MAT 314: HOMEWORK 2

DUE TH, FEB 21, 2019

This assignment is about modules over \mathbb{Z}, also known as abelian groups. Unless stated otherwise, all modules will be assumed to have finite set of genretatoes and finite set of relations.

For an $m \times n$ matrix A with integer entries, we denote by M_{A} the \mathbb{Z}-module

$$
\begin{equation*}
M_{A}=\mathbb{Z}^{n} / N \tag{1}
\end{equation*}
$$

wher $N \subset \mathbb{Z}^{n}$ is the submodule generated by rows of the matrix A (we consider every row as an element of \mathbb{Z}^{n}).

1. Consider the abelian group with generators e_{1}, e_{2}, e_{3} and relations

$$
\begin{aligned}
& -2 e_{1}+e_{2}=0 \\
& e_{1}-2 e_{2}+e_{3}=0 \\
& e_{2}-2 e_{3}=0
\end{aligned}
$$

Write teh corresponding matrix A and use it to describe this group as direct sum of cyclic groups. What is the order of this group?
2. Let M be a \mathbb{Z}-module (abelian group). Let $T \subset M$ be the subset of elements of finite order (also called torsion elements):

$$
T=\{m \in M \mid n m=0 \text { for some } n \in \mathbb{Z}, n \neq 0\}
$$

(a) Prove that T is a subgroup.
(b) Prove that it is possible to choose a free submodule $F \subset M, F \simeq \mathbb{Z}^{n}$ such that $M=F \oplus T$. Is such a submodule F unique?
3. Let A be an $n \times n$ integer matrix, and let M_{A} be defined by (1). Prove that M_{A} is finite iff $\operatorname{det} A \neq 0$; if it is finite, then $\left|M_{A}\right|=|\operatorname{det} A|$.
[Hint: any invertible integer matrix has determinant ± 1, so left multiplication by an invertible matrix doesn't change $|\operatorname{det}(A)|$.]
4. Let $P, Q \subset \mathbb{R}^{n}$ be subgroups defined as follows:
Q is the subgroup generated by elements of the form $e_{i}-e_{j}, i \neq j$. (Here e_{i} are the standard generators of $\mathbb{Z}^{n}: e_{i}=(0, \ldots, 1, \ldots 0)$, with 1 in the $i^{\text {th }}$ place).

$$
P=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum x_{i}=0, \quad x_{i}-x_{j} \in \mathbb{Z} \quad \forall i, j\right\}
$$

(a) Show that P, Q are free abelian groups of rank $n-1$, by producing a basis (set of free generators) of each of them. [Hint: start with small values of n, e.g. $n=2$, $n=3$.]
*(b) (Optional.) Show that $Q \subset P$ and describe the quotient P / Q.

