MAT 314: HOMEWORK 1

DUE TH, FEB 14, 2019

Throughout this assignment, R is an arbitrary associative ring with unit (not necessarily commutative). All modules are modules over R. Letter \mathbb{F} alwasy stands for a field.

1. As discussed in class, a module over the ring $\mathbb{F}[x]$ can be described as a pair (V, A), where V is a vector space over \mathbb{F} and $A: V \rightarrow V$ is a linear operator.
(a) Give such a description for the module $M=\mathbb{F}[x] /\left(x^{2}+2 x+2\right)$, by constructing an explicit basis in the corresponding vector space V and writing the operator A as a matrix in this basis.
(b) Show that for $\mathbb{F}=\mathbb{C}$, the module M constructed in the previous part is isomorphic to a direct sum $M_{1} \oplus M_{2}$, where M_{1}, M_{2} are $\mathbb{C}[x]$ modules which are one-dimensional vector spaces over \mathbb{C}. [Hint: is A diagonalizable?]. Is the same true when $\mathbb{F}=\mathbb{R}$?
2. Let M be a an R-module and $N \subset M$, an R-submodule. Let $M^{\prime}=M / N$ and denote by $f: M \rightarrow M^{\prime}$ the obvious homomorphism of modules.
(a) Show that if $K^{\prime} \subset M^{\prime}$ is a submodule, then $K=f^{-1}\left(K^{\prime}\right) \subset M$ is also a submodule, and M / K is isomorphic to M^{\prime} / K^{\prime}.
(b) Show that the construction of the previous part gives a bijection (Submodules $\left.K^{\prime} \subset M / N\right) \leftrightarrow($ Submodules $K \subset M$ which contain N)
3. Let M be an R-module and $M_{1}, M_{2} \subset M$ be submodules such that $M=M_{1}+M_{2}$, i.e. every element in M can be written as a sum $m=m_{1}+m_{2}, m_{1} \in M_{1}, m_{2} \in M_{2}$ (possibly not uniquely). Prove that then one has an isomorphism $M \simeq\left(M_{1} \oplus M_{2}\right) /\left(M_{1} \cap M_{2}\right)$.
4. A module M over R is called simple if it has no nonzero proper submodules.
(a) Prove that every simple module is generated by a single element.
(b) Prove that every simple module is isomorphic to a module of the form R / I, where $I \subset R$ is a maximal left ideal.
(c) Desribe all simple modules over \mathbb{Z} (i.e., abelian groups).
*(d) Describe all simple modules over $\mathbb{C}[x]$.
5. Let $R=M a t_{n \times n}(\mathbb{F})$ be the ring of $n \times n$ matrices with entries in a field F. Then \mathbb{F}^{n} is naturally a module over R. Show that it is simple.

Hint: show that for any nonzero vector $v \in \mathbb{F}^{n}$, the subspace $R v$ contains the basis vector

$$
e_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

