeed F_ = 0, which gives (3.24) with F = F,.
To prove (3.25), consider the equation

(Y—l)*(fw)*fva—l — ((FSU)*hSVFSV) o J,

differentiate it with respect to € at ¢ = 0 and use Lemma 4. Finally, (3.26) immediately
follows from (3.27) and (3.21). O

For each pair of harmonic forms u, v € %! (Xo, End Ef)) we define a smooth
L?-section Sfuv of End E(’)) by the formula

fuv = Ay k[, v]) (3.29)

where A is the restriction of the Laplace operator A to the orthogonal complement
of the identity endomorphism (the kernel of A) in the Hilbert space of L?-sections of
End Eé’ (see [TZ08] for details). The family

=Py (Ad fsv(“)) )
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for sguufﬁciently small ¢, determines the tangent vector field 9/de(w) to the complex curve
{EF"} c A Let

ad _
Lop = ? Ad (fsv) 1 (Mgv)
€le=0

be the corresponding Lie derivative. We have (see [TZ08])

Lyp = éf/u‘,. (3.30)

3.6. Tautological line bundles over .#. For each marked point z; € CP! and j =
I,...,r, let £;; be the holomorphic line bundle over A whose fiber over {E.} € A

is the complex line E;;/E;j.1. The isomorphism E, = E! identifies such fiber with

the complex line L;;, the eigenspace for the eigenvalue 2V~ laij of p(Si), and the
Hermitian metric on L;;, induced by the standard Euclidean metric on C”, determines a
natural Hermitian metric || -||;; on £;;. The line bundles ¢;; over 4" are called tautological
line bundles.

Let Q;; = c1(€;, || - [l;;)° be the first Chern form of the tautological line bundle ¢;;
with respect to the Hermitian metric || - [|;;. It was proved in [TZ08, Lemma 4]) that

9 9 V=1 ;
”(aw)’a%)z 3 (P 631

where F ;iw € End C" are the leading terms of the asymptotics of f,5(0;7) at the cusps,

Sfuv(oit) = F;iv +o0(1) as Imt — oo, (3.32)

and
vij = ujj ®ujj —I,/r e EndC’, j=1,...,r1 (3.33)
where o(S;)u;; = eznﬁ"‘ﬁulj, lluijIl = 1, and u;; stands for the componentwise

complex conjugate of u;;. The matrices v;; span the subspace of traceless matrices in
ker (Ad p (S;) — I,) C End C", and the matrices F' l’“-) are traceless and satisfy

r (Ffwv> —0 veker(Adp(S) —1,).

(See [TZ08] for details and the relation of the (1, 1)-forms €;; on .#" with the matrix-
valued Eisenstein—Maass series.)

2
9 In [TZ08], the normalization c1(j, Il - lij) = —$; is used instead.
’ b4
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4. The WZNW Action

4.1. Zero curvature equation and WZNW functional. Given an open set % < C, let
E = % x C" be a holomorphically trivial vector bundle of rank r. A Hermitian metric
on E is then a smooth map h : % — 'H,, where H, is the homogeneous space of
Hermitian and positive-definite » x r matrices. The zero-curvature equation for the
corresponding Chern connection d + h~'dh has the form

a(h~'an) = 0. (4.1)

Equation (4.1) is the Euler-Lagrange equation for the Wess—Zumino—Novikov—Witten
(WZNW) functional, introduced by Novikov [Nov82] and Witten [Wit84] in the case
when the target space is a compact simply-connected Lie group G. Namely, for smooth
maps g : CP! — G consider the functional

S[el = Solgl + Wigl,

where
Solel = g// r (g7"0g A g70g).
Cp!
and
Wigl = ;/ 0,
6+/—1 B,

where By is any smooth 3-chain in G with the boundary g(CP'). Here @ is the invariant
3-form on G,

O =tr(@ AO ADH),

where 6 = g~ !dg is the Maurer—Cartan form.!'? The difference between any two choices
B, — B}’; is a 3-cycle in G, and since

/ ® € 48727,
By—B,

it follows that S[g] is defined only modulo 87%+/—1 Z. Though the action functional
S[g] is not single-valued, its Euler—Lagrange equation is well-defined, and is given by
the corresponding analog of Eq. (4.1).

In physics, the action functional S[g] determines the so-called WZNW model, a two-
dimensional nonlinear sigma-model with target space G. So[g] plays the role of kinetic
energy and W{g] is the celebrated Wess—Zumino topological term (see [FMDS97] for
details). In turn, in the present situation, Eq.(4.1) is the Euler-Lagrange equation for
a non-compact WZNW model [Gaw92], where the target is instead the homogeneous
space H, = GL(r, C)/U(r) for the non-compact Lie group GL(r, C), and whose action
functional will now be described in detail.

10 The form O is closed and 48;2 [®] is a generator of H3(G, 7).
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4.2. Cholesky decomposition. The homogeneous space H, has natural global coordi-
nates given by the so-called Cholesky decomposition. Namely, every h € H, admits
a unique decomposition & = b*b, where b is upper triangular with positive diagonal
elements. The coordinates of H, are then given by the matrix elements of b. Equiva-
lently, the Cholesky decomposition can be written as & = c*ac, where a is diagonal and
positive, and ¢ is unipotent, in such a way that b = \/ac.

Explicitly, represent a matrix h € H, as h = M*M for some M € GL(r, C) and

denote by Mll,l'"ll,j the j x j matrix obtained from M by selecting /1, ..., [; rows and
Lol

I, ..., l} columns. Then

aj= 2 o, =2k (4.2)

Qj-1j-1 Qjj
where
I.dj L.odj
Qjr= Y det (Mlmjf]j) det (Mlmjflk), 4.3)
Iy <<l

which is essentially the Gram—Schmidt orthogonalization process.

Since H, is contractible, the restriction of the 3-form ® to H, (which we continue
to denote by ®) is exact. It turns out that its primitive can be written down explicitly in
terms of the Cholesky decomposition.

Lemma 6. On H, we have

© =3dtr(6; A6}, 4.4)
where 0y = dbb~!.
Proof. Since 0 = h~'dh = b~ ((b*)"'db* + dbb~")b we get

O =tr(0) ANOL AOL+301 NG AOT +307 AOT ABL+67 AOT AB)
=31tr(0; A 0L AOT +60] AO] AOY).

Here we have used that since b = /ac with diagonal a and unipotent c,
1
tr(0;1 A Oy A6y) = 3 tr(da ANda Nda) =0

and similarly, tr(0] A 6] A 6]) = 0. Using the Maurer—Cartan equations d6; = 6 A 0,
and dOf = —6] A 6], we obtain (4.4). O

4.3. The WZNW functional for singular metrics. Using a choice of Birkhoff-

Grothendieck splitting E = Ey of a stable parabolic bundle E, on CP!, one can think

of a singular Hermitian metric Ag adapted to a parabolic structure as a smooth map

h : Xo — H, satisfying (4.1) and having prescribed asymptotic behavior at z1, ..., z,.
Namely, it follows from (2.7) that

he(z,2) = Gi()*z — 2?1 Gi(2), (4.5)
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in a neighborhood of z;,i = 1,...,n — 1, where G;(z) are holomorphic and such that
Gi(z)) = C;(0)~L. When {E,} € 4, the corresponding A g in given by (2.9), where
the map Y is normalized as in Lemma 3. Then it follows from formulas (3.13)—(3.14)
that in a neighborhood of oo,

hE(z.2) = Ga(2) 12171 G (2). (4.6)
where G, (z) is holomorphic at oo, G, (00) = I, and

W = W, + No if r|d
n | Ad(TTp)(Wy) + No if r fd

Consider the class of functions %, , defined on a neighborhood of each z; by the following
uniformly convergent series

Fio@gin@ + Y fa@gi@lz -z,

=1

where the functions fj; are holomorphic, g;; are antiholomorphic, and A;; > 0 for
i=1,...,n—1and X, < 0. Then the functions Q x(z,z), 1 < j < k < r, induced
from (4.3), have the following form in a neighborhood of each z1, ..., z;:

- 2 L -
Qijk(z.2) = |z — zi|™ piji(z, 2).
where jj = Y /_jaifori =1,....n—1,k,; = —>1_ o}, and pijx € L. It

follows from (4.2) that the functions a; and c;; have the following asymptotics in a
neighborhood of z1, ..., z,:

Iz—zilz‘)"’f%’(z)_) i=1,...,n—1,
(3 — Pij—1j-1(z, 2
a;j(z,2) = |Z|_2a'/lj Puii @) . 4.7
Pnj—-1j-1(2,2) '
and
cjk(z,2) = M (4.8)
pijj(z,2)

For any given {E,} € 4, let us denote by € (Ex; Xo, H,) the space of smooth
maps h : Xo — H, with asymptotics (4.5)—(4.6) for some local smooth functions
G1, ..., Gy, such that

[M;]1=1[Ci(0)] € GL(r,C)/B(r), i=1,...,n—1,

where M; = G;(z;)~!, and G, (00) = I,. We will now define the WZNW functional
S : €(E4; X0, Hr) — R, whose unique critical point will be the singular Hermitian
metric hg on E,. Namely, for § > 0 let

n—1
Xs =C\ (U{Iz—zl'l <5}U{|Z| > é})

i=1
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with boundary 0 X5 = U?:l Cis. Each component C;s carries a naturally induced ori-
entation. Define

Sos[h] = —Vz_l // tr (h*‘ah Ah*léh)
Xs

/—1 "] d dz
+TZ/tr (Wilz—z,-l_zW"Ml-*hM,)( < = )

Z—Z —Z

iZICié
«/ '\ (dz dz
AR )(—Z—TZ>
Z Z
and
W;slh] = // tr (¥ @) AR*6])),
and put
r n—1
Sslh ]_Sog[h]+W5[h]+2nlogSZZau+27110g52a
j=1i=1 j=1

We have the following result.

Proposition 3. For any {EL} € ) and any h € € (Ey; Xo, H,), the limit

S{h] = lim Ss[h] (4.9)

is well-defined. The Euler—Lagrange equation for the functional
S:%(Ey; Xo, Hy) > R
is the zero-curvature equation (4.1).

Proof. We will only prove that the limit exists. The derivation of the Euler-Lagrange
equation is standard and accounts for the introduction of the boundary terms in Sos[%].
The details are left to the reader.

From formulas (4.5)-(4.6) we get the following asymptotic formulas in the neighbor-
hood of each z;:

I
—|2<tr(Wl~2)+0(|z—z,~|’("))i=1,...,n—1

tw(h ok hy = {13
1 M}/z Kn ;o
where

o 2(ai1—01ir+1)>0 i=1,...,n—1
Ki= 2max{oe;lj—oz;lk—2}<0i=n
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which determine the regularization of the kinetic term in the WZNW action. It is straight-
forward to verify that the limits as § — 0 of the boundary terms of Sops[%] exist. On the
other hand, the topological term needs no regularization, i.e. the integral

V=1
5 f/ tr (bgb_l(bgb_l)* — bzb_l(bzb_l)*> dz AdZ
CP!

is already absolutely convergent. Indeed, using the Cholesky decomposition &7 = c*ac
we obtain the following Cartan decompositions

bh'hb™ ' =u+d+1 and bh'h:b™' = 1" +d* +u¥,
where
d=a,a", u = a1/2czc_1a_1/2, | = (al/ZCZC_la_l/z)*
are the corresponding diagonal, upper triangular and lower triangular components. hence
tw(h ™ heh ™ he) = N+ u+ 1P = (d )P + )+ 102, where [[g]|* = tr(gg™).

From (4.7) we obtain the following asymptotics

+ 0(1) as z—yz, i=1,...,n—1,
d(z,2) = Z;V?"

Therefore the integrals

/—1 /_1
T// |d|?dz AndZ  and T// tr(h ' h,h ™ h:)dz A d7
Xs X5

diverge identically, so that

v=1 V=1
Y- f/(||u||2 +|111*)dz A dZ = lim ~— //(||u||2 +|111%)dz A dZ < oo.
2 50 2
Xs

CP!

Since tr (bzb~ (bzb™")* — b,b~ ' (b,b~")*) = ||I]|> — ||u||*, we conclude that the topo-
logical term in the WZNW action is absolutely convergent. O

Remark 2. The density of the WZNW functional described before corresponds to an
explicit realization of the second Bott—Chern form on a trivial Hermitian vector bundle
[PT14,Tak16]. It was already noted in [Don92] that, in the case of a trivial vector bundle,
the WZNW functional provides a concrete realization of Donaldson’s functional [Don85,
Don87]. As a consequence of the Birkhoff—-Grothendieck theorem, such a realization
becomes meaningful in the study of moduli spaces of parabolic bundles in genus 0.

5. Main Results

Let.¥ : A — R be the function defined on each {Ef} € .4 as the critical value of
the functional S : € (E; X9, H,) — R in Proposition 3.
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5.1. The first variation of the WZNW action. The following result is an analog of The-
orem 1 in [ZT87a] for vector bundles.

Theorem 1. The function . : Ny — R is smooth and satisfies
0. = —0, 5.D
where ¥ is the (1,0)-form on A defined in (3.12). In other words, for every v €

S, (T, Ad p),
9.7 (h®¥
# = —2// tr (/) d’t.
de e=0
[\H
Proof. 1t is sufficient to verify that
985 (h®”
lim 35(07") = —9(),
-0 0 |,

uniformly in a neighborhood of every {E.} € .4, which we show by a straightforward,
though tedious, computation. Namely, using Lemma 5 and Stokes theorem, we have

3Sps (h® v —1 < (=
950s(h™") vy // tr (F (23 (h—lah) +h~Ydn /\h‘ldh»
de 2
e 2h 9h — b~ 1dh)>
0Xs
_ dz dz
__Z/tr W|Z_Zz| 2W’¢l+)( I -)
Z2—2zi Z—3Zi
i= ICuS
\/ d d
r W|z|2Wh )(—Z——Z>,
z z
where
. 3 (C; (0)8V)* heV C; (0)®Y
4. = HGOM RGO
de e=0
Next, put
. bty . ob®Y
b, = and b_ = — .
88 e=0 88 e=0

Using the identity F = —b~! <B+b_1 + (B_b_l)*) b, we obtain

- g/f r (Fh”dh Ah*ldh)
Xs

(e

X5

dWs(h®V)
de

e=0
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Using that d(h~'9h) = 0, the identity h~'dh = b~ (0 +6)b, the relation b = \/ac,
and putting everything together, we obtain

eV
35 (7) vy /tr FQh9h —h™ ‘dh))
de e=0
0Xs
V-1 ;o -1\* ST P
+T/tr<(b_b ) 01 — bib 91)
X5
d dz
__Z/tr Wile — 21~ 2Yig )( — - Z-)
—Z Z—2Z
i= 1C5
«/ dz dz
tr W 1212V, +) (7 - 7)
CmS '
- «/—lftr(Fh_18h>
0Xs
e
——Z tr le—z,l ’¢l+> dz — = Z_
Z2—Zi Z—3Zi
i= 1C5
«/ /. d d
AR (72—{)
V_ — . — . — * — —
+T/tr(a la+a lda>+\/—1/tr(<c,c 1) adcec 'a 1)
X5 X5
= L+DL+1;,
where
) dat dcev
o — cC_ = .
’ de e=0 o€ e=0

Here we denoted by /7 the sum of integrals inside the curly brackets, and by 15 and I3 the
two integrals in the last line. We will consider each of these integrals separately. Stokes
theorem, a change of variables and (3.26) give

A /tr Fh 1ah == //tr 8F/\h 1ah —2//tr(;z/v)d2
0Xs
where Dy = J _I(Xg) N D. Moreover, since

4 _{o(l), i=1,....,n—1,

* 7 lo(zI™Y),i=n,
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it follows from the cusp form condition that
I =—9W)+o0(l) a §— 0.

In order to estimate the integral />, we observe that

.
tr (d+a—1daa—1> - Z (logaj),dlogaj,
j=1

and it follows from (4.7) that each (logJ aj) . is regular on CP'. Hence the residue

contributions from each summand of tr (éz+a_ldaa_1) cancel out individually. Hence
I =o0(l)as§ — 0.
Next, we estimate the integral 3. It follows from (4.7)—(4.8) that near zy, ..., 2,—1,

tr ((C'_Cfl)*adccflafl) = Z (¢ijkdz + wijde) |z — z;|2Cii—ai)
j<k
where ¢, Yijkx € 2, while near oo,
= ((C'—Cfl)*“dCqu]) = Y (Snjkdz + Yjudz) |2 >0,
Jj<k

where ¢k, Ynjk € 2%, Itis readily verified thatif ¢ € £, i =1, ..., n, then
f pdz = |z — zi)* f(lz — zi). f ¢dz = |z — zi1*g(lz — zi).
AU OU,;

with regular functions f, g. Consequently, since for j < k, a;; — ajx > —1, and
oe;?j —a, > —las {Ef} € A, we conclude that I3 = o(1) as § — 0. Therefore,

EAY)

=—-9%Ww)+o(l) as § = 0.
ae

e=0

Finally, notice that the function Y, is continuously differentiable in ¢ and its Fourier
coefficients have the same property (in particular this also holds for the constant terms).
Since every single factor in the integrals I1, I, and I3 explicitly depends on the derivatives
of Y, and F*¥ at ¢ = 0, we conclude that each of the corresponding remainders can be
estimated uniformly in a neighborhood of {E.} in 4. O

5.2. The second variation of the WZNW action. The next result is an analog of Theorem
1 in [ZT89] for parabolic bundles.

Theorem 2. The (1, 0)-form ¥ on A satisfies

3 =27/~1(Q— Qg5 (5.2)

where

n r
Qr = ZZﬂijQij

i=1 j=1I
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and
ﬁij=27'[20[ij, i=1,...,n—1, (53)
2% (otnj +m; if rld
- 5.4
ﬁn] {27'[2 (anj +mr7j+l) lf r/*/d ( )

Proof. As in the proof of Theorem 1 in [ZT89], consider the family
= P, (Ad £ (W) ,

which for sufficiently small ¢ determines the tangent vector field d/de (1) to the complex
curve {E o } C . Let o7, be the corresponding family of weight 2 regular forms
associated with the 1-form ¢, where o) = <. We have

0 (38(,u)> = hm 2//tr oA Thae

= lim 2 / [ e (e ey ) e
D,

and
d ad 5
— s = hm 2 tr(Ly/ u+ o/ L) dt (5.5)
0¢ |,—g de(w)
where
0
Lyof = — Ad (fgv) (Aev)
de e=0

It follows from (3.18) that

(fsv)*] Ay fEV + y-! (Fsv)*l (Fl:su o ]) Y = (fev)*l oy of
which, in virtue of variational formulas (3.22) and Lemma 5, implies that
Lyof = —v*, (5.6)
Using formulas (3.30) and (5.6), we obtain

9 19( 9 ):hm —2//tr(ﬂv*)d2r+2//tr<%8f—lfv)d2
e—0 de(iL) §—0 07
Ds Ds

ae

—{(u,v) — lim v/—1 / tr (o fus) dt
§—0
dD;
It follows from the asymptotic formula (3.4) and formula (3.32) that

/ (o fur)dr =Y (Ad(U,-)(B,» (O))Fl"“-)) +o(1).

3Ds i=1
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From the explicit form (3.10)—(3.11) of the matrices B;(0) in Lemma 2 and formula
(3.33) we get

tr(W; :
Ad(U;) (Bi(0)) = 27+/—1 a l)1r+zaijvi, ,i=1,...,n—1,
j=1

p
and
tr(W, + N, -
2/=1 u1r+2(anj+mj)vij i r|d,
r
=1
Ad(Uy) (Bx(0)) = . ’
2w/ —1 M0+Z(oz,,j+mr_j+1)v,,j if r)d,
j=1
where

(W, + NY)

r

0 I, — Ad(Uy)(L — 1).

Hence, considering the trace properties of F ju-) described in Sect. 3.6, we obtain
) J—1 < ;
tr (AdUD(BIO)Fg ) = =Y By tr (Flsvis)
j=l1

where g;; are given by (5.3)—(5.4). Finally, using (3.31) we conclude that

7. (550
%4
e=0 \9&(u)

35 <L L) _ 9
de(w) de(vy/) 98
0 0 0 0
= 2 _1 Q P S — - Q - s T — .
( (ae(u) 88(v)> B (ae(m 88(1))))

5.3. Applications. Combining Theorems 1 and 2, we obtain

Corollary 1. The real-valued function —. : Ny — R is a Kdihler potential for
(2 — Q) g5, the restriction of the difference between the natural Kdhler form 2 and
Qr on N to the regular locus N, i.e.,

30.7 =2/=1 (2 — Q1) 5 - (5.7
In particular, on N we have the following identity of de Rham cohomology classes
(2] = [S21].

Furthermore, the result holds globally on any open chamber of parabolic weights for

which N = N .
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Remark 3. The computation of the first Chern form for moduli spaces of stable parabolic
bundles determined in [TZ08, Corollary 1] gives

n r
,
et (hll-lle) = =52 =D D senlet; — i) (1 = 2letij — ik

i=1 jk=1

J#Fk
(the formula applies in full generality, since the determinant of a vector bundle on CP' is
always fixed in the moduli problem). In the simplest case r = 2, we have the additional
relation ;o0 = —;1. In genus 0, the previous identity can be compared with (5.7),

yielding the following relation for the first Chern form of det 7*.4” on any open weight
chamber for which A4y = A":

n
-2 Z c1 (i) if d is even,
ci (detT*.A) = i=l (5.8)

n—1
~2) e (42) +2¢1 () if d is odd.

i=1

Remark 4. Corollary 1 reduces the computation of symplectic volumes for the
Narasimhan—Atiyah—Bott Kéhler form to the intersection theory of tautological forms
whenever Ay = A (cf. [TZ08]). These volumes were first computed by Witten [Wit91]
for the group SU(2) in terms of the Verlinde formula (note that the piecewise-polynomial
volume dependence on the parabolic weights is concealed in the explicit form of Wit-
ten’s computation). It follows that a sensible construction of explicit geometric models
for moduli spaces of parabolic bundles on the sphere, as well as the algebraic geometry
of their tautological classes, would serve to reduce the problem of computation of sym-
plectic volumes to a combinatorial one, while making the behavior of the latter under
wall-crossing explicit. The implementation of this idea is under investigation by the first
author, and will appear separately.
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