MAT 552: PROBLEM SET 5 DUE TUESDAY 11/16

INSTRUCTOR: ALEXANDER KIRILLOV

1. Let $\sigma=\exp \left(\frac{\pi}{2}(e-f)\right) \in \operatorname{SL}(2, \mathbb{C})$.
(a) Write explicitly σ as a 2×2 matrix.
(b) Write adjoint action of σ, σ^{2} in the basis e, f, h.
(c) Write action of σ, σ^{2} in each of irreducible representations V_{k} discussed in class, using the basis v, v^{1}, v^{2}, \ldots [Hint: use part (a) and isomorphism $V_{k} \simeq S^{k} \mathbb{C}^{2}$.]
2. Let V_{k} be the $(k+1)$-dimensional irreducible representation of $\mathfrak{s l}(2, \mathbb{C})$ discussed in class.
(a) Show that if V is a finite-dimensional representation of $\mathfrak{s l}(2, \mathbb{C})$, then $V \simeq \bigoplus n_{k} V_{k}$, and $n_{k}=$ $\operatorname{dim} V[k]-\operatorname{dim} V[k+2]$, where $V[k]$ is the subspace of vectors of weight $k: V[k]=\{v \in V \mid h v=$ $k v\}$.
(b) Show that $\sum n_{k}=\operatorname{dim} V[0]$, and that $\operatorname{dim} V[k]=\operatorname{dim} V[-k]$.
(c) Show that $f^{k}: V[k] \rightarrow V[-k]$ is an isomorphism of vector spaces.
3. Show that any representation V of $\mathrm{SO}(3, \mathbb{R})$ can be written as the direct sum $V \simeq \bigoplus n_{2 k} V_{2 k}$, where $V_{2 k}$ is an irreducible $(2 k+1)$-dimensional representation, and $n_{2 k}=\operatorname{dim} V[2 k]-V[2 k+2]$, where $V[\lambda]=\left\{v \in V \left\lvert\, J_{z} v=\frac{i \lambda}{2} v\right.\right\}$.
The rest of this problem set is about the Laplace operator on the sphere, $\Delta_{s p h}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$, which was discussed in Problem Set 2. Recall that this operator acts in the space $C^{\infty}\left(S^{2}\right)$ and commutes with rotations. The goal of this problem set is to diagonalize it. To avoid technicalities related to convergence, we use the space P_{n} of complex functions on S^{2} which can be written as polynomials in x, y, z of total degree $\leq n$.
4. Show that the functions

$$
f_{p, k}=z^{p}\left(\sqrt{1-z^{2}}\right)^{|k|} e^{i k \varphi}, \quad p \in \mathbb{Z}_{+}, k \in \mathbb{Z}, p+|k| \leq n
$$

where φ is defined by $x=r \cos \varphi, y=r \sin \varphi$, is a basis of P_{n}.
5. Show that P_{n} is a representation of $\mathfrak{s o}(3, \mathbb{R})$.
6. Show that each of the functions $f_{p, k}$ is an eigenfunction for J_{z}, and calculate the eigenvalue.
7. Show that as a representation of $\mathfrak{s o}(3, \mathbb{R})$,

$$
P_{n} \simeq V_{0} \oplus V_{2} \oplus \cdots \oplus V_{2 n}
$$

where $V_{2 k}$ is $(2 k+1)$-dimensional irreducible representation.
8. Calculate the eigenvalues and multiplicities of $\Delta_{s p h}$ in P_{n}.

