MAT 141 Homework 3 Solutions

1. Existence of $\sqrt[3]{2}$

Proof: Step 1: Let $S=\left\{s>0 \mid s^{3}<2\right\}$ and $T=\left\{t>0 \mid t^{3}>2\right\}$. First note that for all $s \in S, t \in T, s^{3}<2<t^{3} \Rightarrow t^{3}-s^{3}>0$. But $t^{3}-s^{3}=(t-s)\left(t^{2}+t s+s^{2}\right)$. Since s and t are both positive, $\left(t^{2}+t s+s^{2}\right)$ is positive, and so $(t-s)$ must also be positive. Hence $t>s$, and therefore every element of T is greater than every element in S.

Step 2: Now we will show that S has no maximum, and thus does not contain its supremum, and also that T has no minimum, and thus does not contain its infemum.
So, to see that S has no maximum, assume for contradiction that $s_{m} \in$ S is a maximum. We will try to find a contradiction by finding an element in S that is larger than s_{m}. For reasons that will become clear soon, let us denote such an element by $s_{m}+h$. If there is some $h>0$ so that $\left(s_{m}+h\right)$ is in S, then we have our contradiction.
Now we will show that we can find such an h. So, $\left(s_{m}+h\right) \in S$ if and only if $\left(s_{m}+h\right)>0$ and $\left(s_{m}+h\right)^{3}<2$, or rather

$$
s_{m}^{3}+3 s_{m}^{2} h+3 s_{m} h^{2}+h^{3}<2
$$

If we insist that $0<h<s_{m}$, then we have, by using $3 s_{m}^{2} h>3 s_{m} h^{2}$ and $s_{m}^{2} h>h^{3}$:

$$
s_{m}^{3}+3 s_{m}^{2} h+3 s_{m} h^{2}+h^{3}<s_{m}^{3}+3 s_{m}^{2} h+3 s_{m}^{2} h+s_{m}^{2} h=s_{m}^{3}+7 s_{m}^{2} h
$$

and so

$$
\left(s_{m}+h\right)^{3}<s_{m}^{3}+7 s_{m}^{2} h
$$

Thus, if we can find an $0<h<s_{m}$ so that $s_{m}^{3}+7 s_{m}^{2} h<2$, then we have by transitivity that $\left(s_{m}+h\right)^{3}<2$. But we can solve the above inequality for h. In other words,

$$
s_{m}^{3}+7 s_{m}^{2} h<2 \Rightarrow h<\frac{2-s_{m}^{3}}{7 s_{m}^{2}}
$$

Now it is important to note that $\frac{2-s_{m}^{3}}{7 s_{m}^{2}}>0$, since $s_{m}^{3}<2$, and $s_{m}>0$. If this were not so then we could not find an $h>0$ that satisfied
this inequality. As it is, we can. However, recall that to ease our simplification we had previously insisted that $h<s_{m}$, so let $m=$ $\min \left\{s_{m}, \frac{2-s_{m}^{3}}{7 s_{s_{m}}^{2}}\right\}$. Any $h>0$ that satisfies $h<m$ clearly satisfies $h<s_{m}$ and $h<\frac{2-s_{m}^{3}}{7 s_{m}^{2}}$.
Since s_{m} and $\frac{2-s_{m}^{3}}{7 s_{m}^{2}}$ are both positive, m must be positive. Therefore the interval $(0, m)$ is nonempty. In other words, we can find an h_{0} with $0<h_{0}<m$.
But we have chosen this h so that $\left(s_{m}+h\right)>s_{m}$ and $\left(s_{m}+h\right)^{3}<2$. Therefore $\left(s_{m}+h\right) \in S$. This contradicts our assumption that s_{m} is the maximum os S. Therefore S cannot have a maximum. We can similarly show by contradiction that T has no minimum.
Step 3: We will use steps 1 and 2 to show that $(\sup S)^{3}=2$. Recall from step 1 that $s<t$ for all $s \in S, t \in T$. From theorem I. 34 this means that $\sup S \leq \inf T$. Later on in this homework you will show that therefore $(\sup S)^{3} \leq(\inf T)^{3}$. Furthermore, since sup $S \notin S$, $(\sup S)^{3} \geq 2$, and since $\inf T \notin T$, $(\inf T)^{3} \leq 2$. But then, using the above conclusions, we have

$$
2 \leq(\sup S)^{3} \leq(\inf T)^{3} \leq 2
$$

and so $2 \leq(\sup S)^{3} \leq 2 \Rightarrow(\sup S)^{3}=2$ or rather $\sup S=\sqrt[3]{2}$. Therefore $\sqrt[3]{2}$ exists.
2. I $4.4 \# 1 \mathrm{~b}, \mathrm{c}$
(b) Our general assertion is $A(n): 1+2+5+\cdots+(2 n-1)=n^{2}$. $A(1): 1=1$, which is true. Now, if we are given that $A(k)$ is true, then we have that

$$
A(n): 1+2+5+\cdots+(2 k-1)=k^{2}
$$

and therefore that

$$
A(n): 1+2+5+\cdots+(2 n-1)+(2(n+1)-1)=n^{2}+(2(n+1)-1)=n^{2}+2 n+1
$$

which factors, so we have

$$
1+2+5+\cdots+(2 n-1)+(2(n+1)-1)=(n+1)^{2}
$$

But this is just the statement $A(k+1)$.
Therefore $A(1)$ holds and $A(k) \Rightarrow A(k+1)$, so by induction, the general assertion holds.
(c) Our general assertion is $A(n): 1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}$. $A(1)$ is the statement $1=1$, which is still true. Now we must show that $A(n) \Rightarrow A(n+1)$, so let us suppose that we are given $A(n)$. To the right side of the equation, we use the result of part (a) of this exercise. In other words:

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

. Adding $(n+1)^{3}$ to both sides of this equation and expanding gives: $1^{3}+2^{3}+\cdots+n^{3}+(n+1)^{3}=\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3}=\left(\frac{n^{2}}{4}+(n+1)\right)(n+1)^{2}$
which factors, so we have
$1^{3}+2^{3}+\cdots+n^{3}+(n+1)^{3}=\left(\frac{n^{2}+4 n+4}{4}\right)(n+1)^{2}=\frac{(n+2)^{2}(n+1)^{2}}{4}$
But we can again use (a) to substitute on the right side, this time going the other way, so we have:

$$
1^{3}+2^{3}+\cdots+n^{3}+(n+1)^{3}=(1+2+\cdots+n+(n+1))^{2}
$$

which is exactly $A(n+1)$. So we have shown that $A(n)$ implies $A(n+1)$, so by induction the general assertion holds.

3. 4.4 \# 3

Looking at the equations given, it seems the general law suggested is that $1+1 / 2+1 / 4+\cdots+1 / 2^{n}=2-1 / 2^{n}$. In summation notation, this can be expressed $\sum_{i=0}^{n} 1 / 2^{i}=2-1 / 2^{n}$. Rather than outline a proof by induction, I'll instead show you a faster way to prove this law.
Note that (by elementary algebra) $1 / 2^{k}=1 / 2^{k-1}-1 / 2^{k}$. Using this to substitute in our original sum we have $\sum_{i=0}^{n} 1 / 2^{i-1}-1 / 2^{i}$. But this sum telescopes to $2-1 / 2^{n}$, so we are done.
4. $4.7 \# 11 \mathrm{a}, \mathrm{b}$, e.
(a) True. $0^{4}=0$, so $\sum_{n=0}^{100} n^{4}=\sum_{n=1}^{100} n^{4}$.
(b) False, because $\sum_{j=0}^{100} 2=2 * 101=202$, not 200 .
(e) False. Simply $100 * \sum_{k=1}^{100} k^{2}>\sum_{k=1}^{100} k^{3}$.

5. $4.7 \# 12$

Writing out the first few sums we have: $\sum_{k=1}^{1} \frac{1}{k(k+1)}=1 / 2, \sum_{k=1}^{2} \frac{1}{k(k+1)}=$ $2 / 3, \sum_{k=1}^{3} \frac{1}{k(k+1)}=3 / 4 \ldots$ At this point we can make the conjecture that $\sum_{k=1}^{n} \frac{1}{k(k+1)}=n /(n+1)$. This can be shown by using the substitution $\frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}$, after which the sum telescopes to the desired result. Otherwise, it can be proved by induction as follows:
In this case our statement $A(n)$ is $\sum_{k=1}^{n} \frac{1}{k(k+1)}=n /(n+1)$. Since this was conjectured based on the first three sums, clearly $A(1)$ is true. Now we must show that $A(n) \Rightarrow A(n+1)$. If we have $A(n)$, that is $\sum_{k=1}^{n} \frac{1}{k(k+1)}=n /(n+1)$, then add $1 /(n+1)(n+2)$ to both sides, so that we have

$$
\sum_{k=1}^{n+1} \frac{1}{k(k+1)}=\frac{n(n+1)+1}{(n+1)(n+2)}=\frac{(n+1)^{2}}{(n+1)(n+2)}=\frac{n+1}{n+2}
$$

which is the assertion $A(n+1)$, so by induction the assertion holds for all $n \in \mathbb{P}$.
6. Given $0<x<y$ prove by induction that for any $n \in \mathbb{P}, x^{n}<y^{n}$.

The assertion $A(n)$ is that $x^{n}<y^{n}$, so clearly we have $A(1)$. Now, to show that $A(k) \Rightarrow A(k+1)$ we will start with $x^{k}<y^{k}$. Multiply both sides by x. Since $x>0$ we have then $x^{k+1}<x y^{k}$. Now take the inequality $x<y$. Since $y>0$ we have $y^{k}>0$, and so we can multiply $x<y$ by y^{k} to get $x y^{k}<y^{k+1}$. But then by transitivity our two results above give us $x^{k+1}<y^{k+1}$, which is $A(k+1)$. Therefore $A(k) \Rightarrow A(k+1)$, and so by induction our assertion holds for all $n \in \mathbb{P}$.

