MAT 314: HOMEWORK 9

DUE TH, MAY 9, 2019

Throughout this problem set, F is a field of characteristic zero.

1. Let $p(x) \in F[x]$ be a polynomial of degree n. Let L be the splitting field of p, and let $x_{1}, \ldots, x_{n} \in L$ be the roots of p. Define

$$
\Delta=\prod_{i<j}\left(x_{i}-x_{j}\right) \in L
$$

(a) Prove that for every $g \in \operatorname{Gal}(L / F)$, we have $g(\Delta)=\operatorname{sgn}(g) \Delta$, where $\operatorname{sgn}(g)$ is the sign of the corresponding permutation (recall that $\operatorname{Gal}(L / F) \subset S_{n}$).
(b) Prove that $D=\Delta^{2} \in F$ (D is called the discriminant of $\left.p\right)$.
(c) Prove that $\Delta \in F$ iff $G a l(L / F) \subset A_{n}$ (where A_{n} is the subgroup of even permutations).
2. Describe the Galois groups of the follwoing polynomials over \mathbb{Q} :
(a) $x^{3}-3 x+1$
(b) $x^{3}-3 x+3$
(You can use without proof the result I quoted in class: for a cubic polynomial $x^{3}+$ $p x+q$, the discriminant is $D=-4 p^{3}-27 q^{2}$.)
3. Let G be a group, with subgroups $G_{1}, G_{2} \subset G$ such that G_{1} is a normal subgroup of G_{2}. Let $\varphi: G \rightarrow H$ be a group homomorphism.
(a) Prove that $\varphi\left(G_{1}\right)$ is a normal subgroup of $\varphi\left(G_{2}\right)$.
(b) Prove that if G_{2} / G_{1} is commutative, then so is $\varphi\left(G_{2}\right) / \varphi\left(G_{1}\right)$.
4. A group G is called solvable if there exists a finite collection of subgroups

$$
\{1\} \subset G_{1} \subset G_{2} \subset \cdots \subset G_{k}=G
$$

such that each G_{i} is normal subgroup of G_{i+1} and the quotient G_{i+1} / G_{i} is commutative.
(a) Prove that S_{3}, S_{4} are solvable
(b) Use the previous problem to prove that if G is solvable, then any quotient of G is also solvable.

