MAT 314: HOMEWORK 3 DUE TH, MARCH 1, 2019

Throughout the assignment, words PID mean "principal ideal domain". You can use all the results about PIDs discussed in class, in particular:

- $gcd(a,b) = d \iff (a) + (b) = (d)$ $lcm(a,b) = m \iff (a) \cap (b) = (m)$ $gcd(a,b) = 1 \iff a \text{ is invertible in } R/(b)$
- **1.** Let R be a PID, and $a, b \in R$ be such that gcd(a, b) = 1.
 - (a) Prove that ax is divisible by b iff x is divisible by b.
 - (b) Prove that then lcm(a, b) = ab.
- **2.** Determine the greatest common divisor in $\mathbb{Q}[x]$ of $a(x) = x^4 1$ and $b(x) = x^5 1$ and write it as a linear combination of a(x) and b(x).
- **3.** Let R be a PID.
 - (a) Let $I_1 \subset I_2 \subset I_3 \cdots \subset R$ be a sequence of ideals. Prove that it stabilizes: for large enough $k, I_k = I_{k+1} = I_{k+2} \ldots$ [Hint: consider $I = \bigcup I_k$; then it is an ideal and thus must be generated by a single element.]
 - (b) Let $a_1, a_2, \dots \in R$ be a sequence of non-zero elements such that a_{k+1} is a proper divisor of a_k (i.e., a_k/a_{k+1} is not invertible). Prove that this sequence can not be infinite.
- **4.** Consider the ring $R = \mathbb{Z}[\sqrt{-5}] = \{a + bi\sqrt{5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$. For an element $z = a + ib\sqrt{5} \in R$, we denote $N(z) = z\overline{z} = a^2 + 5b^2 \in \mathbb{Z}$.
 - (a) Show that N(zw) = N(z)N(w).
 - (b) Show that if N(z) = 1, then $z = \pm 1$.
 - (c) Prove that there are no elements $z \in R$ with N(z) = 2.
 - (d) Prove that elements 2, 3, $1 \pm \sqrt{-5}$ are irreducible in *R*. [Hint: if 2 = zw, then N(z)N(w) = N(2) = 4.]
 - (e) Show that $6 \in R$ admits two different factorizations into irreducibles in R. [Thus, R is not a unique factorization domain and thus can not be a PID.]