MAT 127 PRACTICE FINAL

(1) Consider the initial value problem

$$y'' - y' + 3y = 0$$

 $y(0) = 1, y'(0) = -1$

.

Assuming the solution to this initial value problem has is the power series

$$y = \sum_{n=0}^{\infty} c_n x^n \quad ,$$

find all the coefficients c_n for $n \leq 6$.

(2) Use the seperation of variables technique to solve the initial value problem

$$y' = yln(x)$$
$$y(1) = 2 \quad .$$

(3)

(a) Use Euler's Method with step size 1 to estimate the value y(3), where y denotes the solution to the initial value problem

$$y' = y + x^2$$
$$y(0) = 1 \quad .$$

(b) Sketch the direction field for the differential equation given in part (a).

(4) Determine whether or not each of the following sequences $\{a_n\}$ converges. If the sequence converges, then compute the limit.

(a)
$$a_n = 2 + (-2/\pi)^n$$

(b) $a_n = (n^3 - n + 2)/(n^2 - 3n^3)$
(c) $a_n = 3^n/n^4$
(d) $a_n = n^2/n!$

(5) Use any method to determine whether or not each of the following series $\sum_{n=1}^{\infty} a_n$ converges.

(a)
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (1+n^{-2})/n$$

(b) $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (n^2+n+2)/(n-8n^2)$

(c)
$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^{n+1} (2 + \cos(n))/n^2$$

(d) $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (-1)^n (2 + e^{-n})/n$
(e) $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} n^3/2^n$

(6) The differential equation

$$P' = 0.2P(1 - P/1000)$$

describes the change in population of wild Dachshunds over time.

- (a) Find the equilibrium solutions for this differential equation.
- (b) Sketch the direction field for this differential equation; be sure to indicate the equilibrium solutions in your sketch.
- (7) Consider the function $f(x) = 3x^{-2} + 2x 1$.
 - (a) Compute the Taylor series for this function at the number 1.
 - (b) Find the radius of convergence for the Taylor series in part (a).
 - (c) Find the interval of convergence for the Taylor series in part (a).

(8) A bacteria culture grows with constant relative growth rate. At the outset there are 500 bacteria.

- (a) If y(t) denotes the number of bacteria present after t-hours, write down an initial value problem which y satisifies.
- (b) If after 3 hours there are 2400 bacteria, then how many bacteria are there after 2 hours?