MAT 552: PROBLEM SET 4 DUE TUESDAY 10/26

INSTRUCTOR: ALEXANDER KIRILLOV

Unless otherwise specified, the word "representation" means a finite-dimensional complex representation.

1. Let $C=e f+f e+\frac{1}{2} h^{2} \in U \mathfrak{s l}(2, \mathbb{C})$.
(a) Show that C is central.
(b) Find the eigenvalues of C in each of the representations $S^{k} V$ defined in the previous homework.
(c) Recall that we have an isomorphism $\mathfrak{s o}(3, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C})$ which gives isomorphism of the corresponding enveloping algrebras. Show that this isomorphism identifies element C above with a multiple of $J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$.
2. Let \mathfrak{g} be a complex Lie algebra with a non-degenerate invariant symmetric bilinear form B, and let x_{i} be an orthonormal basis in \mathfrak{g} with respect to this form. Show that the Casimir element $C=\sum x_{i}^{2} \in U \mathfrak{g}$ is central. (Hint: in the basis x_{i}, every ad y is given by a skew-symmetric matrix).
3. (a) Show that $(x, y)=\operatorname{tr}(x y)$ is a negative definite symmetric bilinear form on $\mathfrak{s u}(n)$ which is invariant under adjoint action of $\mathrm{SU}(n)$.
(b) Let \mathfrak{g} be a real Lie algebra which admits a symmetric positive-definite invariant bilinear form. Deduce from this that the Killing form $(x, y)=\operatorname{tr}_{\mathfrak{g}}(\operatorname{ad} x \operatorname{ad} y)$ is negative semidefinite; if \mathfrak{g} has no center, then it is negative definite.
4. Let G be a connected compact Lie group with discrete center. Show that then there exists an Ad G invariant symmetric bilinear positive definite form on \mathfrak{g}, and deduce from it that the Killing form on \mathfrak{g} is negative definite.
5. Let $\mathfrak{g} \subset \mathfrak{g l}(n, \mathbb{C})$ be the subspace consisting of block-triangular matrices:

$$
\mathfrak{g}=\left\{\left(\begin{array}{cc}
A & B \\
0 & D
\end{array}\right)\right\}
$$

where A is a $k \times k$ matrix, B is a $k \times(n-k)$ matrix, and D is a $(n-k) \times(n-k)$ matrix.
(a) Show that \mathfrak{g} is a Lie subalgebra (this is a special case of so-called parabolic subalgebras).
(b) Show that radical \mathfrak{r} of \mathfrak{g} consists of matrices of the form $\left(\begin{array}{cc}\lambda \cdot I & B \\ 0 & \mu \cdot I\end{array}\right)$, and describe $\mathfrak{g} / \mathfrak{r}$.

