MAT 141 Homework 2 Solutions

1. 3.12 4. Here is one proof using some basic set theory - if you don't understand please feel free to ask me (Rob) about it! From problem 2., we know that given $x \in \mathbb{R}$ there are some $m, n \in \mathbb{Z}$ with $m<x<n$. Thus x is in the interval $(\mathrm{m}, \mathrm{n})=$

$$
(m, m+1) \cup[m+1, m+2) \cup[m+2, m+3) \cup \cdots \cup[n-1, n),
$$

and so x is $(m, m+1)$ or some half open interval $[m+k, m+k+1)$, where k is a positive integer less than n. If $x \in(m, m+1)$, then by the set builder definition of the interval $m \leq x<m+1$, and similarly if x is in some half open interval $[m+k, m+k+1$) then (again, by definition) $m+k \leq x<m+k+1$. Since x is in one of these intervals, it must be true that for some integer i (which is either m or $m+k$), $i \leq x<i+1$.
This shows that such an integer exists. Now we need to show that it is unique. So if there is another integer (call it j) with $j \leq x<j+1$, we will seek to show that $j=i$. Suppose for contradiction that $j \neq i$. Then either $j<i$ or $i<j$, by trichotomy. Without loss of generality*, assume for contradiction that $j<i$. Then, by properties of the integers, $j+1 \leq i$. But then $x<j+1 \leq i$, which is a contradiction. Therefore $j=i$.
*Without loss of generality (WLOG) - this means that we are proving only one case, but the proof of the other case is the same, so we are still making a general conclusion that does not depend on the case we have chosen.
2. 3.12 6. First, we will prove that if $x<y$ AND $y-x>1$, then there some integer n with $x<n<y$.
So, given the above statements, let m be $[x]$, the greatest integer in x. Note that since $y-x>1$, then $y>x+1$. But we have $x \leq m<x+1$, which implies $x \leq m<y$. If $m \neq x$, then $x<m<y$, if $m=x$, then we have that $x+1$ is an integer, and $x<x+1<y$. Either way, we have found an integer between x and y.
Now, to prove the more general case we will try to reduce it to a situation similar to the one above. So given only that $x<y$, we know
that $y-x>0$. From exercise 3 , which we did in recitation, we know that we can choose $n \in \mathbb{P}$ with $1 / n<y-x$. Since $n>0$, multiplying both sides of this inequality by n gives us $1<n(y-x)=n y-n x$. But then from the specific case above we can find an integer m between the real numbers $n x$ and $n y$. So we have $n x<m<n y$. Multiplying this inequality by the positive number $1 / n$ gives us $x<m / n<y$. But since m and n are integers, $m / b \in \mathbb{Q}$, by definition. Since x and y were arbitrary, it follows that between any two real numbers is at least one rational number, and so the rationals are dense in \mathbb{R}.
3. (a) Ok here's a really hard way to prove this first part! For any easier way see (b). Let $n \in \mathbb{P}$ be even and greater than 2 . We have

$$
(2-1)^{n}=2^{n}-2^{n-1}+2^{n-2}-2^{n-3}+\ldots
$$

but

$$
-2^{n-1}+2^{n-2}=-\left(2 * 2^{n-2}\right)+2^{n-2}=-2^{n-2}
$$

so
$(2-1)^{n}=2^{n}-2^{n-2}-2^{n-4}-2^{n-6}-\ldots-4-1<2^{n}-2-2-2-2-\ldots$
where the right hand side of the above inequality has $n / 2+1$ terms, and so equals

$$
2^{n}-2 *(n / 2)=2^{n}-n .
$$

Therefore, if n is even and greater than 2,

$$
2^{n}-n>(2-1)^{n}=1>0,
$$

and so $n<2^{n}$. Since the integers are unbounded and increasing we can find an even integer m bigger than any real number x. But then $2^{m}>x$. It follows that the sequence $\left\{2^{n} \mid n \in \mathbb{P}\right\}$ is unbounded.
(b) Suppose $a_{1}, a_{2}, a_{3}, \ldots$ is an increasing integer sequence. This means $a_{1}<a_{2}<a_{3}<\cdots$. But $a_{1}<a_{2}$ implies that $a_{1}+1 \leq a_{2}$, and $a_{2}<a_{3}$ implies that $a_{2}+1 \leq a_{3}$ which in turn means that $a_{1}+2 \leq a_{3}$. Along these lines, for any n one can show that $a_{1}+n-1 \leq a_{n}$.
Now, given a real x with $a_{1}<x$, by the unboundedness of the positive integers we can choose $m \in \mathbb{P}$ with $m>x-a_{1}$. Now $x<a_{1}+m$. But from above, $a_{1}+m \leq a_{m+1}$, and so by transitivity $x<a_{m+1}$. Thus, given any $x>a_{1}$, we have found some a_{k} which is greater than x. This means that the sequence $\left\{a_{n} \mid n \in \mathbb{P}\right\}$ is unbounded.
4. If you have any questions about the following answers, please ask me to explain them.

	bdd. above?	below?	$\min ?$	$\max ?$	inf?	sup?
(a)	no	no	no	no	no	no
(b)	no	yes	1	no	1	no
(c)	yes	yes	$1 / 2$	no	$1 / 2$	1
(d)	yes	yes	-1	$1 / 2$	-1	$1 / 2$

