
MAT 141 Homework 2 Solutions

1. 3.12 4. Here is one proof using some basic set theory - if you don’t
understand please feel free to ask me (Rob) about it! From problem 2.,
we know that given x ∈ R there are some m,n ∈ Z with m < x < n.
Thus x is in the interval (m,n) =

(m,m + 1) ∪ [m + 1,m + 2) ∪ [m + 2,m + 3) ∪ · · · ∪ [n− 1, n),

and so x is (m,m + 1) or some half open interval [m + k, m + k + 1),
where k is a positive integer less than n. If x ∈ (m,m + 1), then by
the set builder definition of the interval m ≤ x < m + 1, and similarly
if x is in some half open interval [m + k, m + k + 1) then (again, by
definition) m + k ≤ x < m + k + 1. Since x is in one of these intervals,
it must be true that for some integer i (which is either m or m + k),
i ≤ x < i + 1.

This shows that such an integer exists. Now we need to show that it
is unique. So if there is another integer (call it j) with j ≤ x < j + 1,
we will seek to show that j = i. Suppose for contradiction that j 6= i.
Then either j < i or i < j, by trichotomy. Without loss of generality*,
assume for contradiction that j < i. Then, by properties of the integers,
j + 1 ≤ i. But then x < j + 1 ≤ i, which is a contradiction. Therefore
j = i.

*Without loss of generality (WLOG) - this means that we are proving
only one case, but the proof of the other case is the same, so we are
still making a general conclusion that does not depend on the case we
have chosen.

2. 3.12 6. First, we will prove that if x < y AND y − x > 1, then there
some integer n with x < n < y.

So, given the above statements, let m be [x], the greatest integer in x.
Note that since y−x > 1, then y > x+1. But we have x ≤ m < x+1,
which implies x ≤ m < y. If m 6= x, then x < m < y, if m = x, then
we have that x + 1 is an integer, and x < x + 1 < y. Either way, we
have found an integer between x and y.

Now, to prove the more general case we will try to reduce it to a
situation similar to the one above. So given only that x < y, we know
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that y − x > 0. From exercise 3, which we did in recitation, we know
that we can choose n ∈ P with 1/n < y − x. Since n > 0, multiplying
both sides of this inequality by n gives us 1 < n(y−x) = ny−nx. But
then from the specific case above we can find an integer m between
the real numbers nx and ny. So we have nx < m < ny. Multiplying
this inequality by the positive number 1/n gives us x < m/n < y. But
since m and n are integers, m/b ∈ Q, by definition. Since x and y were
arbitrary, it follows that between any two real numbers is at least one
rational number, and so the rationals are dense in R.

3. (a) Ok here’s a really hard way to prove this first part! For any easier
way see (b). Let n ∈ P be even and greater than 2. We have

(2− 1)n = 2n − 2n−1 + 2n−2 − 2n−3 + . . .

but
−2n−1 + 2n−2 = −(2 ∗ 2n−2) + 2n−2 = −2n−2

so

(2−1)n = 2n−2n−2−2n−4−2n−6− . . .−4−1 < 2n−2−2−2−2− . . .

where the right hand side of the above inequality has n/2 + 1 terms,
and so equals

2n − 2 ∗ (n/2) = 2n − n.

Therefore, if n is even and greater than 2,

2n − n > (2− 1)n = 1 > 0,

and so n < 2n. Since the integers are unbounded and increasing we
can find an even integer m bigger than any real number x. But then
2m > x. It follows that the sequence {2n|n ∈ P} is unbounded.

(b) Suppose a1, a2, a3, . . . is an increasing integer sequence. This means
a1 < a2 < a3 < · · ·. But a1 < a2 implies that a1 + 1 ≤ a2, and a2 < a3

implies that a2 + 1 ≤ a3 which in turn means that a1 + 2 ≤ a3. Along
these lines, for any n one can show that a1 + n− 1 ≤ an.

Now, given a real x with a1 < x, by the unboundedness of the positive
integers we can choose m ∈ P with m > x− a1. Now x < a1 + m. But
from above, a1 + m ≤ am+1, and so by transitivity x < am+1. Thus,
given any x > a1, we have found some ak which is greater than x. This
means that the sequence {an|n ∈ P} is unbounded.
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4. If you have any questions about the following answers, please ask me
to explain them.

bdd. above? below? min? max? inf? sup?
(a) no no no no no no
(b) no yes 1 no 1 no
(c) yes yes 1/2 no 1/2 1
(d) yes yes -1 1/2 -1 1/2
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