MAT 552: PROBLEM SET 5 DUE TUESDAY 11/16

INSTRUCTOR: ALEXANDER KIRILLOV

- 1. Let $\sigma = \exp(\frac{\pi}{2}(e-f)) \in \mathrm{SL}(2,\mathbb{C}).$
 - (a) Write explicitly σ as a 2 × 2 matrix.
 - (b) Write adjoint action of σ, σ^2 in the basis e, f, h.
 - (c) Write action of σ, σ^2 in each of irreducible representations V_k discussed in class, using the basis v, v^1, v^2, \ldots [Hint: use part (a) and isomorphism $V_k \simeq S^k \mathbb{C}^2$.]
- **2.** Let V_k be the (k + 1)-dimensional irreducible representation of $\mathfrak{sl}(2, \mathbb{C})$ discussed in class.
 - (a) Show that if V is a finite-dimensional representation of $\mathfrak{sl}(2,\mathbb{C})$, then $V \simeq \bigoplus n_k V_k$, and $n_k = \dim V[k] \dim V[k+2]$, where V[k] is the subspace of vectors of weight k: $V[k] = \{v \in V \mid hv = kv\}$.
 - (b) Show that $\sum n_k = \dim V[0]$, and that $\dim V[k] = \dim V[-k]$.
 - (c) Show that $\overline{f^k}: V[k] \to V[-k]$ is an isomorphism of vector spaces.
- **3.** Show that any representation V of SO(3, \mathbb{R}) can be written as the direct sum $V \simeq \bigoplus n_{2k}V_{2k}$, where V_{2k} is an irreducible (2k + 1)-dimensional representation, and $n_{2k} = \dim V[2k] V[2k + 2]$, where $V[\lambda] = \{v \in V \mid J_z v = \frac{i\lambda}{2}v\}.$

The rest of this problem set is about the Laplace operator on the sphere, $\Delta_{sph} = J_x^2 + J_y^2 + J_z^2$, which was discussed in Problem Set 2. Recall that this operator acts in the space $C^{\infty}(S^2)$ and commutes with rotations. The goal of this problem set is to diagonalize it. To avoid technicalities related to convergence, we use the space P_n of complex functions on S^2 which can be written as polynomials in x, y, z of total degree $\leq n$.

4. Show that the functions

$$f_{p,k} = z^p \left(\sqrt{1-z^2}\right)^{|k|} e^{ik\varphi}, \qquad p \in \mathbb{Z}_+, k \in \mathbb{Z}, p+|k| \le n$$

where φ is defined by $x = r \cos \varphi, y = r \sin \varphi$, is a basis of P_n .

- **5.** Show that P_n is a representation of $\mathfrak{so}(3, \mathbb{R})$.
- 6. Show that each of the functions $f_{p,k}$ is an eigenfunction for J_z , and calculate the eigenvalue.
- **7.** Show that as a representation of $\mathfrak{so}(3,\mathbb{R})$,

$$P_n \simeq V_0 \oplus V_2 \oplus \cdots \oplus V_{2n}$$

where V_{2k} is (2k+1)-dimensional irreducible representation.

8. Calculate the eigenvalues and multiplicities of Δ_{sph} in P_n .