MAT 141 Homework 4 Solutions

1. computing the sum...

$$
\sum_{i=1}^{n}(i+3)^{2}=\sum_{i=4}^{n+3} i^{2}
$$

Here we'll use a common result for the sum of squares, expressed on page 40 in your book (\#6).

$$
\sum_{i=4}^{n+3} i^{2}=\sum_{i=1}^{n+3} i^{2}-1-2^{2}-3^{2}=\frac{(n+3)^{3}}{3}+\frac{(n+3)^{2}}{2}+\frac{(n+3)}{6}-14
$$

which does simplify a bit but this is clear enough.
2. $\phi=\frac{1+\sqrt{5}}{2}, \psi=\frac{1-\sqrt{5}}{2}$
(a) Calculation. Its true.
(b) The assertion $A(n)$ is that $F(n)=\frac{\phi^{n}-\psi^{n}}{\sqrt{5}}$. We will show that $A(n)$ and $A(n-1)$ imply $A(n+1)$.
So assume that the assertions $A(n-1)$ and $A(n)$ hold. We can then use the formula given to calculate $F(n+1)$. That is,
$F(n+1)=F(n-1)+F(n)=\frac{\phi^{n-1}-\psi^{n-1}}{\sqrt{5}}+\frac{\phi^{n}-\psi^{n}}{\sqrt{5}}=\frac{\phi^{n-1}(\phi+1)}{\sqrt{5}}-\frac{\psi^{n-1}(\psi+1)}{\sqrt{5}}$
but here we substitute using what you calculated in part (a), so we get
$F(n+1)=\frac{\phi^{n-1}(\phi+1)}{\sqrt{5}}-\frac{\psi^{n-1}(\psi+1)}{\sqrt{5}}=\frac{\phi^{n-1}\left(\phi^{2}\right.}{\sqrt{5}}-\frac{\psi^{n-1}\left(\psi^{2}\right)}{\sqrt{5}}=\frac{\phi^{n+1}-\psi^{n+1}}{\sqrt{5}}$,
so $F(n+1)=\frac{\phi^{n+1}-\psi^{n+1}}{\sqrt{5}}$, which is the statement $A(n+1)$.
So we have that $A(n-1)$ and $A(n)$ imply $A(n+1)$. Since both $A(1)$ and $A(2)$ hold, we have by the principle of strong induction that the assertion holds for all $n \in \mathbb{P}$.
3. $1.7 \# 1$
(a) A single point is itself a rectangle. If the points coordinates are (a, b) then the corresponding rectangle is explicitly $\{(x, y) \mid a \leq x \leq$ $a, b \leq y \leq b\}$, which has area $(a-a) *(b-b)=0$.
(b) Given a finite set $S=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right\}$ of points in the plane, we have that each point p_{k} individually has zero area. If $\alpha(S) \neq 0$ then we can arrive at a contradiction as follows: Set $S_{k}=S-\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$, or S without its first k elements. We have by the additive property that $\alpha\left(S_{k}\right)=\alpha\left(S_{k}+1\right)+\alpha\left(\left\{p_{k+1}\right\}\right)$, since $S_{k}=S_{k+1} \cup\left\{p_{k+1}\right\}$ and $S_{k+1} \cap\left\{p_{k+1}\right\}=\emptyset$. Since a single point set has zero area, we have that $\alpha\left(S_{k}\right)=\alpha\left(S_{k+1}\right.$. Thus if $\alpha(S)>0$ then $\alpha\left(S_{1}\right)>1$ and similarly we can infer that $\alpha\left(S_{n-1}\right)>0$. But $S_{n-1}=\left\{p_{n}\right\}$, a single point set, which we have shown must have zero area. This is a contradiction. Thus $\alpha(S)=0$.
(c) This follows in the same manner as above. This whole process could be simplified by proving a form of finite additivity, which would state:

$$
\alpha\left(\bigcup_{i=1}^{n} S_{i}\right) \leq \sum_{i=1}^{n} \alpha\left(S_{i}\right)
$$

where all S_{k} are measurable sets in the plane. Such a statement could be easily proved, with a little effort.

4. 1.7 \#2

This proof really requires pictures, but the essential idea is that given a triangle $A B C$ in the plane with designated base $A B$, we can drop a line l from C which is perpendicular to the base $A B$ and intersects the line (not line segment) $A B$ at a point $D . l$ either splits $A B C$ into the union of two right triangles $A C D$ and $B C D$ with one leg of each being l, or $A B C$ was already a right triangle, or the right triangle $A C D$ is entirely contained in the right triangle $B C D$ (or vice versa). Try to imagine each case. In any case it can be shown using the resulting right triangles that the triangle $A B C$ is measurable with area $1 / 2 b h$.
5. 1.11 \#1 I can't graph these easily. If you have a question come see me.
6. $1.11 \# 2$. Again, no graphs. However, the partitions are listed below:
(a) Not step.
(b) Not step.
(c) $P=\{-2,-1,0,1,2\}$
(d) $P=\{-2,-1,0,1,2\}$
(e) $P=\{-2,-1.5,-.5, .5,1.5,2\}$
(f) $P=\{-2,-1.5,-1,-.5,0, .5,1,1.5,2\}$
7. 1.15 \#1
(a) $(-1)(1)+(0)(1)+(1)(1)+(2)(1)=2$
(b) $(-1)(1 / 2)+(0)(1)+(1)(1)+(2)(1)+(3)(1 / 2)=4$
(c) Use linearity and (a) and (b). $=6$
(d) Use linearity and (a). $=4$
(e) $(-2)(1 / 2)+(-1)(1 / 2)+(0)(1 / 2)+(1)(1 / 2)+(2)(1 / 2)+(3)(1 / 2)+$ $(4)(1 / 2)+(5)(1 / 2)=6$
(f) $(0)(1)+(-1)(1)+(-2)(1)+(-3)(1)=-6$

