MAT 314: HOMEWORK 6

DUE TH, APRIL 4, 2019

Throughout this problem set, \mathbb{F} is a field.

1. Let $\alpha=\sqrt{2}+\sqrt{3} \in \mathbb{R}$.
(a) Show that $\mathbb{Q}(\alpha)=\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(b) Find the minimal polynomial of α over \mathbb{Q}.
(c) Let $\alpha^{\prime}=\sqrt{2}-\sqrt{3}$. Show that there exists a field isomorphism $\mathbb{Q}(\alpha) \rightarrow \mathbb{Q}\left(\alpha^{\prime}\right)$ which sends α to α^{\prime}.
2. For each of the following polynomials, describe its splitting field over \mathbb{Q}.
(a) $x^{4}+1$
(b) $x^{3}-5$
(c) $x^{4}+x^{2}+1$
3. Let \mathbb{F} be a field of characteristic zero.

For a polynomial $f=\sum a_{k} x^{k} \in \mathbb{F}[x]$, define its derivative by

$$
D f=\sum k a_{k} x^{k-1} \in \mathbb{F}[x] .
$$

(a) Show that the derivative satisfies familiar rules:
$D(f+g)=D f+D g, D(f g)=(D f) g+f(D g)$.
(b) Show that if $\mathbb{E} \supset \mathbb{F}$ is an extension of \mathbb{F}, and $a \in \mathbb{E}$ is a root of f of order $m \geq 1$, then a is a root of $D f$ of order $m-1$. Is this true if \mathbb{F} has positive characteristic?
(c) Show that f has no multiple roots (in any extensions of \mathbb{F}) iff $\operatorname{gcd}(f, D f)=1$. In particular, it holds if f is irreducible.
4. Let \mathbb{F} be a field of characteristic $p>0$.
(a) Show that the map $\operatorname{Fr}: \mathbb{F} \rightarrow \mathbb{F}$ given by $\operatorname{Fr}(x)=x^{p}$ is a homomorphism of fields. Deduce from this that if \mathbb{F} is finite, then Fr is a bijection. [It is called the Frobenius automorphism].
(b) Show that the the set $\left\{x \in \mathbb{F} \mid x^{p}=x\right\}$ is a subfield in \mathbb{F}, which is isomorphic to \mathbb{Z}_{p}. [Hint: how many different roots does the polynomial $x^{p}-x$ have?]

