MAT 314: HOMEWORK 3

DUE TH, MARCH 1, 2019

Throughout the assignment, words PID mean "principal ideal domain". You can use all the results about PIDs discussed in class, in particular:

$$
\begin{aligned}
& \operatorname{gcd}(a, b)=d \Longleftrightarrow(a)+(b)=(d) \\
& \operatorname{lcm}(a, b)=m \Longleftrightarrow(a) \cap(b)=(m) \\
& \operatorname{gcd}(a, b)=1 \Longleftrightarrow a \text { is invertible in } R /(b)
\end{aligned}
$$

1. Let R be a PID, and $a, b \in R$ be such that $\operatorname{gcd}(a, b)=1$.
(a) Prove that $a x$ is divisible by b iff x is divisible by b.
(b) Prove that then $\operatorname{lcm}(a, b)=a b$.
2. Determine the greatest common divisor in $\mathbb{Q}[x]$ of $a(x)=x^{4}-1$ and $b(x)=x^{5}-1$ and write it as a linear combination of $a(x)$ and $b(x)$.
3. Let R be a PID.
(a) Let $I_{1} \subset I_{2} \subset I_{3} \cdots \subset R$ be a sequence of ideals. Prove that it stabilizes: for large enough $k, I_{k}=I_{k+1}=I_{k+2} \ldots$. [Hint: consider $I=\bigcup I_{k}$; then it is an ideal and thus must be generated by a single element.]
(b) Let $a_{1}, a_{2}, \cdots \in R$ be a sequence of non-zero elements such that a_{k+1} is a proper divisor of a_{k} (i.e., a_{k} / a_{k+1} is not invertible). Prove that this sequence can not be infinite.
4. Consider the ring $R=\mathbb{Z}[\sqrt{-5}]=\{a+b i \sqrt{5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$. For an element $z=a+i b \sqrt{5} \in R$, we denote $N(z)=z \bar{z}=a^{2}+5 b^{2} \in \mathbb{Z}$.
(a) Show that $N(z w)=N(z) N(w)$.
(b) Show that if $N(z)=1$, then $z= \pm 1$.
(c) Prove that there are no elements $z \in R$ with $N(z)=2$.
(d) Prove that elements $2,3,1 \pm \sqrt{-5}$ are irreducible in R. [Hint: if $2=z w$, then $N(z) N(w)=N(2)=4$.]
(e) Show that $6 \in R$ admits two different factorizations into irreducibles in R. [Thus, R is not a unique factorization domain and thus can not be a PID.]
