MAT 360: PRACTICE PROBLEMS FOR THE FINAL

The following are some practice problems for the final exam.

1. Textbook, Problem 77
2. Textbook, Problem 93
3. Textbook, Problem 139
4. Textbook, Problem 192
5. Let $A O B$ be an angle, and let points X, Y on side $A O$ and X^{\prime}, Y^{\prime} on side $O B$ be chosen so that $O X \simeq O X^{\prime}, O Y \simeq O Y^{\prime}$. Let P be the intersection of segments $X Y^{\prime}$, $X^{\prime} Y$. Prove that then $O P$ is the bisector of angle $A O B$.

6. Let points M, N be on the same side of line l. Find a point P on l such that the angles formed by segments $M P, N P$ with line l are congruent. [Hint: use reflection!]

7. Using straightedge and compass, construct a triangle, given two sides and the median to the third side. [Hint: this triangle is half of a parallelogram]
8. Using straightedge and compass, construct on the sides of given angle $A O B$ points X, Y so that the segment $X Y$ is congruent to given segment $P Q$ and angle $O X Y$ is congruent to given angle.
9. Textbook, Problem 242
10. Textbook, Problem 246
11. Textbook, Problem 266
12. Textbook, Problem 274
13. Textbook, Problem 372
14. Given segments of lenth a and b, construct (using straightedge and compass) segments of length $\sqrt{a(a+b)} ; \frac{a^{2}}{b}+\frac{2}{3} b$
15. In a triangle $A B C$, mark points which divide each side into 3 equal parts. Connect each of these points with the opposite vertex. This gives 6 lines inside $\triangle A B C$. Consider the hexagon formed by these 6 lines. Prove that the three diagonals connecting opposite vertices of this hexagon intersect at a single point.

