MAT 314: HOMEWORK 1 DUE TH, FEB 14, 2019

Throughout this assignment, R is an arbitrary associative ring with unit (not necessarily commutative). All modules are modules over R. Letter \mathbb{F} always stands for a field.

- **1.** As discussed in class, a module over the ring $\mathbb{F}[x]$ can be described as a pair (V, A), where V is a vector space over \mathbb{F} and $A: V \to V$ is a linear operator.
 - (a) Give such a description for the module $M = \mathbb{F}[x]/(x^2 + 2x + 2)$, by constructing an explicit basis in the corresponding vector space V and writing the operator A as a matrix in this basis.
 - (b) Show that for $\mathbb{F} = \mathbb{C}$, the module M constructed in the previous part is isomorphic to a direct sum $M_1 \oplus M_2$, where M_1, M_2 are $\mathbb{C}[x]$ modules which are one-dimensional vector spaces over \mathbb{C} . [Hint: is A diagonalizable?]. Is the same true when $\mathbb{F} = \mathbb{R}$?
- **2.** Let *M* be a an *R*-module and $N \subset M$, an *R*-submodule. Let M' = M/N and denote by $f: M \to M'$ the obvious homomorphism of modules.
 - (a) Show that if $K' \subset M'$ is a submodule, then $K = f^{-1}(K') \subset M$ is also a submodule, and M/K is isomorphic to M'/K'.
 - (b) Show that the construction of the previous part gives a bijection (Submodules $K' \subset M/N$) \leftrightarrow (Submodules $K \subset M$ which contain N)
- **3.** Let M be an R-module and $M_1, M_2 \subset M$ be submodules such that $M = M_1 + M_2$, i.e. every element in M can be written as a sum $m = m_1 + m_2, m_1 \in M_1, m_2 \in M_2$ (possibly not uniquely). Prove that then one has an isomorphism $M \simeq (M_1 \oplus M_2)/(M_1 \cap M_2)$.
- 4. A module M over R is called *simple* if it has no nonzero proper submodules.
 - (a) Prove that every simple module is generated by a single element.
 - (b) Prove that every simple module is isomorphic to a module of the form R/I, where $I \subset R$ is a maximal left ideal.
 - (c) Desribe all simple modules over \mathbb{Z} (i.e., abelian groups).
 - *(d) Describe all simple modules over $\mathbb{C}[x]$.
- 5. Let $R = Mat_{n \times n}(\mathbb{F})$ be the ring of $n \times n$ matrices with entries in a field F. Then \mathbb{F}^n is naturally a module over R. Show that it is simple.

Hint: show that for any nonzero vector $v \in \mathbb{F}^n$, the subspace Rv contains the basis vector

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$