MAT 552: PROBLEM SET 2 DUE TUESDAY 9/28

INSTRUCTOR: ALEXANDER KIRILLOV

1. (a) Prove that \mathbb{R}^{3}, considered as Lie algebra with the commutator given by the crossproduct, is isomorphic (as a Lie algebra) to $\mathfrak{s o}(3, \mathbb{R})$.
(b) Let $\varphi: \mathfrak{s o}(3, \mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the isomorphism of part (a). Prove that under this isomorphism, the standard action of $\mathfrak{s o}(3)$ on \mathbb{R}^{3} is identified with the action of \mathbb{R}^{3} on itself given by the cross-product:

$$
a \cdot \vec{v}=\varphi(a) \times \vec{v}, \quad a \in \mathfrak{s o}(3), \vec{v} \in \mathbb{R}^{3}
$$

where $a \cdot \vec{v}$ is the usual multiplication of a matrix by a vector.
2. Write the commutation relations for the Lie algebra $\mathfrak{s l}(2, \mathbb{C})$ in the basis

$$
h=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad e=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad f=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

3. Write explicitly Lie algebra isomorphisms $\mathfrak{s u}(2) \simeq \mathfrak{s o}(3, \mathbb{R}),(\mathfrak{s o}(3, \mathbb{R}))_{\mathbb{C}} \simeq \mathfrak{s o}(3, \mathbb{C}) \simeq \mathfrak{s l}(2, \mathbb{C})$.
4. Let $\varphi: \mathrm{SU}(2) \rightarrow \mathrm{SO}(3, \mathbb{R})$ be the cover map constructed in Problem Set 1.
(a) Show that $\operatorname{ker} \varphi=\{1,-1\}=\left\{1, e^{\pi \mathrm{i} h}\right\}$, where h is defined in Problem 2.
(b) Using this, show that representations of $\mathrm{SO}(3, \mathbb{R})$ are the same as representations of $\mathfrak{s l}(2, \mathbb{C})$ satisfying $e^{\pi i \rho(h)}=\mathrm{id}$
5. Let P_{n} be the space of polynomials with real coefficients of degree $\leq n$ in variable x. The Lie group $G=\mathbb{R}$ acts on P_{n} by translations of the argument: $\rho(t)(x)=x+t, t \in G$. Show that the corresponding action of the Lie algebra $\mathfrak{g}=\mathbb{R}$ is given by $\rho(a)=a \partial_{x}, a \in \mathfrak{g}$ and deduce from this the Taylor formula for polynomials:

$$
f(x+t)=\sum_{n \geq 0} \frac{\left(t \partial_{x}\right)^{n}}{n!} f
$$

6. Let $\operatorname{SL}(2, \mathbb{C})$ act on \mathbf{P}^{1} in the usual way:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right](x: y)=(a x+b y: c x+d y)
$$

This defines an action of $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$ by vector fields on \mathbf{P}^{1}. Write explicitly vector fields corresponding to h, e, f in terms of coordinate $t=x / y$ on the open cell $\mathbb{C} \subset \mathbf{P}^{1}$.
7. Let J_{x}, J_{y}, J_{z} be the basis in $\mathfrak{s o}(3, \mathbb{R})$ described in class. The standard action of $\mathrm{SO}(3, \mathbb{R})$ on \mathbb{R}^{3} defines an action of $\mathfrak{s o}(3, \mathbb{R})$ by vector fields on \mathbb{R}^{3}. Abusing the language, we will use the same notation J_{x}, J_{y}, J_{z} for the corresponding vector fields on \mathbb{R}^{3}. Let $\Delta_{s p h}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}$; this is a second order differential operator on \mathbb{R}^{3}, which is usually called the spherical Laplace operator, or the Laplace operator on the sphere.
(a) Write $\Delta_{s p h}$ in terms of $x, y, z, \partial_{x}, \partial_{y}, \partial_{z}$.
(b) Show that $\Delta_{\text {sph }}$ is well defined as a differential operator on a sphere $S^{2}=\{(x, y, z) \mid$ $\left.x^{2}+y^{2}+z^{2}=1\right\}$, i.e., if f is a function on \mathbb{R}^{3} then $\left.\left(\Delta_{s p h} f\right)\right|_{S^{2}}$ only depends on $\left.f\right|_{S^{2}}$.
(c) Show that $\Delta_{\text {sph }}$ is rotation invariant: for any function f and $g \in \operatorname{SO}(3, \mathbb{R}), \Delta_{\text {sph }}(g f)=$ $g\left(\Delta_{s p h} f\right)$.
*(d) Show that the usual Laplace operator $\Delta=\partial_{x}^{2}+\partial_{y}^{2}+\partial_{z}^{2}$ can be written in the form $\Delta=\frac{1}{r^{2}} \Delta_{\text {sph }}+\Delta_{\text {radial }}$, where $\Delta_{\text {radial }}$ is a differential operator written in terms of $r=\sqrt{x^{2}+y^{2}+z^{2}}$ and ∂_{r}.

