MAT 552: PROBLEM SET 3 DUE TUESDAY 10/12

INSTRUCTOR: ALEXANDER KIRILLOV

Unless otherwise specified, the word "representation" means a finite-dimensional complex representation.

1. Let $V=\mathbb{C}^{2}$ be the standard 2-dimensional representation of the Lie algebra $\mathfrak{s l}(2, \mathbb{C})$, and let $S^{k} V$ be the symmetric power of V.
(a) Write explicitly the action of $e, f, h \in \mathfrak{s l}(2, \mathbb{C})$ (see notation of the previous homework) in the basis $e_{1}^{i} e_{2}^{k-i}$.
(b) Show that $S^{2} V$ is isomorphic to the adjoint representation of $\mathfrak{s l}(2, \mathbb{C})$.
(c) By results of the previous homework, each represenation of $\mathfrak{s l}(2, \mathbb{C})$ can be considered as a representation of $\mathfrak{s o}(3, \mathbb{R})$. Which of representations $S^{k} V$ can be lifted to a representation of $\mathrm{SO}(3, \mathbb{R})$?
2. Let V be an irreducible representation of a Lie algebra \mathfrak{g}. Show that the space of \mathfrak{g}-invariant bilinear forms on V is either zero or 1-dimensional.
3. Let \mathfrak{g} be a Lie algebra, and (,) - a symmetric ad-invariant bilinear form on \mathfrak{g}. Show that the element $\omega \in\left(\mathfrak{g}^{*}\right)^{\otimes 3}$ given by

$$
\omega(x, y, z)=([x, y], z)
$$

is skew-symmetric and ad-invariant.
4. Prove that if $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is an operator of finite order: $A^{k}=I$ for some k, then A is diagonalizable. [Hint: use theorem about complete reducibility of representations of a finite group]
5. Let C be the standard cube in $\mathbb{R}^{3}: C=\left\{\left|x_{i}\right| \leq 1\right\}$, and let S be the set of faces of C (thus, S consists of 6 elements). Consider the 6 -dimensional complex vector V space of functions on S, and define $A: V \rightarrow V$ by

$$
(A f)(\sigma)=\frac{1}{4} \sum_{\sigma^{\prime}} f\left(\sigma^{\prime}\right)
$$

where the sum is taken over all faces σ^{\prime} which are neighbors of σ (i.e., have a common edge with σ). The goal of this problem is to diagonalize A.
(a) Let $G=\{g \in \mathrm{O}(3, \mathbb{R}) \mid g(C)=C\}$ be the group of symmetries of C. Show that A commutes with the natural action of G on V.
(b) Let $z=-I \in G$. Show that as a representation of G, V can be decomposed in the direct sum

$$
V=V_{+} \oplus V_{-}, \quad V_{ \pm}=\{f \in V \mid z f= \pm f\}
$$

(c) Show that as a representation of G, V_{+}can be decomposed in the direct sum

$$
V_{+}=V_{+}^{0} \oplus V_{+}^{1}, \quad V_{+}^{0}=\left\{f \in V_{+} \mid \sum_{\sigma} f(\sigma)=0\right\}, \quad V_{+}^{1}=\mathbb{C} \cdot 1
$$

where 1 denotes the constant function on S whose value at every $\sigma \in S$ is 1 .
(d) Find the eigenvalues of A on $V_{-}, V_{+}^{0}, V_{+}^{1}$.
[Note: in fact, each of $V_{-}, V_{+}^{0}, V_{+}^{1}$ is an irreducible representation of G, but you do not need this fact.]
6. Let $G=\mathrm{SU}(2)$. Recall that we have a diffeomorphism $G \simeq S^{3} \subset \mathbb{R}^{4}$.
(a) Show that the left action of G on $G=S^{3}$ can be extended to an action of G by orthogonal transformations on \mathbb{R}^{4}.
(b) Let $\omega \in \Omega^{3}(G)$ be a left-invariant 3 -form whose value at $1 \in G$ is defined by

$$
\omega\left(x_{1}, x_{2}, x_{3}\right)=\operatorname{tr}\left(\left[x_{1}, x_{2}\right] x_{3}\right), \quad x_{i} \in \mathfrak{g}=T_{1} G
$$

Show that $\omega= \pm 4 d V$ where $d V$ is the volume form on S^{3} induced by the standard metric in \mathbb{R}^{4} (hint: let x_{1}, x_{2}, x_{3} be some orthonormal basis in $\mathfrak{s u}(2)$ with respect to $\operatorname{tr}\left(a \bar{b}^{t}\right)$).
(c) Show that $\frac{1}{8 \pi^{2}} \omega$ is a bi-invariant form on G such that $\left|\frac{1}{8 \pi^{2}} \int_{G} \omega\right|=1$ (it only makes sense to talk about absolute value of the integral as there is no preferred orientation on G).

