MAT 141 Homework 2 Solutions

1. 3.12 4. Here is one proof using some basic set theory - if you don't understand please feel free to ask me (Rob) about it! From problem 2., we know that given $x \in \mathbb{R}$ there are some $m, n \in \mathbb{Z}$ with m < x < n. Thus x is in the interval (m,n) =

$$(m, m+1) \cup [m+1, m+2) \cup [m+2, m+3) \cup \cdots \cup [n-1, n),$$

and so x is (m, m + 1) or some half open interval [m + k, m + k + 1), where k is a positive integer less than n. If $x \in (m, m + 1)$, then by the set builder definition of the interval $m \le x < m + 1$, and similarly if x is in some half open interval [m + k, m + k + 1) then (again, by definition) $m + k \le x < m + k + 1$. Since x is in one of these intervals, it must be true that for some integer i (which is either m or m + k), $i \le x < i + 1$.

This shows that such an integer exists. Now we need to show that it is unique. So if there is another integer (call it j) with $j \le x < j + 1$, we will seek to show that j = i. Suppose for contradiction that $j \ne i$. Then either j < i or i < j, by trichotomy. Without loss of generality^{*}, assume for contradiction that j < i. Then, by properties of the integers, $j + 1 \le i$. But then $x < j + 1 \le i$, which is a contradiction. Therefore j = i.

*Without loss of generality (WLOG) - this means that we are proving only one case, but the proof of the other case is the same, so we are still making a general conclusion that does not depend on the case we have chosen.

2. 3.12 6. First, we will prove that if x < y AND y - x > 1, then there some integer n with x < n < y.

So, given the above statements, let m be [x], the greatest integer in x. Note that since y - x > 1, then y > x + 1. But we have $x \le m < x + 1$, which implies $x \le m < y$. If $m \ne x$, then x < m < y, if m = x, then we have that x + 1 is an integer, and x < x + 1 < y. Either way, we have found an integer between x and y.

Now, to prove the more general case we will try to reduce it to a situation similar to the one above. So given only that x < y, we know

that y - x > 0. From exercise 3, which we did in recitation, we know that we can choose $n \in \mathbb{P}$ with 1/n < y - x. Since n > 0, multiplying both sides of this inequality by n gives us 1 < n(y - x) = ny - nx. But then from the specific case above we can find an integer m between the real numbers nx and ny. So we have nx < m < ny. Multiplying this inequality by the positive number 1/n gives us x < m/n < y. But since m and n are integers, $m/b \in \mathbb{Q}$, by definition. Since x and y were arbitrary, it follows that between any two real numbers is at least one rational number, and so the rationals are *dense* in \mathbb{R} .

3. (a) Ok here's a really hard way to prove this first part! For any easier way see (b). Let $n \in \mathbb{P}$ be even and greater than 2. We have

$$(2-1)^n = 2^n - 2^{n-1} + 2^{n-2} - 2^{n-3} + \dots$$

but

$$-2^{n-1} + 2^{n-2} = -(2 * 2^{n-2}) + 2^{n-2} = -2^{n-2}$$

 \mathbf{SO}

$$(2-1)^n = 2^n - 2^{n-2} - 2^{n-4} - 2^{n-6} - \dots - 4 - 1 < 2^n - 2 - 2 - 2 - 2 - \dots$$

where the right hand side of the above inequality has n/2 + 1 terms, and so equals

$$2^n - 2 * (n/2) = 2^n - n.$$

Therefore, if n is even and greater than 2,

$$2^n - n > (2 - 1)^n = 1 > 0,$$

and so $n < 2^n$. Since the integers are unbounded and increasing we can find an even integer m bigger than any real number x. But then $2^m > x$. It follows that the sequence $\{2^n | n \in \mathbb{P}\}$ is unbounded.

(b) Suppose a_1, a_2, a_3, \ldots is an increasing integer sequence. This means $a_1 < a_2 < a_3 < \cdots$. But $a_1 < a_2$ implies that $a_1 + 1 \le a_2$, and $a_2 < a_3$ implies that $a_2 + 1 \le a_3$ which in turn means that $a_1 + 2 \le a_3$. Along these lines, for any n one can show that $a_1 + n - 1 \le a_n$.

Now, given a real x with $a_1 < x$, by the unboundedness of the positive integers we can choose $m \in \mathbb{P}$ with $m > x - a_1$. Now $x < a_1 + m$. But from above, $a_1 + m \le a_{m+1}$, and so by transitivity $x < a_{m+1}$. Thus, given any $x > a_1$, we have found some a_k which is greater than x. This means that the sequence $\{a_n | n \in \mathbb{P}\}$ is unbounded.

	bdd. above?	below?	min?	max?	inf?	sup?
(a)	no	no	no	no	no	no
(b)	no	yes	1	no	1	no
(c)	yes	yes	1/2	no	1/2	1
(d)	yes	yes	-1	1/2	-1	1/2

4. If you have any questions about the following answers, please ask me to explain them.