MAT 314: HOMEWORK 6

DUE TH, APRIL 4, 2019

Throughout this problem set, \mathbb{F} is a field.

- **1.** Let $\alpha = \sqrt{2} + \sqrt{3} \in \mathbb{R}$.
 - (a) Show that $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$
 - (b) Find the minimal polynomial of α over \mathbb{Q} .
 - (c) Let $\alpha' = \sqrt{2} \sqrt{3}$. Show that there exists a field isomorphism $\mathbb{Q}(\alpha) \to \mathbb{Q}(\alpha')$ which sends α to α' .
- **2.** For each of the following polynomials, describe its splitting field over \mathbb{Q} .
 - (a) $x^4 + 1$
 - (b) $x^3 5$
 - (c) $x^4 + x^2 + 1$
- **3.** Let \mathbb{F} be a field of characteristic zero.

For a polynomial $f = \sum a_k x^k \in \mathbb{F}[x]$, define its derivative by

$$Df = \sum ka_k x^{k-1} \in \mathbb{F}[x].$$

- (a) Show that the derivative satisfies familiar rules: D(f+g) = Df + Dg, D(fg) = (Df)g + f(Dg).
- (b) Show that if $\mathbb{E} \supset \mathbb{F}$ is an extension of \mathbb{F} , and $a \in \mathbb{E}$ is a root of f of order $m \ge 1$, then a is a root of Df of order m-1. Is this true if \mathbb{F} has positive characteristic?
- (c) Show that f has no multiple roots (in any extensions of \mathbb{F}) iff gcd(f, Df) = 1. In particular, it holds if f is irreducible.
- **4.** Let \mathbb{F} be a field of characteristic p > 0.
 - (a) Show that the map $Fr: \mathbb{F} \to \mathbb{F}$ given by $Fr(x) = x^p$ is a homomorphism of fields. Deduce from this that if \mathbb{F} is finite, then Fr is a bijection. [It is called the *Frobenius automorphism*].
 - (b) Show that the set $\{x \in \mathbb{F} \mid x^p = x\}$ is a subfield in \mathbb{F} , which is isomorphic to \mathbb{Z}_p . [Hint: how many different roots does the polynomial $x^p x$ have?]