MAT 314: HOMEWORK 4 DUE TH, MARCH 7, 2019

Throughout the assignment, R is a principal ideal domain. All modules are assumed to be finitly generated and with finite set of relations.

Most questions will be about the structure theorem: every such module is isomorphic to a module of the form

(1)
$$M \simeq R^r \oplus \left(\bigoplus_i R/(p_i^{k_i})\right)$$

where p_i are irreducible (not necessarily distinct).

- **1.** Let $R = \mathbb{R}[x], M = R/(x^3 + x 10)$. Write *M* in the form (1).
- **2.** Let *M* be a module over *R* and let $a \in R$, $a \neq 0$ be such that am = 0 for any element $m \in M$.
 - (a) Show that all irreducibles p_i appearing in the canonical form (1) of M must be divisors of a. [Hint: see problem 1 of the previous assignment.]
 - (b) Show that if $a = q_1 \dots q_m$, where q_i are *distinct* irreducibles, then all powers k_i appearing in the canonical form (1) of M must be 1.
- **3.** Use the previous problem to show that if $A: V \to V$ is a linear operator in a finitedimensional vector space over \mathbb{C} , and $A^k = I$ for some k, then A is diagonalizable. Is the same true over \mathbb{R} ?
- 4. Let $R = \mathbb{C}[x]$, M = (V, A) (as discussed many times before). Define

$$V^{(\lambda)} = \{ v \in V \mid (A - \lambda)^k v = 0 \text{ for large enough } k \}$$

This is commonly called *generalized eigenspace*.

- (a) Prove that each $V^{(\lambda)}$ is a subspace which is stable under $A: AV^{(\lambda)} \subset V^{(\lambda)}$
- (b) Prove that $V^{(\lambda)}$ is the direct sum of all Jordan blocks with eigenvalue λ on the diagonal.
- (c) Prove that $V = \bigoplus_{\lambda} V^{(\lambda)}$ (direct sum over all eigenvalues).
- *5. Can you formulate and then prove an analog of the previous problem for a module over arbitrary PID *R*?