MAT 314: HOMEWORK 4

DUE TH, MARCH 7, 2019

Throughout the assignment, R is a principal ideal domain. All modules are assumed to be finitley generated and with finite set of relations.

Most questions will be about the structure theorem: every such module is isomorphic to a module of the form

$$
\begin{equation*}
M \simeq R^{r} \oplus\left(\bigoplus_{i} R /\left(p_{i}^{k_{i}}\right)\right) \tag{1}
\end{equation*}
$$

where p_{i} are irreducible (not necessarily distinct).

1. Let $R=\mathbb{R}[x], M=R /\left(x^{3}+x-10\right)$. Write M in the form (1).
2. Let M be a module over R and let $a \in R, a \neq 0$ be such that $a m=0$ for any element $m \in M$.
(a) Show that all irreducibles p_{i} appearing in the canonical form (1) of M must be divisors of a. [Hint: see problem 1 of the previous assignment.]
(b) Show that if $a=q_{1} \ldots q_{m}$, where q_{i} are distinct irreducibles, then all powers k_{i} appearing in the canonical form (1) of M must be 1 .
3. Use the previous problem to show that if $A: V \rightarrow V$ is a linear operator in a finitedimensional vector space over \mathbb{C}, and $A^{k}=I$ for some k, then A is diagonalizable. Is the same true over \mathbb{R} ?
4. Let $R=\mathbb{C}[x], M=(V, A)$ (as discussed many times before). Define

$$
V^{(\lambda)}=\left\{v \in V \mid(A-\lambda)^{k} v=0 \text { for large enough } k\right\}
$$

This is commonly called generalized eigenspace.
(a) Prove that each $V^{(\lambda)}$ is a subspace which is stable under $A: A V^{(\lambda)} \subset V^{(\lambda)}$
(b) Prove that $V^{(\lambda)}$ is the direct sum of all Jordan blocks with eigenvalue λ on the diagonal.
(c) Prove that $V=\bigoplus_{\lambda} V^{(\lambda)}$ (direct sum over all eigenvalues).
*5. Can you formulate and then prove an analog of the previous problem for a module over arbitrary PID R ?

