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Abstract. We establish inequalities relating the size of a material body to its mass, angular mo-

mentum, and charge, within the context of axisymmetric initial data sets for the Einstein equations.

These inequalities hold in general without the assumption of the maximal condition, and use a notion

of size which is easily computable. Moreover, these results give rise to black hole existence criteria

which are meaningful even in the time-symmetric case, and also include certain boundary effects.

1. Introduction

Inequalities relating the size of black holes1 to the angular momentum and charge that they contain
have been studied extensively and optimal results have been obtained, see [9] and the references
therein. More recently Dain [10, 11] proposed extending these type of inequalities to arbitrary
material bodies, and progress has been made in this direction [1, 12, 17, 18, 24]. There are, however,
undesirable features associated with each of these works. For instance, most are constrained to apply
in the time-symmetric or maximal setting, whereas those which do not have this hypothesis involve
complicated notions of size such as the Schoen/Yau radius [26]. A primary motivation for the present
article is to remove the time-symmetric and maximal assumptions, as well as to utilize simple notions
of size such as lengths, areas, volumes etc.

These problems are naturally related to the Trapped Surface and Hoop Conjectures [27, 29], which
seek a mathematical formulation of the folklore belief that if enough matter and/or gravitational
energy are present in a sufficiently small region, then the system must collapse to a black hole.
In [17, 18] this paradigm has been generalized to show that black hole formation may arise from
concentration of angular momentum or charge, although the measurement of size in these results
relies on the Schoen/Yau radius. In this paper we will present new results concerning the existence
of trapped surfaces due to concentration of matter, angular momentum, and charge which rely on
elementary measurements of size. Although the Trapped Surface and Hoop Conjectures have received
much attention, they are far from being completely resolved. For instance, most works in this area
impose strong hypotheses such as spherical symmetry, maximal slicing, or conformally flat geometry
[3, 4, 5, 14, 16, 19, 20, 21, 23, 31]. On the other hand, Schoen and Yau [13, 26, 32] were able to remove
these restrictions, but paid for this generality with an intricate measurement of size and/or the fact
that their results are not meaningful for low extrinsic curvature. Here we will mediate between these
two sides by assuming the milder restriction of axisymmetry and obtaining results that are relevant
even in the time-symmetric case.
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2. Setting and Statement of Results

Let (M, g, k) be an initial data set for the Einstein equations. This comprises a 3-dimensional
manifold M , a Riemannian metric g, and a symmetric 2-tensor k denoting the second fundamental
form of an embedding into spacetime. If µ and J are the energy and momentum densities of the
matter fields, respectively, then the initial data satisfy the constraint equations

16πµ = R+ (Trgk)2 − |k|2,

8πJ i = ∇j(kij − (Trgk)gij).
(2.1)

When charge plays a significant role, it is useful to extract the contributions of the electromagnetic
field (E,B) and consider the energy and momentum densities of the remaining fields

µEM = µ− 1

8π

(
|E|2 + |B|2

)
,

JEM = J +
1

4π
E ×B,

(2.2)

where (E ×B)i = εijlE
jBl is the cross product and ε is the volume form of g.

The initial data are said to be axially symmetric if the isometry group of (M, g) contains a
subgroup isomorphic to U(1), and all quantities defining the initial data remain invariant under the
U(1) action. The associated axisymmetric Killing field will be denoted by η, and we have

(2.3) Lηg = Lηk = 0, LηE = LηB = LηJ = 0, Lηµ = 0,

where Lη is Lie differentiation. One advantage in the axisymmetric setting is the existence [8] of a
global (cylindrical) Brill coordinate system (ρ, z, φ) in which the metric takes the simple form

(2.4) g = e−2U+2α(dρ2 + dz2) + ρ2e−2U (dφ+Aρdρ+Azdz)
2.

Here the Killing vector is given by η = ∂φ, and thus all of the functions U , α, Aρ, and Az are inde-
pendent of φ. The proof of existence of Brill coordinates was carried out in [8] for simply connected,
asymptotically flat initial data. In fact a byproduct of the proof asserts that such manifolds must
be topologically trivial if they only have one end, that is M ∼= R3. As the results of the current
paper will be concerned solely with compact subsets of a simply connected M , we may obtain Brill
coordinates by extending the initial data to the asymptotically flat regime. In particular we may
assume without loss of generality that the quotient Σ is diffeomorphic to the half plane.

In order to better understand the structure of the metric (2.4), let us recall basic facts about the
quotient manifold Σ = M/U(1); this is the collection of all orbits of the U(1) action and comes
equipped with a canonical projection Π : M → M/U(1). The quotient metric is defined in the

following way. Given X̂, Ŷ ∈ Tp̂Σ, let X,Y ∈ TpM (with p̂ = Π(p)) be the unique vectors which are

perpendicular to η and satisfy dΠp(X) = X̂, dΠp(Y ) = Ŷ . The quotient metric is then defined by

(2.5) ĝ(X̂, Ŷ ) = g(X,Y )− g(X, η)g(Y, η)

|η|2
.

In terms of the Brill coordinate expression, the quotient metric is the first part of (2.4) in isothermal
coordinates. The second part of (2.4) represents the square of the dual 1-form to |η|−1η. Note also
that the Levi-Civita connection on Σ is defined by

(2.6) ∇̂X̂ Ŷ = dΠp

[
(∇XY )⊥

]
,

where ⊥ is used to indicate the part perpendicular to η and ∇ is the Levi-Civita connection on M .
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A body Ω is a connected open subset of M with compact closure and smooth boundary ∂Ω, and is
referred to as axisymmetric if the U(1) symmetry of M acts by isometries on Ω. Axisymmetry allows
for a suitable and well-defined notion of angular momentum for bodies (not necessarily axisymmetric),
namely

(2.7) J (Ω) =

∫
Ω
Jiη

idωg.

In this setting gravitational waves do not carry angular momentum, so that all angular momentum
arises from the matter fields. Without this assumption quasi-local angular momentum is a challenge
to define [28]. Let us also record the square of the total charge contained in the body

(2.8) Q2 =

(
1

4π

∫
Ω

divEdωg

)2

+

(
1

4π

∫
Ω

divBdωg

)2

.

Recall that the gravitational field’s strength near a 2-surface S ⊂ M can be assessed by the
quantities

(2.9) θ± := HS ± TrSk,

which are referred to as null expansions, where HS denotes the mean curvature in the outward
direction. The null expansions describe the rate at which the area of a shell of light is changing, when
emitted outwardly by the surface in the future direction (θ+), and past (θ−). Hence the gravitational
field is strong near S if θ+ < 0 or θ− < 0, in which case S is called a future (past) trapped
surface. We will say that a surface S is (strongly) untrapped if the following (strict) inequality
holds HS − |TrSk| ≥ 0. Future (past) apparent horizons satisfy θ+ = 0 (θ− = 0), and arise from
the boundaries of future (past) trapped regions. Apparent horizons are interpreted as quasi-local
versions of event horizons, and assuming Cosmic Censorship, they must generically be located inside
black holes [30].

In order to state the main results, we describe here certain energy conditions and lengths that will

be used. Let (e1, e2, e3 = |η|−1η) be an orthonormal frame field on M and ~J = J(e1)e1 + J(e2)e2,
then

(2.10) µ ≥ | ~J |+ |J(e3)|

is a slightly stronger version of the standard dominant energy condition

(2.11) µ ≥ |J | =
√
| ~J |2 + J(e3)2.

When charge is present, the following the so called charged dominant energy condition will be useful

(2.12) µEM ≥ |JEM |.

Furthermore, we set l = 2πminΩ |η| and L = 2πmaxΩ |η| to be the minimum and maximum lengths
of axisymmetric orbits in Ω, and will always assume that l > 0 so that Ω stays away from the axis.
Lastly χ(Π(Ω)) will denote the Euler characteristic of the projection of Ω in the orbit space Σ.

Our first result yields a lower bound for size in terms of the energy-momentum content of the
matter fields, and shows that if too much energy-momentum is contained in a domain of a fixed size
then collapse must ensue. Notice also that a contribution is played by the null expansions of the
boundary, similar to the inequalities of Yau in [32].

Theorem 2.1. Let (M, g, k) be an axially symmetric, simply connected initial data set. Let Ω ⊂M
be an axisymmetric body situated away from the axis (l > 0), satisfying the dominant energy condition
µ ≥ |J |, and with strongly untrapped boundary.



4 KHURI AND XIE

i) If Ω is void of apparent horizons then

(2.13)

∫
Ω

(µ− |J |)dωg +
L

8πl

∫
∂Ω

(H − |Tr∂Ωk|)dσg ≤
L2

4l
χ(Π(Ω)).

ii) If the opposite (strict) inequality in (2.13) holds then Ω must contain an apparent horizon.

It is interesting to note that the mild hypotheses of this theorem imply a strong topological
restriction on Ω. Namely from (2.13) and the strictly untrapped nature of the boundary, the Euler
characteristic of the projection must be positive χ(Π(Ω)) > 0. Hence by the classification theorem
for surfaces [22], we have that Π(Ω) is homeomorphic to a disk or rather Ω is homeomorphic to a
solid torus.

The next two results replace the role of total energy-momentum in Theorem 2.1 by total angular
momentum and total charge. They show a bound for the amount of angular momentum and charge
that can be possessed by a body, in terms of its size. Alternatively, if quantum effects are taken into
account, these inequalities reveal a minimum possible size for a spinning and/or charged particle
[17, 18] (see also [2]). Furthermore, a black hole existence criterion is given based on concentration
of these two quantities.

Theorem 2.2. Let (M, g, k) be an axially symmetric, simply connected initial data set. Let Ω ⊂M
be an axisymmetric body situated away from the axis (l > 0), satisfying the enhanced dominant energy
condition (2.10), and with strongly untrapped boundary.

i) If Ω is void of apparent horizons then

(2.14) |J (Ω)|+ L

16π2

∫
∂Ω

(H − |Tr∂Ωk|)dσg ≤
L2

8π
χ(Π(Ω)).

ii) If the opposite (strict) inequality in (2.14) holds then Ω must contain an apparent horizon.

Theorem 2.3. Let (M, g, k) be an axially symmetric, simply connected initial data set. Let Ω ⊂M
be an axisymmetric body situated away from the axis (l > 0), satisfying the strict dominant energy
condition µ > |J | in Ω and the charged dominant energy condition µEM ≥ |JEM | on ∂Ω, and with
strongly untrapped boundary.

i) If Ω is void of apparent horizons then

(2.15) Q2 +
C0L|∂Ω|2

16π2l|Ω|

∫
∂Ω

(H − |Tr∂Ωk|)dσg ≤
C0L

2|∂Ω|2

8πl|Ω|
χ(Π(Ω)),

where

(2.16) C0 =
max∂Ω(µ− |JEM |)

minΩ(µ− |J |)
.

ii) If the opposite (strict) inequality in (2.15) holds then Ω must contain an apparent horizon.

Although the inequalities (2.13), (2.14), and (2.15) remain valid in the time-symmetric and max-
imal cases, the content of the corresponding apparent horizon exist statements becomes vacuous
in this setting. This is due primarily to the method of proof, which utilizes a version of the Jang
equation [25]. In particular, the apparent horizons are produced by forcing solutions of the Jang
equation, with constant Dirichlet boundary conditions, to blow-up. However, in the time-symmetric
and maximal cases these solutions are always smooth. Therefore part (ii) of the above theorems is
only relevant when sufficient amounts of extrinsic curvature are involved. This situation is analogous
to the range of applicability of the black hole existence results in [13, 26, 32] which also rely on the
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Jang equation. For this reason we provide refined versions of Theorems 2.1, 2.2, and 2.3 in Section
4 for the time-symmetric and maximal cases, which do not rely on this method of proof and give
meaningful statements in this setting.

3. Stability of the Quotient

The proofs of the main results are based on a type of stability property of the quotient manifold
Σ along with properties of the generalized Jang equation [6, 7]. In this section we discuss the
stability property, which was first observed by Reiris in [24]. Our contribution here is to refine
Reiris’ observation, give an independent proof, and to elucidate the meaning from a purely initial
data perspective (as opposed to a spacetime point of view). The goal of this section is to establish
the following result.

Proposition 3.1. Let (M, g) be an axisymmetric, simply connected, 3-dimensional Riemannian
manifold, and let Ω ⊂ M be a compact axisymmetric body. If R denotes scalar curvature and H
denotes the mean curvature of ∂Ω with respect to the unit outward normal then

(3.1)

∫
Π(Ω)

1

2
RdA ≤ 2πχ(Π(Ω))−

∫
∂Π(Ω)

Hds.

where dA and ds are elements of area and arc length with respect to the quotient metric ĝ.

Inequality (3.1) is referred to as a stability type inequality in analogy with the stability inequality
for minimal hypersurfaces, noting that the right-hand side arises from the Gaussian curvature. Let
K denote the Gaussian curvature of the quotient Σ, then according to the Gauss-Bonnet formula

(3.2)

∫
Π(Ω)

KdA = 2πχ(Π(Ω))−
∫
∂Π(Ω)

κds,

where κ is geodesic curvature. Recall that if γ̂ ∈ Σ is the curve (parametrized by arc length)
representing ∂Π(Ω), then its geodesic curvature is given by

(3.3) κ = ĝ(γ̂′, ∇̂γ̂′ ν̂),

where ν̂ is the unit outer normal to ∂Π(Ω). Let γ ∈ ∂Ω (parametrized by arc length) be the curve
such that Π(γ) = γ̂ and γ′ ⊥ η, then dΠ(γ′) = γ̂′ so the notation is consistent; also let ν be the unit
normal to ∂Ω with dΠ(ν) = ν̂. It follows that (γ′, |η|−1η, ν) forms an orthonormal frame on ∂Ω, and
we may evaluate the mean curvature by

(3.4) H = g(γ′,∇γ′ν) + g

(
η

|η|
,∇ η

|η|
ν

)
.

Next observe that since η is a Killing field

(3.5) g(η,∇ην) = −g(∇ηη, ν) = g(∇νη, η) =
1

2
ν(|η|2),

and thus

(3.6) H = g(γ′,∇γ′ν) + ν(log |η|)

which implies that

(3.7) κ = g(γ′,∇γ′ν) = H − ν(log |η|) = H − ν̂(log |η|).
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Therefore (3.2) becomes

(3.8)

∫
Π(Ω)

KdA = 2πχ(Π(Ω))−
∫
∂Π(Ω)

Hds+

∫
Π(Ω)

∆̂ log |η|dA.

It remains to compute the last integral in (3.8). For this we give an independent proof of Proposition
2.1 in [24], from the initial data perspective.

Lemma 3.2. Under the hypotheses of Proposition 3.1

(3.9) ∆̂|η| = |η|
(
K − 1

2
R

)
− 1

4
|η|3e4(U−α)(∂zAρ − ∂ρAz)2,

where α, U , Aρ, and Az are coefficients in the Brill form (2.4) of the metric g.

Proof. Recall that for two 2-dimensional Riemannian metrics conformally related by g2 = e2vg1, the
relation between the corresponding Gaussian curvatures and Laplacians is

(3.10) ∆g1v = Kg1 − e2vKg2 , ∆g2 = e−2v∆g1 .

Applying this to the present situation where ĝ = e−2U+2αδ produces

(3.11) ∆ρ,z(α− U) = −e−2U+2αK,

where δ = dρ2 + dz2 and ∆ρ,z = ∂2
ρ + ∂2

z . Next observe that the scalar curvature in Brill coordinates
[8, (3.7)] takes a particularly simple form

(3.12) 2e−2U+2αR = 8∆U − 4∆ρ,zα− 4|∇U |2δ − ρ2e−2α(∂zAρ − ∂ρAz)2,

where ∆ is the flat Laplacian on R3 given by

(3.13) ∆ = ∆ρ,z +
1

ρ
∂ρ.

Therefore subtracting 4 times (3.11) from (3.12), so that ∆ρ,zα is eliminated, yields

(3.14) ∆ρ,zU =
1

2
e−2U+2αR− 2

ρ
∂ρU + |∇U |2δ +

ρ2

4
e−2α(∂zAρ − ∂ρAz)2 − e−2U+2αK.

Lastly, applying the second relation in (3.10) along with direct computation shows that

∆̂|η| =e2U−2α∆ρ,z(ρe
−U )

=e2U−2α
(
2∂ρe

−U + ρ∂2
ρe
−U + ρ∂2

ze
−U)

=ρeU−2α

(
−∆ρ,zU + |∇U |2δ −

2

ρ
∂ρU

)
.

(3.15)

Inserting (3.14) into (3.15) yields the desired result. �

In order to complete the proof of Proposition 3.1, use Lemma 3.2 in (3.8) to obtain∫
Π(Ω)

1

2
RdA =2πχ(Π(Ω))−

∫
∂Π(Ω)

Hds

−
∫

Π(Ω)

(
|∇̂ log |η||2 +

1

4
|η|2e4(U−α)(∂zAρ − ∂ρAz)2

)
dA.

(3.16)
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4. Proof of the Main Results

In order to establish Theorems 2.1, 2.2, and 2.3 we will utilize properties of the generalized Jang
equation [6, 7], which are described below. Motivated by the desire to impart nonnegativity to the
scalar curvature of initial data satisfying the dominant energy condition, or to study the existence
of apparent horizons, one may solve the following equation (for f)

(4.1)

(
gij − u2f if j

1 + u2|∇f |2

)(
u∇ijf + uifj + ujfi√

1 + u2|∇f |2
− kij

)
= 0,

where f i = gij∇jf and u is a given positive function. Geometrically, solutions should be viewed as a
graph t = f(x) in the warped product 4-manifold (R×M,u2dt2+g), where equation (4.1) is equivalent
to the apparent horizon equation if k is extended to the 4-manifold appropriately. When regular
solutions do not exist, the graph t = f(x) blows-up and approximates a cylinder over an apparent
horizon in the base manifold M (see [6, 7]). On the other hand, if a bounded domain Ω ⊂ M does
not contain any apparent horizons and the boundary is strongly untrapped H − |Tr∂Ωk| > 0, then
the Dirichlet problem for (4.1) with f = 0 on ∂Ω admits a smooth solution [15, 32]; the solution will
be axisymmetric as long as u is axisymmetric, that is η(u) = 0 implies η(f) = 0. Furthermore, the
scalar curvature of the induced graph metric g = g + u2df2 has the expression [6, 7]

(4.2) R = 16π(µ− J(w)) + |h− k|2g + 2|q|2g − 2u−1 divg(uq),

where h is the second fundamental form of the graph in the dual Lorentzian setting (R×M,−u2dt2 +
g), and w and q are 1-forms given by

(4.3) hij =
u∇ijf + uifj + ujfi√

1 + u2|∇f |2
, wi =

ufi√
1 + u2|∇f |2

, qi =
uf j√

1 + u2|∇f |2
(hij − kij).

Choose u = |η|−1 and suppose that the generalized Jang equation has a regular solution over Ω,
which is the case when no apparent horizons are present. The first task is to estimate the matter-
energy content of the body. According to (4.2), µ − J(w) ≥ µ − |J | ≥ 0, and g ≥ g we have
that ∫

Ω
(µ− J(w))|η|dωg ≤

∫
Ω

(µ− J(w))|η|dωg

≤
(
L

2π

)2 1

8π

∫
Ω
|η|−1

(
1

2
R+ u−1divg(uq)

)
dωg

=

(
L

2π

)2 1

8π

(∫
Ω

1

2
|η|−1Rdωg +

∫
∂Ω
|η|−1q(ν)dσg

)
,

(4.4)

where ν is the unit outer normal to ∂Ω with respect to g. Now note that η is a Killing field for g
with |η|g = |η|g, and we may extend g to be axisymmetric on all of M . It then follows from the
discussion in Section 2 that there is a global system of Brill coordinates (ρ, z, φ) for g. In particular

(4.5) dωg = |η|dφ ∧ dA, dσg = |η|dφ ∧ ds,

and Proposition 3.1 applies to yield

(4.6)

∫
Ω

(µ− J(w))|η|dωg ≤
1

4

(
L

2π

)2
(

2πχ(Π(Ω))−
∫
∂Π(Ω)

(H − q(ν))ds

)
.



8 KHURI AND XIE

Next, note that a calculation in [32, Page 764] shows that

(4.7) H − q(ν) =
√

1 + u2|∇f |2(H + ξTr∂Ωk)− ξ Tr∂Ωk

u|∇f |+
√

1 + u2|∇f |2
,

where ξ(x) = ±1 exactly when ν(f)(x) = ∓|∇f(x)|; recall that f |∂Ω = 0 so that this defines ξ at
each point of the boundary. Since by assumption H > |Tr∂Ωk| ≥ 0 it follows that

(4.8) H − q(ν) ≥ H − |Tr∂Ωk|,
and hence with the help of ds ≥ ds we find that

(4.9)

∫
Ω

(µ− J(w))|η|dωg ≤
L2

8π
χ(Π(Ω))− L

16π2

∫
∂Ω

(H − |Tr∂Ωk|)dσg.

We are now in a position to prove the results stated in Section 2. First note that Theorem 2.1 (i)
is a direct consequence of (4.9) together with

(4.10)

∫
Ω

(µ− J(w))|η|dωg ≥
l

2π

∫
Ω

(µ− |J |)dωg.

In order to establish Theorem 2.2 (i) observe that since the Jang solution f is axisymmetic w(η) = 0,

and thus |J(w)| ≤ | ~J |. Hence, with the enhanced dominant energy condition µ ≥ | ~J | + |J(e3)| we
have

|J (Ω)| ≤
∫

Ω
|J(η)|dωg =

∫
Ω
|J(e3)||η|dωg

=

∫
Ω

[
|J(e3)|+ | ~J | − µ+ (µ− | ~J |)

]
|η|dωg

≤
∫

Ω
(µ− | ~J |)|η|dωg

≤
∫

Ω
(µ− J(w))|η|dωg.

(4.11)

By combining (4.9) and (4.11) the desired result follows. Next observe that if the charged dominant
energy condition µEM ≥ |JEM | holds on the boundary and µ > |J | is valid on the interior of Ω then

Q2 =

(
1

4π

∫
∂Ω
E · νdσg

)2

+

(
1

4π

∫
∂Ω
B · νdσg

)2

≤ |∂Ω|
16π2

∫
∂Ω

(
|E|2 + |B|2

)
dσg

=
|∂Ω|
16π2

∫
∂Ω

[(
|E|2 + |B|2 − 8πµ+ 8π|JEM |

)
+ 8π(µ− |JEM |)

]
dσg

≤|∂Ω|
2π

∫
∂Ω

(µ− |JEM |)dσg

≤|∂Ω|2C0

2π|Ω|

∫
Ω

(µ− |J |)dσg.

(4.12)

This together with Theorem 2.1 (i) produces Theorem 2.3 (i).
Lastly, part (ii) of all three theorems arises from the following argument. Assume by way of

contradiction that Ω is void of apparent horizons. Then a regular solution to the generalized Jang
equation exists as described at the beginning of this section. Therefore we may apply the above
arguments to establish that part (i) is valid, yielding a contradiction to the hypotheses of part (ii).
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5. The Time-Symmetric and Maximal Cases

As discussed at the end of Section 2, reliance on Jang type equations to establish Theorems 2.1,
2.2, and 2.3 ensures that in the maximal (Trgk = 0) and time-symmetric cases (k = 0) part (ii) of
these theorems, concerning black hole existence, is not meaningful. Therefore, in this setting, we
seek alternate criteria which guarantee the presence of a trapped surface. Consider the inequality of
Proposition 3.1, rewritten from the perspective of Ω:

(5.1)

∫
Ω
R|η|−1dωg ≤ 8π2χ(Π(Ω))− 2

∫
∂Ω
H|η|−1dσg.

In the time-symmetric and maximal cases, the dominant energy condition implies nonnegative scalar
curvature R ≥ 0. This together with nonnegative mean curvature H ≥ 0 yields a refined version of
Theorem 2.1 (i). In addition, (5.1) leads to conditions which force ∂Ω to be trapped or partially
trapped. In this regard we define a surface S to be averaged trapped if

(5.2)

∫
S
H|η|−1dσg < 0.

Note that this definition in axisymmetry differs slightly from previous definitions of averaged trapped
surfaces (see eg. [21]) by the presence of |η|−1 in the surface measure. We also set the oscillation of
a function to be osc(f) = max f −min f .

Theorem 5.1. Let (M, g) be an axially symmetric, simply connected initial data set. Let Ω ⊂M be
an axisymmetric body situated away from the axis (l > 0), with nonnegative scalar curvature R ≥ 0.

i) If ∂Ω has nonnegative mean curvature H ≥ 0 then

(5.3)

∫
Ω
Rdωg + 2

∫
∂Ω
Hdσg ≤ 4πLχ(Π(Ω)).

ii) If

(5.4)

∫
Ω
Rdωg > 4πLχ(Π(Ω)),

then ∂Ω is an averaged trapped surface.

iii) If

(5.5)

∫
Ω
Rdωg > 4πLχ(Π(Ω)) +

L

π
|∂Ω| osc(H|η|−1),

then ∂Ω is a trapped surface.

Proof. Observe that (ii) follow immediately from (5.1), and (i) follows similarly with the aid of
|η|−1 ≥ 2πL−1. In order to establish (iii), assume by way of contradiction that ∂Ω is not trapped.
Then max(H|η|−1) ≥ 0, and hence (5.1) implies

(5.6)

∫
Ω
Rdωg ≤ 4πLχ(Π(Ω)) +

L

π

∫
∂Ω

[
max(H|η|−1)−H|η|−1

]
dσg,

which yields the opposite inequality in (5.5), a contradiction. �

Recall that in time-symmetry the quantity
∫

ΩRdωg is referred to as the rest mass of Ω. Therefore
the criteria in (ii) and (iii) of the above theorem are consistent with the basic intuition that highly
concentrated mass in a region of fixed size results in gravitational collapse. Analogous results may
be obtained for concentration of angular momentum and charge in the maximal setting. To see
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this observe that slight modification of the inequalities (4.11), under the dominant energy condition
assumption, produces

(5.7) |J (Ω)| ≤ L

32π2

∫
Ω
Rdωg.

Moreover, under the assumption of nonnegative non-electromagentic matter energy µEM ≥ 0 on ∂Ω,
similar arguments to those of (4.12) yield

(5.8) Q2 ≤ |∂Ω|2C1

32π2|Ω|

∫
Ω
Rdωg,

where

(5.9) C1 =
max∂ΩR

minΩR
.

We then have the following analogues of Theorems 2.2 and 2.3.

Theorem 5.2. Let (M, g, k) be an axially symmetric, simply connected, maximal initial data set.
Let Ω ⊂ M be an axisymmetric body situated away from the axis (l > 0), satisfying the dominant
energy condition µ ≥ |J |.
i) If ∂Ω has nonnegative mean curvature H ≥ 0 then

(5.10) |J (Ω)|+ L

16π2

∫
∂Ω
Hdσg ≤

L2

8π
χ(Π(Ω)).

ii) If

(5.11) |J (Ω)| > L2

8π
χ(Π(Ω)),

then ∂Ω is an averaged trapped surface.

iii) If

(5.12) |J (Ω)| > L2

8π
χ(Π(Ω)) +

L2

32π3
|∂Ω| osc(H|η|−1),

then ∂Ω is a trapped surface.

Theorem 5.3. Let (M, g, k) be an axially symmetric, simply connected, maximal initial data set.
Let Ω ⊂ M be an axisymmetric body situated away from the axis (l > 0), satisfying positive scalar
curvature R > 0 in Ω and nonnegative non-electromagnetic matter energy µEM ≥ 0 on ∂Ω.

i) If ∂Ω has nonnegative mean curvature H ≥ 0 then

(5.13) Q2 +
C1|∂Ω|2

16π2|Ω|

∫
∂Ω
Hdσg ≤

C1L|∂Ω|2

8π|Ω|
χ(Π(Ω)).

ii) If

(5.14) Q2 >
C1L|∂Ω|2

8π|Ω|
χ(Π(Ω)),

then ∂Ω is an averaged trapped surface.

iii) If

(5.15) Q2 >
C1L|∂Ω|2

8π|Ω|
χ(Π(Ω)) +

C1L|∂Ω|3

32π3|Ω|
osc(H|η|−1),

then ∂Ω is a trapped surface.
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Proof. Part (i) of Theorems 5.2 and 5.3 follows directly from (5.7) and (5.8) combined with Theorem
5.1 (i). Parts (ii) and (iii) are then established in a similar way to that of Theorem 5.1. �

Finally, we speculate on the heuristic physical reasoning behind the formation of black holes due
to concentration of angular momentum and charge. Intuitively, large amounts of angular momentum
should induce an object to fly apart rather than collapse, and large amounts of charge should cause
a body’s constituent parts to repel, again suggesting that such a body will come apart rather than
implode. Thus it seems at first thought to be counter-intuitive to expect a body to collapse due
to concentration of angular momentum or charge. However, it should be taken into account that
in order for a body to stay together with such high degrees of angular momentum or charge, it
should be extremely massive to create a sufficiently powerful gravitational field to counteract the
forces (angular momentum/charge) pulling it apart. With this we obtain a reasonable heuristic
explanation for the collapse. Namely, sufficiently large amounts of angular momentum or charge in
a body of a fixed size implies correspondingly large amounts of matter/energy in the same region,
which according to the Trapped Surface and Hoop Conjectures should induce gravitational collapse.
Moreover, this explanation is also consistent with the mathematical proofs above.

References

[1] P. Anglada, S. Dain, and O. Ortiz, Inequality between size and charge in spherical symmetry, Phys. Rev. D, 93

(2016), 044055. arXiv:1511.04489

[2] R. Arnowitt, S. Deser, and C. Misner, Minimum size of dense source distributions in general relativity, Ann.

Physics, 33 (1965), 88-107.
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