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A universal inequality that bounds the charge of a body by its size is presented
and is proven as a consequence of the Einstein equations in the context of initial
data sets which satisfy an appropriate energy condition. We also present a general
sufficient condition for the formation of black holes due to concentration of charge
and discuss the physical relevance of these results. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4936149]

I. INTRODUCTION

It is well known that black holes of a fixed size can only support a certain amount of charge,
depending on the horizon area.8,14,18 (This refers to apparent horizons. The same statement is not
necessarily true for event horizons.22) Here, we propose a similar statement for arbitrary charged
bodies which do not lie inside a black hole. Namely, let Ω be a compact spacelike hypersurface in a
spacetime which satisfies a suitable energy condition. IfΩ lies in the domain of outer communication,
then there exists a universal constant C such that

Charge(Ω) ≤ C · Size(Ω), (1.1)

where a precise definition of size will be given later. Thus, all bodies, from elementary particles
to astronomical objects, can only support a fixed amount of charge depending on their size, or
rather they must be sufficiently large depending on their charge. Similar results and inequalities
have recently been obtained7,19,26 where the role of charge is replaced by angular momentum,
that is

AM(Ω) ≤ C · Size(Ω) (1.2)

if Ω is not inside a black hole. The constant C in (1.1) will be a multiple of c2/
√

G, where c is
the speed of light and G is the gravitational constant, and Size(Ω) will be measured in units of
length.

In Ref. 19, it was shown that if the amount of angular momentum of a body sufficiently exceeds
its size, then the body must be contained in a black hole. In this paper, we will also establish such a
criterion for black hole existence focusing instead on the role of charge. More precisely, if the opposite
inequality of (1.1) holds, then Ω must be contained in a black hole. It follows that concentration of
charge alone can result in gravitational collapse. This statement is naturally motivated by intuition,
since large amounts of charge are associated with strong electromagnetic fields, and high concentra-
tion of matter fields is known to result in black hole formation. This last statement is referred to as the
Hoop conjecture31 and is related to the trapped surface conjecture.30 These conjectures have received
much attention, although they are not fully resolved. Many works1–3,12,17,20,21,33 involve strong hypoth-
eses including spherical symmetry or maximal slices, and some results10,29,35 are not useful for initial
data with low extrinsic curvature.
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II. EXPLICIT FORMULATION

Let (M, g, k,E,B) be initial data for the Einstein-Maxwell equations which includes a Rieman-
nian 3-manifold M with complete metric g, symmetric 2-tensor k denoting extrinsic curvature, and
vector fields E and B representing the electric and magnetic fields. It is assumed that the stress-energy
tensor Tab = Tab

EM + Tab
M is decomposed into two parts, one for the electromagnetic field, TEM, and

the other for the remaining matter fields, TM. If na is the timelike unit normal to the slice, then µ =
Tabnanb and J i = T iana represent the energy and momentum densities of all matter fields, whereas
µM = Tab

M nanb and J i
M = T ia

M na give the energy and momentum densities of the non-electromagnetic
matter fields. The initial data must satisfy the constraints

µM = µ −
1

8π
�|E |2 + |B|2� ,

JM = J +
1

4π
E × B,

(2.1)

where

16πG
c4 µ = R + (Trgk)2 − |k |2,
8πG

c4 J = div(k − (Trgk)g),
(2.2)

with R the scalar curvature of g, and (E × B)i = ϵ i jlE jBl the cross product; here, ϵ is the volume
form of g. Recall also that the electric and magnetic fields are obtained from the field strength by
Ei = Fin and Bi = − 1

2 ϵ i jlF
jl. The following inequality will be referred to as the charged dominant

energy condition:

µM ≥ |JM |. (2.3)

LetΩ be a body, that is, a connected open subset of M with compact closure and smooth boundary
∂Ω. The sum of the squares of its electric and magnetic charges yields the square of total charge,
which (using Gaussian units) is given by

Q2 =

(
1

4π


Ω

divEdωg

)2

+

(
1

4π


Ω

divBdωg

)2

. (2.4)

We now describe measurements of the size of the bodyΩ. In this regard, two definitions of radius
will be important. Namely, in Ref. 29, Schoen and Yau defined a radius RSY(Ω) that may be charac-
terized as the largest (minor) radius among all tori that can be embedded inΩ, and which was central
to their condition for the existence of black holes due to compression of matter. In more detail, if
Γ is a simple closed curve that encloses a disk in Ω, and r is the greatest distance from Γ with the
property that all points within this distance combine to form an embedded torus inΩ, then RSY(Ω) is
equal to the maximum r from any such curve Γ. Another important radius, the Ó Murchadha radius
ROM(Ω), is defined24 as the radius of the largest stable minimal surface that can be embedded in Ω.
Here, radius of the surface means the largest distance from a point in the surface to the boundary ∂Ω,
as measured by the induced metric on the surface. This is formulated most simply when ∂Ω is mean
convex (has positive mean curvature), so that geometric measure theory guarantees the existence of
many smooth least area surfaces contained in Ω. In general, the Ó Murchadha radius gives a larger
measure of size than the Schoen/Yau radius

ROM(Ω) ≥ RSY(Ω). (2.5)

Both radii measure well the size of a ball of radius a in flat space. Namely, for this body, RSY =

a/2 and ROM = a. However, their measurement for a torus of major radius a and minor radius b is
less accurate: RSY = b/2, ROM = b. In particular, for a torus, this measurement of size does not take
into account the major radius. This leads to a problem if one tries to establish an inequality of form
(1.1), with the notion of size given in terms of either of these radii. For instance, in the weak field
limit, a torus of large major radius a but small minor radius b could still support a large amount of
charge, since its surface area and volume may be large, while the measure of its size in terms of the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  73.192.31.130 On: Wed, 25 Nov 2015 18:05:59



112503-3 Marcus A. Khuri J. Math. Phys. 56, 112503 (2015)

radii is small. For this reason, we choose a notion of size which incorporates surface area |∂Ω| as
well. That is, in the precise version of inequality (1.1), size is defined by

Size(Ω) = |∂Ω|
R(Ω) , (2.6)

where R(Ω) represents either the Schoen/Yau radius or the Ó Murchadha radius. Finally, it should be
mentioned that the radius ROM gives an accurate measurement for highly dense spherical bodies.7,24

Thus, even in a strong gravitational field, this measurement is on the order of the area radius. Never-
theless, it would be desirable to eventually replace the role of the Schoen/Yau and Ó Murchadha radii
with a more simple quantity. However, our results here depend on theorems proved for these more
complicated measurements, and it is not clear how to proceed without them.

With these notions of charge and size, we may formulate a rigorous description of inequality (1.1),
except for the constant C which will be given in Sec. III. In order to articulate the black hole existence
result, we must replace event horizons with the quasilocal notion of apparent horizons. This is due to
the fact that event horizons cannot be located in initial data without knowledge of the full spacetime
development, whereas apparent horizons may be identified directly from the initial data. Let S ⊂ M
be a 2-surface and let θ± B HS ± TrSk be the null expansions, which assess potency of the gravita-
tional field; here, HS denotes mean curvature with regard to the unit outward normal. Geometrically,
the null expansions arise from the first variation of area in the outward future (θ+) and outward past
(θ−) null directions, and as such they are the rate of change of area for a shell of radiation discharged
by S in these directions. If θ+ < 0 (θ− < 0), then S is called a future (past) trapped surface, and the
gravitational field is considered to be strong in this vicinity. The boundaries of future (past) trapped
regions are referred to as future (past) apparent horizons and solve the equation θ+ = 0 (θ− = 0). Cos-
mic censorship implies that apparent horizons are typically contained inside black holes,32 and thus,
in many situations, they may be used in place of event horizons. We will show that if the opposite
inequality of (1.1) is valid, then an apparent horizon must exist within the initial data.

III. INEQUALITIES RELATING SIZE AND CHARGE OF BODIES

In this section, inequalities of form (1.1) will be established, both in the maximal case (Trgk = 0)
and in the general case. The inequality obtained in the maximal case is stronger, as the universal
coefficient C in this case is smaller. However, the inequality obtained for general initial data will be
used to obtain the criterion for black hole existence, described in Sec. IV. We begin with an important
observation which will be used in both cases. Let Ω be a body as described in Sec. II, then the total
charge may be estimated in terms of the energy and momentum densities as follows:

Q2 =

(
1

4π


∂Ω

E · νdσg

)2

+

(
1

4π


∂Ω

B · νdσg

)2

≤ |∂Ω|
16π2


∂Ω

�|E |2 + |B|2� dσg

=
|∂Ω|
16π2


∂Ω

��|E |2 + |B|2 − 8πµ + 8π |JM |� + 8π(µ − |JM |)� dσg

≤ |∂Ω|
2π


∂Ω

(µ − |JM |)dσg ,

(3.1)

where in the last step, charged dominant energy condition (2.3) was used, and ν is the unit outer
normal to ∂Ω.

Theorem 3.1. Let (M, g, k,E,B) be a maximal (Trgk = 0) initial data set for the Einstein-
Maxwell equations. Then, for any bodyΩ ⊂ M with constant energy density µ and satisfying charged
dominant energy condition (2.3), the following inequality holds:

|Q| ≤


c4

12G
|∂Ω|
R(Ω) , (3.2)
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whereR(Ω) denotes the Schoen/Yau radiusRSY(Ω). Moreover, if in addition the boundary ∂Ω is mean
convex, then R(Ω) denotes the Ó Murchadha radius ROM(Ω).

Proof. It suffices to estimate the integral on the right-hand side of (3.1). We have
∂Ω

(µ − |JM |)dσg ≤

∂Ω

µdσg = µ|∂Ω|. (3.3)

In light of the maximal assumption and the constancy of µ, Theorem 1 of Ref. 29 may be applied to
yield

µ ≤ πc4

6GRSY(Ω)2 . (3.4)

It follows from (3.1) that

Q2 ≤ c4

12G
|∂Ω|2
RSY(Ω)2 . (3.5)

Now consider the case when the boundary ∂Ω is mean convex. It was pointed out in Ref. 13 that
under this additional hypothesis, estimate (3.4) holds with the Ó Murchadha radius

µ ≤ πc4

6GROM(Ω)2 . (3.6)

It follows that (3.2) holds with the Ó Murchadha radius. Note that (2.5) implies that this is a better
result than the estimate with the Schoen/Yau radius. �

We will now obtain an inequality between the size and charge of bodies without the maximal
assumption. Here, we will employ a technique developed by Schoen and Yau in Refs. 28 and 29,
which reduces certain problems for general initial data back to the maximal setting. The idea is that
in the maximal setting, nonnegative scalar curvature R ≥ 0 is guaranteed from the dominant energy
condition, and it is this nonnegativity which is fundamental for establishing many geometric inequal-
ities, such as the positive mass theorem or (3.4) in the proof of Theorem 3.1. Thus, it is natural to
deform the initial data metric g to a new unphysical metric g whose scalar curvature satisfies R ≥ 0,
at least in a weak sense. This is accomplished in Ref. 28 by setting gi j = gi j + ∇i f∇ j f , which is the
induced metric on the graph t = f (x) in the 4-dimensional product manifoldR × M , where f satisfies
the so called Jang equation (

gi j − f i f j

1 + |∇ f |2
)
*
,

∇i j f
1 + |∇ f |2 − ki j+

-
= 0, (3.7)

with f i = gi j∇ j f . The purpose of this equation is to guarantee that the scalar curvature of g is weakly
nonnegative; in fact, it is given by the following formula:5,6,28

R =
16πG

c4 (µ − J(v)) + |h − k |2g + 2|q|2g − 2divg(q). (3.8)

Here, divg is the divergence operator, h is the second fundamental form of the graph, and

vi =
f i

1 + |∇ f |2 , qi =
f j

1 + |∇ f |2 (hi j − ki j). (3.9)

If the dominant energy condition µ ≥ |J | is valid, then each term on the right-hand side of (3.8) is
clearly nonnegative, except perhaps the divergence term; hence, we may view R as being weakly
nonnegative, which is sufficient for most purposes.

Let us assume that Jang equation (3.7) possesses a smooth solution in Ω. Measurement of the
accumulation of matter fields, which is needed to estimate the right-hand side of (3.1), may be ob-
tained by assessing the concentration of scalar curvature for the unphysical metric g. This in turn may
be accomplished by estimating the principal Dirichlet eigenvalue
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λ1 =


Ω

(|∇φ|2 + 1
2 Rφ2

)
dωg

Ω
φ2dωg

(3.10)

of the operator ∆g − 1
2 R, where φ is the principal eigenfunction. From the weak nonnegativity of the

scalar curvature, we may integrate by parts and use the two nonnegative terms |∇φ|2 and |q|2
g
φ2 to

find

λ1 ≥
8πG

c4 min
Ω

(µ − |J |) C Λ. (3.11)

Here we have also used the fact that |v | ≤ 1, so that µ − J(v) ≥ µ − |J |.
Estimate (3.11) for the principal eigenvalue allows an application of Proposition 1 of

Ref. 29 (if Λ , 0), from which we obtain

RSY(Ω) ≤


3
2
π
√
Λ
, (3.12)

where the radiusRSY pertains to g. Since the metric gmeasures lengths larger than does the metric g, it
follows that RSY ≥ RSY . Furthermore, let ψ ∈ C∞(Ω) be an arbitrary positive function, then dividing
and multiplying Λ−1 by


Ω
ψdωg

�
Ω
(µ − |J |)ψdωg

�−1 produce

Λ
−1 ≤ c4C0

8πG


Ω
ψdωg

Ω
(µ − |J |)ψdωg

, (3.13)

where C0 =
maxΩ(µ−|J |)
minΩ(µ−|J |) when µ − |J | > 0 in Ω, and C0 = ∞ when µ − |J | = 0 somewhere in Ω.

Therefore, 
Ω

(µ − |J |)ψdωg ≤
3πc4C0

16G


Ω
ψdωg

RSY(Ω)2 , (3.14)

and this leads to a general correlation between the size and charge of bodies. Before stating this
result, we record integral forms of the charged dominant energy condition and an “enhanced” energy
condition on the boundary

∂Ω

(µM − |JM |) dσg ≥ 0,

∂Ω

(µM − |J |) dσg ≥ 0 (3.15)

and define a constant C2
1 = C0

max∂Ω(µ−|J̃ |)
minΩ(µ−|J |) , where J̃ is JM or J depending on whether the first or second

condition of (3.15) is satisfied, respectively.

Theorem 3.2. Let (M, g, k,E,B) be an initial data set for the Einstein-Maxwell equations, which
contains no compact apparent horizons. Assume that either M is asymptotically flat or has a strongly
untrapped boundary, that is, H∂M > |Tr∂Mk |. Then, for any body Ω ⊂ M satisfying the dominant
energy condition µ ≥ |J |, and one of the two energy conditions (3.15) on ∂Ω, the following inequality
holds:

|Q| ≤ C1


3c4

32G
|∂Ω|
RSY(Ω) . (3.16)

Proof. The assumptions concerning the asymptotics of M or its boundary imply that a strongly
untrapped 2-surface is present in the initial data, and hence, the Dirichlet problem29 for the Jang
equation admits a solution with f = 0 on such a surface. In addition, f must be a smooth solution
due to the lack of apparent horizons. The arguments above now apply so that (3.14) is valid.

Let us now assume that the first energy condition of (3.15) holds. Then (3.1) is valid and we find
that

Q2 ≤ |∂Ω|
2π


∂Ω

(µ − |JM |)dσg . (3.17)

Furthermore by choosing

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  73.192.31.130 On: Wed, 25 Nov 2015 18:05:59



112503-6 Marcus A. Khuri J. Math. Phys. 56, 112503 (2015)

ψ =


∂Ω(µ − |JM |)dσg
Ω
(µ − |J |)dωg

≤ max∂Ω(µ − |JM |)
minΩ(µ − |J |)

|∂Ω|
|Ω| , (3.18)

we obtain 
∂Ω

(µ − |JM |)dσg ≤
3πc4C2

1

16G
|∂Ω|
RSY(Ω)2

(3.19)

from (3.14). Together, (3.17) and (3.19) yield the stated conclusion.
Alternatively, if the second energy condition of (3.15) holds, then add and subtract |J | instead of

|JM | in (3.1) to obtain

Q2 ≤ |∂Ω|
2π


∂Ω

(µ − |J |)dσg . (3.20)

By choosing

ψ =


∂Ω(µ − |J |)dσg
Ω
(µ − |J |)dωg

≤ max∂Ω(µ − |J |)
minΩ(µ − |J |)

|∂Ω|
|Ω| , (3.21)

a similar argument yields (3.16). �

Remark 3.3. The first energy condition in (3.15) is satisfactory, as it is a weaker version of well
known energy condition (2.3) (used, for instance, in the positive mass theorem with charge) which
states that the non-electromagnetic matter fields satisfy the dominant energy condition. On the other
hand, the second energy condition in (3.15) is not well motivated, and we view it as a technical
assumption that could perhaps be removed with further investigation. It should also be pointed out
that the constant in (3.16) is independent of the particular matter model, as long as it satisfies the
appropriate energy condition.

This result generalizes Theorem 3.1, which involves strong hypotheses such as the assumption
of maximal data and constant matter density. Note, however, that the inequality of Theorem 3.2 is

weaker than that of Theorem 3.1, since the constant C1


3c4

32G appearing in (3.16) is generally larger

than the constant


c4

12G of (3.2). Thus, although two undesirable hypotheses have been removed,
the resulting inequality is not optimal; the problem of finding the optimal constant is currently being
investigated by Dain et al.9 in the context of spherical symmetry. We also mention that the charged
bodies constructed by Bonnor in Ref. 4, all of which satisfy (3.16), could potentially be useful in
this pursuit. It turns out that the difference in the constants just described is related to a black hole
existence result which we now explain.

IV. CRITERIA FOR BLACK HOLE FORMATION

The dependence of Theorem 3.2 on solutions of Jang equation (3.7) inherently produces a black
hole existence result. This is due to the fact that solutions are regular except possibly at apparent
horizons, where the graph t = f (x) tends to blow-up in the form of a cylinder (see Refs. 15 and 28).
In other words, if it can be shown that the Jang equation does not possess a regular solution, then
an apparent horizon must be present in the initial data. This method for producing black holes was
initially used by Schoen and Yau in Ref. 29. Here, we will use it to obtain a criterion for black hole
existence due to concentration of charge.

Theorem 4.1. Let (M, g, k,E,B) be an initial data set for the Einstein-Maxwell equations, such
that either M is asymptotically flat or has a strongly untrapped boundary, that is, H∂M > |Tr∂Mk |.
If Ω ⊂ M is a body satisfying the dominant energy condition µ ≥ |J | and one of the two energy
conditions (3.15), with

|Q| > C1


3c4

32G
|∂Ω|
RSY(Ω) , (4.1)
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then M contains an apparent horizon of spherical topology which encloses a region that
intersects Ω.

Proof. As in the proof of Theorem 3.2, the assumptions on the boundary of M or its asymptotics
imply the existence of a solution to the Dirichlet boundary value problem for the Jang equation, with
f = 0 on ∂M or on an appropriate coordinate sphere in the asymptotic end. If the solution were reg-
ular, then by Theorem 3.2, the opposite inequality of (4.1) would hold. Since this is not the case, we
conclude that the solution is not regular, and hence, the existence of an apparent horizon is guaranteed.
Moreover, among apparent horizons arising from the blow-up of Jang’s equation, there is at least
one (which is outermost) with spherical topology.28 If the region which is enclosed by this apparent
horizon does not intersect Ω, then the solution of Jang’s equation is smooth over Ω. This would then
imply by the proof of Theorem 3.2 that (3.16) holds, yielding a contradiction. �

Whether concentrated charge leading to gravitational collapse is a naturally occurring phenom-
enon, seems to be an intriguing open question. In Sec. V, we will comment on some physical aspects
of this problem. As for the theoretical part, it should be pointed out that the proposed criteria are
not satisfied in the maximal case, since as mentioned previously, the universal constant in inequality
(3.2) is smaller than the constant in (3.16) and (4.1). A similar relation between the maximal and
nonmaximal cases holds with regards to the condition of Schoen and Yau for black hole creation.
Therefore, sufficient amounts of extrinsic curvature are needed for the Schoen/Yau condition, as well
as the hypotheses of Theorem 4.1, to be fulfilled.

With this intuition, we now show how to construct examples of initial data satisfying the condi-
tions for black hole existence. Fix an asymptotically flat metric g on M ≃ R3, and set Ω = B1(0)
to be the unit ball. Let (e1,e2,e3) be an orthonormal frame and set ki j B k(ei,e j) = 0 for all (i, j) ,
(1,1), (2,2), and k11 = k22 = β2 for some parameter β > 0. It follows that

µ =
c4

16πG
(R + 2k11k22) ∼ β4, |J | ∼ β2. (4.2)

For large β, this yields C1 ∼ 1, and also µM > |J | if we choose E,B ∼ β. It may be arranged so that
divE = divB = 4π β in Ω, which implies that |Q| = α√2|Ω|. Since the right-hand side of (4.1) is
independent of β, it follows that (4.1) is satisfied for large β. Finally, by extending k, E, and B outside
ofΩ to be asymptotically flat, all the hypotheses of Theorem 4.1 are satisfied and an apparent horizon
must be present. Since the constant 2β2 represents Trgk, we conclude that large traces of extrinsic
curvature facilitate the formation of apparent horizons in this setting. Note that there is quite a bit
of freedom in this construction, since, for instance, the metric g is essentially arbitrary. Of course,
this is an abstract and ad hoc procedure which is not of physical interest, but it shows that there are
many configurations satisfying the criteria of this result. It should also be pointed out that besides
the Maxwell field, the matter models present in this construction are not given explicitly. However,
it seems that a combination of dust (or perfect fluid) with a charged scalar field might fit. Finally, we
mention that since µ − |J | ∼ β4, and the radius RSY(Ω) is fixed, these data also satisfy the hypotheses
of the Schoen/Yau black hole existence criterion.29 Moreover, a similar construction in axisymmetry,
with the role of charge replaced by angular momentum, yields examples of data satisfying the criteria
of Ref. 19.

V. PHYSICAL RELEVANCE

The inequalities between size and charge for bodies, as well as the black hole existence criterion
proven above, are predictions of Einstein’s theory and hence should be contrasted with observational
evidence and other theories. Let us consider bodies which are approximately spherical in shape, so
that the ratio of boundary area to radius is on the order of the radius R. Then, in general terms, what
we have shown is that for stable bodies

|Q| . c2

√
keG
R, (5.1)
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and that if the opposite inequality holds then the body should undergo gravitational collapse. Here,
. should be interpreted in terms of order of magnitude, and ke ≈ 9 × 109 N m2 C−2 is Coulomb’s
constant so that (5.1) is expressed in SI units, as opposed to Gaussian units used in Secs. I–IV.

Consider now an electron. It has a classical radius of Re ≈ 2.8 × 10−15 m. Moreover, since G ≈
6.67 × 10−11 N m2 kg−2 and c ≈ 3 × 108 ms−1, it follows that

c2

√
keG
Re ≈ 100 C. (5.2)

Therefore, since the charge of an electron |Qe | ≈ 1.6 × 10−19 C, we find that (5.1) is satisfied.
According to the principle of charge quantization, the charge of a body is an integer multiple of

the elementary charge (charge of an electron). Thus, |Qe| is the smallest amount of charge that a body
can possess. Using this fact in (5.1), we find that the classical theory imposes the following minimum
size for a body:

R0 =

√
keG
c2 |Qe| ≈ 1.4 × 10−36 m, (5.3)

which is on the order of the Planck length lp =
(
G~
c3

)1/2
≈ 1.6 × 10−35 m. It then appears to be a

remarkable self consistency of the Einstein field equations that they predict a minimum length on the
order of magnitude of the Planck length, if we assume the principle of charge quantization.

On the other hand, we may consider bodies of astronomical scale such as stars. The study of the
effects of electric charge in isolated gravitating systems goes back to Rosseland27 and Eddington.11

It was shown that since electrons are rather less massive than protons, electrons tend to escape more
frequently, as part of the solar wind. This induces a net positive charge in the star, which then yields
an attractive force on electrons trying to escape. Eventually, an equilibrium of these forces is estab-
lished, resulting in a net positive charge on the order of ∼100(M/M⊙)C,16 where M is the mass of the
star. Thus, for typical stars, net charge is sufficiently small to be considered insignificant, and they
certainly satisfy inequality (5.1). However, as pointed out by Witten,34 it is theoretically possible to
have stars made of absolutely stable strange quark matter. These are highly dense bodies, which have
masses and radii similar to those of neutron stars. They are also capable of possessing large amounts
of charge23 and thus are candidates to violate (5.1). Consider such a star with charge |Q| = 1020 C
and radius R = 104 m as considered in Ref. 23. We have

c2

√
keG
R ≈ 1021 C, (5.4)

so that (5.1) is still satisfied, although it is nearly violated. Moreover, the black hole existence crite-
rion associated with (5.1) asserts that a star of this radius can only support a charge of |Q| ∼ 1020

C, beyond which the system will collapse to form a black hole; this is consistent with the findings
of Ref. 25, obtained numerically with different methods. Finally, we mention that magnetic charge
is also included on the left hand side of (5.1), and thus, it would be interesting to contrast the above
results with empirical evidence associated with magnetic charge.
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