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The generalized Jang equation was introduced in an attempt to prove the Penrose
inequality in the setting of general initial data for the Einstein equations. In this
paper we give an extensive study of this equation, proving existence, regularity,
and blow-up results. In particular, precise asymptotics for the blow-up behavior are
given, and it is shown that blow-up solutions are not unique.
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1. Introduction

In 1978 the physicist P. S. Jang [14] introduced a quasilinear elliptic equation in
connection with the positive energy conjecture of General Relativity. Since then
it has had numerous applications from quasilocal mass to the existence of black
holes. An excellent survey of these applications may be found in [2]. However,
Jang’s equation has been shown to be unsuitable for an application to the Penrose
inequality [16], and for this reason a generalization of this equation has been
proposed in [5, 6]. Further applications may be found in [7, 15]. The purpose of this
paper is to give a complete analysis of the generalized Jang equation, in a setting
suitable for the Penrose inequality.

Consider an initial data set �M� g� k� for the Einstein equations. This consists
of a Riemannian 3-manifold M with metric g, and a symmetric 2-tensor k, which
satisfy the constraint equations:

2� = R+ �Trk�2 − �k�2�
J = div�k+ �Trk�g��

(1.1)
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2200 Han and Khuri

Here � and J are the energy and momentum densities of the matter fields, respectively,
andR is the scalar curvature of g. If all measured energy densities are nonnegative then
� ≥ �J �, which will be referred to as the dominant energy condition. This condition
may be viewed as a quasi nonnegativity of the scalar curvature. In fact in the
time symmetric (k = 0) or maximal case (Trk = 0), one does have R ≥ 0, and this
condition plays a central role in the proof of several results such as the positive energy
theorem [18, 20] and the Penrose inequality [4, 13]. Moreover, the primary difficulty
in establishing these results for general initial data is the lack of nonnegative scalar
curvature. Thus, in the general case, one is motivated to deform the initial data in an
appropriate way (depending on the problem at hand) such that the dominant energy
condition yields nonnegativity of the scalar curvature for the deformed metric. The
deformation chosen by Jang [14] is given by g = g + df 2, for some function f defined
on M . Notice that g is the induced metric on the graph � = �t = f�x�� in the product
4-manifold �M ×�� g + dt2�. When viewed in this way, the optimal Jang deformation
is given by a hypersurface � ⊂ �M ×�� g + dt2� which has scalar curvature that is
as nonnegative as possible. It turns out that this optimal deformation arises as the
hypersurface which satisfies Jang’s equation

H� − Tr�k = 0� (1.2)

where H� is mean curvature and Tr�k denotes the trace of k (extended trivially to the
4-manifold) over �. While this deformation does not necessarily yield nonnegative
scalar curvature, it is sufficient to make a further conformal deformation to zero
scalar curvature, as was carried out by Schoen and Yau [19] in their proof of
the positive energy theorem. Jang’s approach also beautifully handles the case of
equality for the positive energy theorem. In the case of equality, the Jang surface
��� g� is isometric to Euclidean space ��3� 	�, and hence g = 	− df 2. It follows that
the map x �→ �x� f�x�� yields an isometric embedding of �M� g� into the Minkowski
spacetime �4; it can also be shown that the second fundamental form of this
embedding agrees with k, as desired. In some sense, Jang’s procedure seems to be
tailor made for the positive energy theorem. In fact it is so well calibrated to the
positive energy theorem, that this method is rendered inapplicable to the Penrose
inequality. The reason for this is as follows. As explained in [5, 6], in the case of
equality for the Penrose inequality, the Jang metric g should coincide with gsc, the
induced metric on the t = 0 slice of the Schwarzschild spacetime ��4. It follows that
g = gsc − df 2, and the map x �→ �x� f�x�� cannot yield an embedding of �M� g� into
��4, since the Schwarzschild metric has the warped product structure −
2

scdt
2 + gsc.

However, this observation leads to a natural modification of the Jang approach
from which the generalized Jang equation arises.

We now search for a hypersurface �, given by a graph t = f�x�, inside the
warped product space �M ×�� g + 
2dt2�, where 
 is a nonnegative function
defined on M . For certain applications the choice of 
 may depend on f , however
in this paper we will assume that 
 is fixed independent of f . The goal or motive
which leads to the generalized Jang equation is the same as in the classical case.
That is, we search for a hypersurface which has the most positive scalar curvature
that is possible. In order to have any chance of obtaining a positivity property for
the scalar curvature, we would like the Jang surface � to satisfy an equation with
the same structure as in (1.2), namely

H� − Tr�K = 0� (1.3)
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Existence and Blow-Up Behavior for Solutions 2201

where again H� is mean curvature and Tr�K denotes the trace of K over �. Here,
however, K represents a nontrivial extension of the initial data k to all of M ×�.
In (1.2) k is extended trivially in that k��t� ·� = 0, but it turns out that the trivial
extension is not appropriate for a Jang surface inside the warped product metric.
This is due to the fact that for applications it is desirable for solutions of the
generalized Jang equation to blow-up at apparent horizons, and as is shown in [5],
this is possible when K is extended as follows:

K��xi � �xj � = K��xj � �xi � = k��xi � �xj � for 1 ≤ i� j ≤ 3�
K��xi � �t� = K��t� �xi � = 0 for 1 ≤ i ≤ 3�

K��t� �t� =

2g��f� �
�√
1+ 
2��f �2 �

(1.4)

where xi, i = 1� 2� 3, are local coordinates on M . Moreover this particular extension
also yields an optimal positivity property for the scalar curvature of solutions to
(1.3). Namely, a long calculation [5, 6] gives the following formula for the scalar
curvature of � satisfying equation (1.3) with extension (1.4):

R = 2�� − J�w��+ �A− K���2 + 2�q�2 − 2
−1div�
q�� (1.5)

Here g = g + 
2df 2 and A are the induced metric and second fundamental form
of �, respectively, K�� is the restriction to � of the extended tensor K, div is the
divergence operator with respect to g, and q and w are 1-forms given by

wi =

fi√

1+ 
2��f �2 � qi =

fj√

1+ 
2��f �2 �Aij − �K���ij��

with f j = gijfi. If the dominant energy condition is satisfied, then all terms
appearing on the right-hand side of (1.5) are nonnegative, except possibly the last
term. However the last term has a special structure, and in many applications
it is clear that a specific choice of 
 will allow one to ‘integrate away’ this
divergence term, so that in effect the scalar curvature is weakly nonnegative (that
is, nonnegative when integrated against certain functions).

When the tensor k is extended according to (1.4), we will refer to equation (1.3)
as the generalized Jang equation, and the solution � = �t = f�x�� will be called
the Jang surface. In local coordinates the generalized Jang equation takes the
following form:(

gij − 
2f if j

1+ 
2��f �2
)(


�ijf + 
ifj + 
jfi√
1+ 
2��f �2 − kij

)
= 0� (1.6)

This is a quasilinear elliptic equation, which degenerates when f blows-up or 
 = 0.
When 
 = 1 this reduces to the classical Jang equation studied by Schoen and
Yau [19].

Our study of (1.6) is naturally divided into two steps. In the first step, the setting
consists of a complete initial data set on which the function 
 is strictly positive.
We will show that an analogue of the existence and regularity result, as obtained
by Schoen and Yau [19] for the classical Jang equation, holds in this case. The
proof follows the same general ideas present in [19] with appropriate modification.
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2202 Han and Khuri

The primary difference is that (especially for applications) it is important to track
precisely how the estimates depend on 
 and its derivatives. These estimates will
also be helpful for the case in which 
 is allowed to vanish. In the second and
primary step, the setting consists of an initial data set with outermost apparent
horizon boundary along which 
 vanishes. Our study in this case constitutes the
main focus and purpose of this paper. We will establish the existence of solutions
which blow up along the boundary, and will give precise descriptions of the blow-up
rates by constructing upper and lower barriers. The fact that 
 vanishes on the
boundary adds an extra degeneracy to equation (1.6), which makes the analysis in
this case much more difficult. The existence of blow-up solutions for the classical
Jang equation has been proven by Metzger in [17] (see also [8]).

In this paper we will always assume that the initial data are asymptotically flat
(with one end), so that at spatial infinity the metric and extrinsic curvature satisfy
the following fall-off conditions

��m�gij − 	ij�� = O��x�−m−1�� ��mkij� = O��x�−m−2�� m = 0� 1� 2� as �x� → ��

Moreover if the initial data has boundary, it will be assumed to consist of an
outermost apparent horizon. To explain this more precisely, recall that the strength
of the gravitational field in the vicinity of a 2-surface S ⊂ M may be measured by
the null expansions

± �= HS ± TrSk� (1.7)

where HS is the mean curvature with respect to the unit outward normal (pointing
towards spatial infinity). The null expansions measure the rate of change of area
for a shell of light emitted by the surface in the outward future direction (+),
and outward past direction (−). Thus the gravitational field is interpreted as being
strong near S if + < 0 or − < 0, in which case S is referred to as a future (past)
trapped surface. Future (past) apparent horizons arise as boundaries of future (past)
trapped regions and satisfy the equation + = 0 (− = 0). In the setting of the initial
data set formulation of the Penrose inequality, apparent horizons take the place
of event horizons, in that the area of the event horizon is replaced by the least
area required to enclose the outermost apparent horizon. Here, an outermost future
(past) apparent horizon refers to a future (past) apparent horizon outside of which
there is no other apparent horizon; such a horizon may have several components,
each having spherical topology [9, 10]. In this paper we will refer to the union
of the outermost future apparent horizon and outermost past apparent horizon as
the outermost apparent horizon, and we will assume that past and future horizon
components do not intersect. For the sake of applications it is desirable for solutions
of the generalized Jang equation to blow-up to +� (−�) in the form of a cylinder
over the future (past) components of an outermost apparent horizon, and to vanish
at spatial infinity. The fall-off rate for the solution of the generalized Jang equation
depends on the asymptotics of the warping factor, however here we will always
assume that


�x� = 1+ C

�x� + O

(
1
�x�2

)
as �x� → � (1.8)
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Existence and Blow-Up Behavior for Solutions 2203

for some constant C, which yields

��mf ��x� = O��x�− 1
2−m� as �x� → �� m = 0� 1� 2� (1.9)

These asymptotics ensure that the ADM energy of the Jang surface agrees with that
of the initial data.

As mentioned above, our primary goal is to study (1.6) in the setting of initial
data with outermost horizon boundary along which 
 vanishes, and to describe the
blow-up behavior of its solutions near the boundary. To this end, we will need to
know the asymptotics of the warping factor 
 and of the null expansions. That is,
we assume that the warping factor and the null expansions vanish in a controlled
way at the horizon. Set ��x� = dist�x� �M�. In a neighborhood of �M , we impose the
following structure condition


�x� = �b�x�
̃�x�� (1.10)

for some smooth (up to the boundary) strictly positive function 
̃, with b ≥ 0.
Next, we let S� denote level sets of the geodesic flow emanating from �M , that is,
each point of S� is of distance � from the boundary. Furthermore decompose
�M = �+M ∪ �−M , where �+M (�−M) denotes the future (past) apparent horizon
components. We then stipulate that near �±M

�±�S��� ≤ c�l (1.11)

for some constants l� c > 0. Notice that when the initial data are smooth up to the
boundary, as will always be the case in this paper, l ≥ 1. Whether or not f actually
blows up and approximates a cylinder over the horizon is highly dependent on the
relationship between the vanishing rates of ± and 
, that is, the relation between l
and b. In some cases we require a more restrictive condition

c−1�l ≤ ±�S�� ≤ c�l� (1.12)

with constants l� c > 0.
The main result in this paper is the following theorem.

Theorem 1.1. Suppose that �M� g� k� is a smooth, asymptotically flat initial data set,
with outermost apparent horizon boundary �M = �+M ∪ �−M . Suppose further that 

is smooth, strictly positive away from �M , and satisfies (1.8) and (1.10) for some b ≥ 0.

(1) If − l−1
2 ≤ b < l+1

2 and (1.12) is valid for some l ≥ 1, then there exists a smooth
solution f of the generalized Jang equation (1.6), satisfying (1.9), and such that
f�x� → ±� as x → �±M . More precisely, in a neighborhood of �±M

�−1�−b− l−1
2 + �−1 ≤ ±f ≤ ��−b− l−1

2 + � if − l− 1
2

< b <
l+ 1
2

�

−�−1 log �+ �−1 ≤ ±f ≤ −� log �+ � if b = − l− 1
2

�
(1.13)

for some positive constants � and �.
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2204 Han and Khuri

(2) If 1
2 ≤ b < l+1

2 and (1.11) is valid for some l ≥ 1, then there exists a smooth solution
f of the generalized Jang equation (1.6), satisfying (1.9), and such that f�x� → ±�
as x → �±M . More precisely, in a neighborhood of �±M

�−1�1−2b + �−1 ≤ ±f ≤ ��1−2b + � if
1
2
< b <

l+ 1
2

�

−�−1 log �+ �−1 ≤ ±f ≤ −� log �+ � if b = 1
2
�

(1.14)

for some positive constants � and �.

Remark 1.2. The hypothesis b ≥ − l−1
2 is trivially satisfied under the primary

assumptions of this paper, that is b ≥ 0 and l ≥ 1. However it is believed that
this theorem, and others having this hypothesis, continue to hold even when
these primary assumptions are relaxed. For this reason, the inequality b ≥ − l−1

2 is
included in the statement of such results.

We note that there are at least two solutions with different asymptotics
when 1

2 ≤ b < l+1
2 . The estimates (1.13) and (1.14) are established by constructing

appropriate sub and super solutions, however these estimates may not hold when the
particular inequalities between l and b are not satisfied. Furthermore, we exhibit by
example, a solution which does not have cylindrical asymptotics near the outermost
apparent horizon when b = �l+ 1�/2.

It should be pointed out that the lower bounds in (1.13) are new even for the
classical Jang equation, that is, when 
 = 1.

Theorem 1.1 establishes the existence of solutions to the generalized Jang
equation which possess appropriate behavior for application to the Penrose
inequality. In particular, for an appropriate choice of 
, the blow-up rates (1.14)
show that the Jang surface is a manifold with boundary, and that the boundary
is a minimal surface. This allows techniques from the time symmetric proof of the
Penrose inequality to be applied, and is different from the behavior of the blow-up
solutions of the classical Jang equation which possess an infinitely long neck at the
horizon.

The assumption on 
, that it is positive away from the boundary and satisfies
(1.10), may seem restrictive if one hopes to apply our result to the Penrose inequality
as described in [6]. However this is not the case. Three proposals for a coupling of
the generalized Jang equation with other equations were outlined in [6], and it is
the coupling with Bray’s conformal flow which produces a warping factor 
 that
satisfies our hypotheses. The one missing ingredient here in this paper is that 
 is
fixed, and does not depend on f . Nevertheless, Theorem 1.1 provides the important
first step in the difficult problem of analyzing the coupled Jang/conformal flow
system. More precisely, given 
0 satisfying (1.10), Theorem 1.1 produces f0, from
which we may construct the Jang metric g0 = g + 
2

0df
2
0 . According to [6], Bray’s

conformal flow with respect to g0 produces a new warping factor 
1, which will
also satisfy the hypotheses of Theorem 1.1. We may then continue this procedure
indefinitely to produce sequences of functions �
i�, �fi�. The second and final step
should entail establishing appropriate a priori estimates, to show that a subsequence
converges to yield a solution of the coupled system of equations. This last step will
be quite involved.
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Existence and Blow-Up Behavior for Solutions 2205

This paper is organized as follows. In Section 2 we derive local a priori
estimates, and in Section 3 an important Harnack inequality is proved. These two
results are then combined with further global estimates to establish the existence of
solutions on complete initial data, in Section 4. In Section 5 we produce the blow-
up solutions of Theorem 1.1, and construct appropriate super solutions. Lastly, the
more difficult sub solutions are constructed in Section 6 and Theorem 1.1 is proven.

2. A Priori Estimates for the Generalized Jang Equation

In this section we begin the proof of existence for the generalized Jang equation.
Our first goal is to prove the same existence and regularity result as obtained by
Schoen and Yau [19], for arbitrary positive warping factor 
. This is fairly straight
forward, in that the methods of Schoen and Yau still apply with little modification.
The primary difference is that (especially for applications) it is important to track
precisely how the estimates depend on 
 and its derivatives. The estimates of this
section will also be helpful for the case in which 
 is allowed to vanish, but for now
we assume that 
 is strictly positive.

Let us set the notation. Consider a hypersurface � ⊂ �M ×�� g + 
2dt2� given
by the graph of a function t = f�x�. This surface has induced metric g = g + 
2df 2,
and inverse matrix

gij = gij − 
2f if j

1+ 
2��f �2 �

where f i = gijfj and fi = �xif , with xi, i = 1� 2� 3, local coordinates on M .
Throughout the paper, a bar will be placed over geometric quantities associated
with �. For instance � will denote the induced connection on �, whereas �

will denote the connection on the ambient manifold �M ×�� g + 
2dt2�. The unit
normal to � is given by

N = �f − 
−2�t√

−2 + ��f �2 �

and Xi = �xi + fi�t, i = 1� 2� 3 form a basis for the tangent space. Moreover a
calculation [5, 6] shows that the second fundamental form of � is given by

Aij = 	�Xi
N�Xj
 =


�ijf + 
ifj + 
jfi + 
2fm
mfifj√
1+ 
2��f �2 � (2.1)

In this section it will be assumed that � satisfies an equation of the form

H − TrK = F� (2.2)

for some function F to be specified, where H = gijAij is mean curvature and TrK

denotes the trace of K over �. In what follows, as in (2.2), we will drop the subscript
� when denoting the mean curvature and trace operations with respect to �.

We first estimate the mean curvature and its derivatives.
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2206 Han and Khuri

Lemma 2.1. Suppose that the surface � satisfies (2.2). Then

�H� ≤ �F � + c�1+ �� log
��� (2.3)

and

��H� ≤ c�1+ ��F � + �� log
�2 + 
−1��2
� + �A� + �A��� log
��� (2.4)

where c is a universal constant.

Proof. First, by (2.2), we have

H = gij

(
kij +


2�
lfl�fifj√
1+ 
2��f �2

)
+ F = gijkij +


2�
lfl���f �2
�1+ 
2��f �2�3/2 + F� (2.5)

This implies (2.3) easily.
Next, a simple differentiation yields

�aH = gijkij�a + �aF +
(−2

af

if j − 2
2f i�af
j

1+ 
2��f �2
)
kij

+ 
2f if j

�1+ 
2��f �2�2 �2

a��f �2 + 2
2fn�naf�kij +
2
2�
mfm�f

n�naf

�1+ 
2��f �2�3/2

+ 2

a�

nfn���f �2 + 
2��a


n�fn��f �2 + 
2
n�naf ��f �2
�1+ 
2��f �2�3/2

− 3
2

2�
mfm���f �2
�1+ 
2��f �2�5/2 �2

a��f �2 + 2
2fn�naf��

However, by (2.1)

�ijf = 
−1�
√
1+ 
2��f �2Aij − 
ifj − 
jfi − 
2�
mfm�fifj��

Thus, after substitution, some cancelations occur and we obtain

�aH = gijkij�a + �aF +
(

2

ifjfa

1+ 
2��f �2 − 2
fiAja√
1+ 
2��f �2 + 2
3fifjf

nAan

�1+ 
2��f �2�3/2
)
kij

+ 
2��f �2fn�an


�1+ 
2��f �2�3/2 − 2
�
mfm�
2fa

�1+ 
2��f �2�3/2 − 
��f �2��
�2fa
�1+ 
2��f �2�3/2 − 
��f �2�
mfm�
a

�1+ 
2��f �2�3/2

+ Aan

(
2
�
mfm�f

n

1+ 
2��f �2 + 
��f �2
n

1+ 
2��f �2 − 3
3��f �2�
mfm�f
n

�1+ 
2��f �2�2
)
�

This implies (2.4). �

We point out that (2.3) yields a uniform pointwise estimate of the mean
curvature. However, (2.4) illustrates that first derivatives of the mean curvature are
estimated in terms of the second fundamental form, which is not yet controlled.
In fact, estimating the second fundamental form will take up a major part of this
section.
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Existence and Blow-Up Behavior for Solutions 2207

We next establish a C0 estimate for the second fundamental form of �. This
result will arise from a Moser iteration applied to the Simons identity. See also the
paper [1], in which a similar result is proven in more general ambient geometries.

Theorem 2.2. Suppose that the surface � satisfies (2.2). Then

sup
�

�A� ≤ c (2.6)

where c depends on � log
�, �� log
�, ��2 log
�, �F �, and �N�F��.

Proof. The proof is lengthy and is divided into several steps.
Step 1. Derivation of Simons identity and several related inequalities. Recall the

Ricci commutation formula and Codazzi equations:

�a�nAij − �n�aAij = −AmjR
m

ian − AimR
m

jan� (2.7)

and

�aAij = �iAaj + RNjia� (2.8)

Use these to obtain

�Aij = gna�n�aAij

= gna��n�iAaj + �nRNjia�

= gna��i�nAaj − AmjR
m

ani − AamR
m

jni + �nRNjia�

= gna�i��jAna + RNajn�− gna�AmjR
m

ani + AamR
m

jni − �nRNjia�

= �i�jH + gna��iRNajn + �nRNjia − AmjR
m

ani − AamR
m

jni��

Now use the Gauss equations

Rijnd = Rijnd + AinAjd − AidAjn (2.9)

to find

�Aij = �i�jH + gna��iRNajn + �nRNjia�− gnagmd�AmjRdani + AamRdjni�

− gnagmdAmj�AdnAai − AdiAan�− gnagmdAam�AdnAji − AidAjn��

Therefore

�Aij = �i�jH − �A�2Aij +HAimA
m
j +Gij�

where

Gij = gna��iRNajn + �nRNjia − gmdAmjRdani − gmdAamRdjni��
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2208 Han and Khuri

We then obtain

1
2
��A�2 = gidgja�Ada�Aij + gmn�mAda�nAij�

= gidgja�gmn�mAda�nAij + AdaGij�− �A�4
+ gidgja�HAdaAimA

m
j + Ada�i�jH�� (2.10)

This is the Simons identity for �.
Note that we also have

1
2
��A�2 = �A���A� + �� �A��2�

so that

�A���A� = ��A�2 − �� �A��2 − �A�4 + Aij��i�jH +Gij +HAimA
m
j ��

Set

T �= ��A�2 − �� �A��2� (2.11)

For the remainder of this paragraph we will work in an orthonormal basis. Then

T = ∑
i�j�n

��nAij�
2 − �A�−2

∑
n

(∑
i�j

Aij�nAij

)2

�

so that

�A�2T = 1
2

∑
i�j�n�d�m

�Aij�nAdm − Adm�nAij�
2�

By setting n = i and m = j and using the Schwarz inequality, we have

�A�2T = 1
2

∑
i�j�d

�Aij�iAdj − Adj�iAij�
2 + 1

2

∑
i�j�n�d�m

�n�m��=�i�j�

�Aij�nAdm − Adm�nAij�
2

≥ 1
18

∑
d

(∑
i�j

Aij�iAdj −
∑
i�j

Adj�iAij

)2

+ 1
2

∑
i�j�n�d�m

�n�m��=�i�j�

�Aij�nAdm − Adm�nAij�
2�

Moreover, according to the Codazzi equations (2.8),∑
i�j

Aij�iAdj =
∑
i�j

Aij�dAij +
∑
i�j

AijRNjdi

and ∑
i�j

Adj�iAij =
∑
j

Adj�jH +∑
i�j

AdjRNiji�
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Existence and Blow-Up Behavior for Solutions 2209

It follows that

�A�2T ≥ 1
36

∑
l

(∑
i�j

Aij�dAij

)2

− 1
18

∑
d

(∑
i�j

AijRNjdi −
∑
j

Adj�jH −∑
i�j

AdjRNiji

)2

+ 1
2

∑
i�j�n�d�m

�n�m��=�i�j�

�Aij�nAdm − Adm�nAij�
2�

after using �a+ b�2 ≥ 1
2a

2 − b2. The definition of T in (2.11) now yields

T ≥ 1
37

∑
i�j�n

��nAij�
2

− 36
37

· 1
18

�A�−2
∑
d

(∑
i�j

AijRNjdi −
∑
j

Adj�jH −∑
i�j

AdjRNiji

)2

+ 36
37

· 1
2
�A�−2

∑
i�j�n�d�m

�n�m��=�i�j�

�Aij�nAdm − Adm�nAij�
2�

Hence

�A���A� ≥ 1
37

∑
i�j�n

��nAij�
2 − �A�4 +∑

i�j

Aij

(
�ijH +Gij +

∑
m

HAimAjm

)

− 2
37

�A�−2
∑
d

(∑
i�j

AijRNjdi −
∑
j

Adj�jH −∑
i�j

AdjRNiji

)2

+ 2
37

�A�−2
∑

i�j�n�d�m
�n�m��=�i�j�

�Aij�nAdm − Adm�nAij�
2�

We can also write

�A���A� ≥ 1
37

∑
i�j�n

��nAij�
2 − �A�4 − �H��A�3 +∑

i�j

Aij�ijH +G1� (2.12)

where

G1 � =
∑
i�j

AijGij −
2
37

�A�−2
∑
d

(∑
i�j

AijRNjdi −
∑
j

Adj�jH −∑
i�j

AdjRNiji

)2

+ 2
37

�A�−2
∑

i�j�n�d�m
�n�m��=�i�j�

�Aij�nAdm − Adm�nAij�
2�

Step 2. An L4-estimate for the second fundamental form. Taking two traces of the
Gauss equations (2.9) produces

R = gingjmRijnm +H2 − �A�2�
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2210 Han and Khuri

Moreover, equation (2.2) implies that

R+ �A�2 = gingjmRijnm + �TrK + F�2�

Recall the formula for the scalar curvature of surface � (see [5, 6])

R = 2�� − J�w��+ �A− K�2 + 2�q�2 − 2


div�
q�

+H2 − �TrK�2 + 2K�N�N��H − TrK�+ 2N�H − TrK��

By combining the previous two formulas we then have

�A�2 + �A− K�2 + 2�� − J�w��+ 2�q�2

= 2


div�
q�− �2TrK + F�F − 2K�N�N�F

− 2N�F�+ gingjmRijnm + �TrK + F�2� (2.13)

Note that

�A− K�2 = �A�2 + �K�2 − 2	A�K
�
and set

G2 �= 2	A�K
 − �K�2 − 2K�N�N�F − 2N�F�+ �TrK�2 − 2�� − J�w��+ gingjmRijnm�

Then, (2.13) becomes

2�A�2 = 2


div�
q�− 2�q�2 +G2� (2.14)

Let � ∈ C�
c ���. Multiply (2.14) by 
�2 and integrate by parts to find∫

�
2
�2�A�2 =

∫
�
−4
�	��� q
 − 2
�2�q�2 + 
�2G2

≤
∫
�
2
����2 + 
�2G2�

Now replace � with �A�p� to get∫
�

�2�A�2+2p ≤

∫
�

����A�p���2 + 1

2

�2G2�A�2p� (2.15)

Expand and integrate the first term by parts:∫
�

����A�p���2 =

∫
�

�A�2p����2 + 2p
��A�2p−1	� �A�� ��
 + 
�2�� �A�p�2

=
∫
�

�A�2p����2 − 1

2

�2��A�2p + 
�2�� �A�p�2 − �2	�
� � �A�2p


=
∫
�

�A�2p����2 − 
�2�A�p��A�p − 2p�2�A�2p−1	�
� � �A�
�
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Existence and Blow-Up Behavior for Solutions 2211

Since

�A�p��A�p = p�A�2p−1��A� + p�p− 1��A�2p−2�� �A��2�

we then have∫
�

�2��A�2p−1�p��A� + �A�3�+ p�p− 1��A�2p−2�� �A��2�

≤
∫
�

�A�2p����2 − 2p�2�A�2p−1	�
� � �A�
 + 1

2

�2�A�2pG2

=
∫
�

�A�2p����2 + 2��A�2p	��� �

 + 
�2�A�2p

(
1
2
G2 + 
−1�


)
≤
∫
�
2
�A�2p����2 + 
�2�A�2p

(
1
2
G2 + 
−2��
�2 + 
−1�


)
�

By using (2.12) for �A����A� + �A�3� and setting p = 1 in the above expression, it
follows that∫

�

1
37


�2��A�2 ≤
∫
�
2
�A�2����2 + 
�2�A�2

(
1
2
G2 + 
−2��
�2 + 
−1�


)
+
∫
�

�2��H��A�3 −G1 − Aij�ijH��

Integrating by parts and applying the Schwarz inequality then yields∫
�
c−1
�2��A�2 ≤

∫
�
c
�A�2����2 + 
�2�A�2

(
1
2
G2 + c�� log
�2

)
+
∫
�

�2��H��A�3 −G1 + c��H�2��

Above and in what follows, c > 0 will always denote an appropriately large
constant. Although there are derivatives of the Riemann tensor contained within the
expression for G1, these may be integrated by parts so that∫

�
c−1
�2��A�2 ≤

∫
�

�A�2����2 +

∫
�

�2��Riem�2 + ��H�2 + �� log
�2�Riem�2�

+
∫
�

�2�A�2�1+ �Riem� + �� log
�2 + �N�F��

+ �1+ �� log
���F ��+
∫
�

�2�A�3��H� + �� log
��� (2.16)

Now observe that according to (2.15) with p = 1,∫
�

�2�A�4 ≤

∫
�

����A����2 + 1

2

�2G2�A�2

≤
∫
�
2
�A�2����2 + 
�2

(
2�� �A��2 + 1

2
G2�A�2

)
�
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2212 Han and Khuri

Also

�� �A��2 = gij�i�A��j�A�
= gij��A�−1Aab�iAab���A�−1Acd�jAcd�

≤ c��A�2�

Therefore ∫
�

�2�A�4 ≤

∫
�
2
�A�2����2 + 1

2

�2G2�A�2 + c
�2��A�2�

Combining this with (2.16) then yields∫
�
c−1
�2�A�4 ≤

∫
�

�A�2����2 +

∫
�

�2��Riem�2 + ��H�2 + �� log
�2�Riem�2�

+
∫
�

�2�A�2�1+ �Riem� + �� log
�2 + �N�F�� + �1+ �� log
���F ��

+
∫
�

�2�A�3��H� + �� log
���

Now replace � with �2 and apply the Schwarz inequality to obtain∫
�
c−1
�4�A�4 ≤

∫
�

����4 + 
�4�1+ �H�4 + ��H�2

+ �Riem�4 + �� log
�4 + �F �4 + �N�F��2�� (2.17)

Let B4
r0
�x0� be a geodesic ball in �M ×�� g + 
2dt2� centered at a point x0 ∈ �,

with r0 less than the injectivity radius. Let r be the distance function in M ×� and
choose the cut-off function � to be a function of r such that ��r� = 1 for r ≤ r0/2
and ��r� = 0 for r ≥ r0. Since ��r� = 1 and hence ��r� ≤ 1, we may further choose �
so that ��� ≤ 1 and ���� ≤ 3r−1

0 . In order to bound the volume of � ∩ B4
r0
�x0�, note

that by (2.3)

�divM×��N�� = �H� ≤ �F � + c�1+ �� log
���

Upon an integration by parts over the region B4
r0
�x0� ∩ ��x� t� � t < f�x��, we obtain

Vol�� ∩ B4
r0
�x0�� ≤ cr30 (2.18)

where c depends on �F � and �� log
�. Applying this result together with (2.17) then
yields ∫

�∩B4
r0
2
�x0�

�A�4 ≤ c� (2.19)

where c depends on �F �, �N�F��, �H�, ��H�, �� log
�, �Riem�, max

min
 , and r−1

0 . This is
the desired L4-estimate for the second fundamental form.
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Existence and Blow-Up Behavior for Solutions 2213

Step 3. A pointwise estimate of the second fundamental form. Set u = �A�2 + 1�
Then (2.10) yields

�u ≥ −c�1+ �A�2 + �F �2 + �� log
�2�u+ 2��A�2 + 2Aij��ijH +Gij��

Multiply both sides by a nonnegative function � ∈ C�
c �� ∩ B4

r0
2
�x0�� and integrate by

parts to find

0 ≥
∫
�
	��� �u
 − c�1+ �A�2 + �F �2 + �� log
�2��u− 2Aij�i��jH

+
∫
�
2����A�2 + AijGij − �iA

ij�jH��

Although Gij contains first derivatives of the Riemann tensor, these derivatives may
be integrated by parts. The first derivatives of A which result from this process may
be absorbed into ��A�2 to yield a more simple expression

0 ≥
∫
�
�� · �u+Di��i��u+D�u�

where

Di = −2u−1Aij�jH − 2u−1AijgnmRNnjm − 2u−1AnmgijRNnmj�

and

D = −c�1+ �A�2 + �F �2 + �� log
�2 + u−1��H�2 + u−1�A�2�Riem� + u−1�Riem�2��

By (2.4), we have

sup
�∩B4

r0
2
�x0�

�Di�2 +
∫
�∩B4

r0
2
�x0�

D2 ≤ c� (2.20)

We now show that the Sobolev inequality holds on � ∩ B4
r0
�x0�. The volume

estimate (2.18) allows an application of the Hoffman and Spruck inequality [12] for
a sufficiently small r0. In particular, for any function � ∈ C�

c �� ∩ B4
r0
�x0��, we have

(∫
�
�6

)1/3

≤ c
∫
�
�����2 +H2�2��

Moreover, by (2.3) and Holder’s inequality

c−1

(∫
�
�6

)1/3

≤
∫
�
����2 + r20 �1+ �F �2 + �� log
�2�

(∫
�
�6

)1/3

�

Thus, if r0 is sufficiently small we obtain the desired Sobolev inequality(∫
�
�6

)1/3

≤ c
∫
�
����2� (2.21)

D
ow

nl
oa

de
d 

by
 [

St
on

y 
B

ro
ok

 U
ni

ve
rs

ity
] 

at
 1

4:
48

 1
4 

Ja
nu

ar
y 

20
14

 



2214 Han and Khuri

A Moser iteration [11] can now be applied with the help of (2.20) and (2.21),
since 2 > 1

2 dim� = 3
2 . It follows that

u�x0� ≤ c

∫
�∩B4

r0
2
�x0�

u2

1/2

�

Now the desired estimate (2.6) follows from the definition of u and (2.19). �

As a corollary of Theorem 2.2, we have a pointwise gradient estimate for the
mean curvature, which follows easily from (2.4) and (2.6).

Corollary 2.3. Suppose that the surface � satisfies (2.2). Then

sup
�

��H� ≤ c (2.22)

where c depends on � log
�, �� log
�, ��2 log
�, �F �, and �N�F��.
Let y1, y2, y3, y4 be normal coordinates for the warped product metric near

x0 ∈ �, that is

ĝ = g + 
2dt2 = ĝabdy
adyb� ĝab�0� = 	ab� �yc ĝab�0� = 0�

Suppose that �yi ∈ Tx0
�, i = 1� 2� 3 so that near x0, � is given by a graph y4 = w�y�,

y = �y1� y2� y3�. Equation (2.2) can now be written as

4∑
a�b=1

(̂
gab − WaWb

��W �2
)(

�a�bW

��W � − Kab

)
= F� (2.23)

where W�Y� = w�y�− y4, Y = �y1� y2� y3� y4�. To see this first observe that Yi = �yi +
w�i�y4 , i = 1� 2� 3, form a basis for the tangent space to �. Let N = Nady

a be the unit
normal written as a 1-form. Then

0 = ĝ�Yi� N� = Y a
i Na =

3∑
a=1

	ai Na + w�iN4 = Ni + w�iN4�

It follows that

N =
∑3

a=1 w�ady
a − dy4

��W � �= Ñ

�Ñ � �

The second fundamental form, in these coordinates, is then given by

Aij = ĝ��Yi
N� Yj� =

�iÑj

�Ñ � = �i�jW

��W � �

Moreover, the induced metric on � is ĝab − NaNb, with inverse

ĝab − NaNb = ĝab − WaWb

��W �2 �
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Existence and Blow-Up Behavior for Solutions 2215

This yields the desired expression for the generalized Jang equation.
Parametric estimates may now be obtained as another application of

Theorem 2.2.

Theorem 2.4. Suppose that the surface � satisfies (2.2). Then there exist constants
� > 0 and c independent of �, but dependent on � log
�C2�� and �F �C1�� , such that � ∩
B4
��x0� ⊂ �Y � y4 = w�y�� and �w�C3���B��

≤ c.

Proof. Observe that (2.23) is a strictly elliptic equation for w having the following
structure

3∑
i�j=1

Bij�y� w� �w�wyiyj = C�y�w� �w��

where Bij�0� 0� 0� = 	ij . Since the second fundamental form is uniformly bounded
and

�A�2 =
4∑

a�b�c�d=1

(̂
gac − WaWc

��W �2
) (̂

gbd − WbWd

��W �2
)(

�a�bW

��W �
)(

�c�dW

��W �
)
�

we obtain

3∑
i�j=1

�wyiyj �
2 ≤ c

(
1+

3∑
i=1

�wyi �
2

)3

�

near y = 0. Now by some simple calculus,

sup
�y�≤�

��w�y�� + ��w�y�� + ��2w�y��� ≤ c�

Therefore the C3�� estimates follow from Schauder’s theory and the C2 estimates
above.

Lastly, we note that � may be expressed as a graph for sufficiently small (but
uniform) � > 0. This follows directly from the pointwise bound on the second
fundamental form established in Theorem 2.2. �

3. The Harnack Inequality

In this section it will be shown that the quantity 	�t� N
 satisfies a homogeneous
elliptic equation with bounded coefficients, when �A� is pointwise bounded. From
this we immediately obtain the Harnack inequality as in [19], which is used
extensively. The proof here consists of a long calculation. Although the resulting
equation has the same structure as that of [19], we cannot simply cite this reference,
as the calculations carried out here must be done in the warped product setting.

We begin by recalling that the vector fields Xi = �i + fi�t form a basis for the
tangent space to the surface � = �t = f�x��, and that the vector field

N = fm�m − 
−2�t√

−2 + ��f �2
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2216 Han and Khuri

is its unit normal. Then

	�t� N
 = −1√

−2 + ��f �2 �

Our goal will be to calculate the Laplacian

�	�t� N
 = gpj�Xp
�Xj

	�t� N


in terms of 	�t� N
. As usual, in this notation, an over line bar indicates that the
particular geometric quantity is with respect to the induced metric on �.

The following lemma may be obtained from the Jacobi equation, as indicated
in [2]. However here, we carry out a different (and longer) proof, as some of the
calculations can be used later.

Lemma 3.1. For any � ⊂ �M ×�� g + 
2dt2�, not necessarily satisfying (2.2),

�	�t� N
 + ��A�2 + N�H�+ RNN�	�t� N
 = 0� (3.1)

Proof. First observe that

Aij = 	Xi� �Xj
N
�

so that

�Xj
N = Ajpg

paXa�

It follows that

�Xj
	�t� N
 = 	�Xj

�t� N
 + 	�t� Xm
gmnAjn�

and

�Xp
�Xj

	�t� N
 = �Xp
	�Xj

�t� N
 + gmn��pAjn�	�t� Xm
 + gmnAjn�Xp
	�t� Xm
�

The Codazzi equations (2.8) yield

�pAjn = �nAjp + RNXjXnXp
�

Moreover

�Xp
	�t� Xm
 = Xp	�t� Xm
 − �

a

pm	�t� Xa

= 	�Xp

�t� Xm
 + 	�t� �Xp
Xm
 − �

a

pm	�t� Xa
�

and

�Xp
Xm = �

a

pmXa − ApmN�
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Existence and Blow-Up Behavior for Solutions 2217

Thus

�	�t� N
 = gpj�Xp
�Xj

	�t� N

= gpj�Xp

	�Xj
�t� N
 − �A�2	�t� N


+ gmn��nH + RNXn
�	�t� Xm
 + Apm	�Xp

�t� Xm
� (3.2)

The right-hand side will be calculated term by term.
We first claim that

gmn��nH + RNXn
�	�t� Xm
 = −	�t� N
�
−1�
+ N�H�+ RNN�� (3.3)

To prove this, write

�t = 	�t� N
N + gmn	�t� Xm
Xn

and observe that

gmn��nH + RNXn
�	�t� Xm
 = Ric�N� �t�+ �tH − 	�t� N
�RNN + N�H���

The desired result follows since �tH = 0 and

Ric�N� �t� = −	�t� N

−1�
�

To see this last assertion, use the fact that

�4
44 = �4

ij = �
j
i4 = 0� �4

i4 = �log
�i� �
i
44 = −

i� (3.4)

to calculate

R4ijk = 0� R4i4j = −
�ij
�

Here 4 indicates the t-coordinate. This implies that

R4i = 0� R44 = −
�
�

and hence

Ric�N� �t� = −	�t� N
Ric�fm�m − 
−2�t� �t� = −	�t� N

−1�
�

This finishes the proof of (3.3).
Next, with the help of (3.4), a straightforward calculation yields

�Xp
�t = �log
�p�t − 
fp


m�m�

Therefore

	�Xp
�t� Xm
 = 
�fm
p − fp
m��
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2218 Han and Khuri

Since this is an antisymmetric tensor, and Apm is symmetric, we obtain

Apm	�Xp
�t� Xm
 = 0� (3.5)

Alternatively, since �t is a Killing field, it follows immediately that 	�Xp
�t� Xm
 is

antisymmetric.
Lastly, we claim that

gpj�Xp
	�Xj

�t� N
 = 	�t� N

−1�
� (3.6)

First observe that since �t is a Killing field,

	�Xj
�t� N
 = −	�N�t� Xj
�

Furthermore

�N�t = ��t
N − L�t

N = ��t
N�

where L denotes Lie differentiation. It follows that

	�Xj
�t� N
 = −	��t

N�Xj
�

Now calculate

��t
N = �
−2 + ��f �2�−1/2�f i�a

i4�a − 
−2�a
44�a�

= −	�t� N
�f i�log
�i�t + 
−1
i�i�

= −	�t� N
�log
�iXi�

to find

gpj	��t
N�Xj
 = −	�t� N
�log
�p�

We then have

�Xp
�gpj	��t

N�Xj
� = Xp�g
pj	��t

N�Xj
�+ �
p

png
nj	��t

N�Xj

= −��p	�t� N
��log
�p − 	�t� N
�p�log
�p − 	�t� N
�p

pn�log
�
n

= −	�t� N
��log
�+ 	�t� N
��p
pn − �

p

pn��log
�
n

− ��p	�t� N
��log
�p�

According to a calculation in [5, p. 760],

�n
pj − �

n

pj = 

nfpfj −
fnApj√


−2 + ��f �2 �
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Existence and Blow-Up Behavior for Solutions 2219

Moreover, by (2.1),

−�p	�t� N
 = �p�

−2 + ��f �2�−1/2

= 
−3
p − fn�pnf

�
−2 + ��f �2�3/2

= 
−3
p

�
−2 + ��f �2�3/2 − fnApn


−2 + ��f �2

+ fn��log
�pfn + �log
�nfp + 
fm
mfpfn�

�
−2 + ��f �2�3/2 �

Therefore

	�t� N
��p
pn − �

p

pn��log
�
n − ��p	�t� N
��log
�p

= − �log
�n

mfmfn
�
−2 + ��f �2�1/2 + �log
�p
−3
p

�
−2 + ��f �2�3/2

+ �log
�pfn��log
�pfn + �log
�nfp + 
fm
mfpfn�

�
−2 + ��f �2�3/2

= �� log
�2
�
−2 + ��f �2�1/2 �

and (3.6) follows.
The desired identity is now obtained by substituting (3.3), (3.5), and (3.6),

into (3.2). �

We are now ready to prove the Harnack inequality.

Theorem 3.2. Suppose that the surface � satisfies (2.2). Then there exist constants
� > 0 and c independent of �, but dependent on � log
�C2�� and �F �C1�� , such that

sup
�∩B4

��x0�

	�t�−N
 ≤ c inf
�∩B4

��x0�
	�t�−N
 (3.7)

and

sup
�∩B4

��x0�

�� log	�t�−N
� ≤ c� (3.8)

Proof. The estimates of Theorem 2.4 guarantee that equation (3.1) is uniformly
elliptic for small �. Next, we note that the coefficients of (3.1) are bounded. To
see this, observe that RNN poses no problem, and �A�2 is bounded by Theorem 2.2.
Moreover

N�H� = 
fm�mH√
1+ 
2��f �2 �

so that N�H� is bounded by Corollary 2.3.
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2220 Han and Khuri

The Harnack inequality (3.7) now follows immediately. Standard elliptic
theory [11] also guarantees that

sup
B �

2

��	�t� N
� ≤ c sup
B�

�	�t� N
��

Combining this with (3.7) yields

sup
B �

2

��	�t� N
� ≤ c inf
B�

�	�t� N
� ≤ c inf
B �

2

�	�t� N
��

from which (3.8) follows. �

4. Global C1 Bounds and Existence for the Regularized Equation

Suppose that the boundary of M is an outermost future apparent horizon with one
component, that is

+��M� = 0 (4.1)

where the null expansion + was defined in (1.7). All arguments to follow may be
easily extended to the general case in which the boundary is an outermost apparent
horizon, with several future and past horizon components. Take a sufficiently large
coordinate sphere ��M in the asymptotically flat end such that

+���M� > 0� (4.2)

Following [3, 17] we construct an extension �M̃� g̃� k̃�, of the initial data �M� g� k�,
having the following properties:

i) M ⊂ M̃ with g̃�M = g, k̃�M = k, and ��M̃ = ��M ,
ii) g̃ is smooth across �M and k̃ is C1�1 across �M ,
iii) the region M̃ −M is foliated by surfaces S�, � ∈ �0� �0�, with +�S�� < 0, S0 =

�M̃ , and S�0 = �M ,
iv) for all sufficiently small �, +�S�� ≤ −� < 0 and k̃ ≡ 0.

For convenience, in what follows, we will denote g̃ by g and k̃ by k. Moreover,
we will extend the warping factor 
 to be positive on all of M̃ . These constructions
allow for the existence of appropriate barriers, which in turn leads to a solution for
the following Dirichlet problem

H�f��− K�f�� = �f� on M̃� (4.3)

f� =
�

2�
on �M̃� f� = 0 on ��M̃� (4.4)

The first step is to obtain global C1 bounds. Observe that a direct application
of the maximum principle yields the C0 bound

sup
M̃

�f�� ≤ c�−1� (4.5)
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Existence and Blow-Up Behavior for Solutions 2221

where the constant c depends on �k�C0 and �. In order to apply the maximum
principle to obtain bounds on first derivatives, we need to establish the boundary
gradient estimates. Let ��x� = dist�x� �M̃�, and denote by S� the level sets of the
geodesic flow �� = n emanating from �M̃ , where n is the unit outer normal (pointing
towards spatial infinity) of the surfaces S�. The barrier functions �±��� will be
functions of � alone. In order to find sub and super solutions notice that(

gij − 
2�i�j

1+ 
2����2
)(


�ij�+ 
i�j + 
j�i√
1+ 
2����2

)

=
(
1− 
2�′2

1+ 
2�′2

)(

�′′ + 2
′�′√

1+ 
2�′2

)
+ �g�S��ij


�ij�√
1+ 
2�′2 �

and (
gij − 
2�i�j

1+ 
2����2
)
kij =

(
1− 
2�′2

1+ 
2�′2

)
knn + TrS�k�

where �′ = d�

d�
. Moreover

�ij� = �ij�− �m
ij �m� = �

S�
ij �− �n

ij�n� = �
S�
ij �+ A

S�
ij �n��

where �S� denotes the induced connection on S� and AS� is its second fundamental
form. Therefore

H���− K���− ��

= 
�′′ + 2
′�′

�1+ 
2�′2�3/2
+ 
�′HS�√

1+ 
2�′2 − knn
1+ 
2�′2 − TrS�k− ��

= 
�′′ + 2
′�′

�1+ 
2�′2�3/2
+ 
�′+�S��√

1+ 
2�′2 − knn
1+ 
2�′2 −

(
1+ 
�′√

1+ 
2�′2

)
TrS�k− ���

(4.6)

Let �−��� = a− b� where a and b will be chosen appropriately and positive. In
order that �− agree with f� at �M̃ we set a = �

2� . Then for � ∈ �0� �0�, with �0
sufficiently small,

H��−�− K��−�− ��− ≥ � − �a+ �b�+ O�b−1� ≥ �

2
+ O�b−1� ≥ 0�

if b is chosen large enough depending on 
. Similarly an upper barrier may be
constructed in the form �+��� = a+ b�. Note that in the case of an upper barrier we
use the fact that k ≡ 0 near �M̃ to deal with the TrS�k term. Now choose b so large
that a+ b�0 ≥ supM̃ �f�� and a− b�0 ≤ − supM̃ �f��, then by a standard comparison
argument �− ≤ f� ≤ �+ for � ∈ �0� �0�. It follows that

sup
�M̃

��f�� ≤ b ≤ c�−1� (4.7)

Moreover, a standard barrier construction at ��M̃ also yields a boundary gradient
estimate.
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2222 Han and Khuri

We now use the Bernstein method to obtain global C1 estimates. For
convenience we temporarily drop the subscript � from f�. Differentiate equation
(4.3) with respect to �p to find

gij

[

pf�ij + 
f�ijp + 
�ipfj + 
if�jp + 
�jpfi + 
jf�ip√

1+ 
2��f �2
]

− gij

[
�
f�ij + 
ifj + 
jfi��

p��f �2 + 
2f�mpf

m�

�1+ 
2��f �2�3/2 − kij�p

]

− 2

[

f�ij + 
ifj + 
jfi√

1+ 
2��f �2 − kij

]

×
[


pf

if j + 
2fi�pf
j

1+ 
2��f �2 − 
2f if j�

p��f �2 + 
2f�mpf
m�

�1+ 
2��f �2�2
]

= �fp� (4.8)

Notice that the Ricci commutation formula yields

gij
fpf�ijp = gij
fp�f�pij + Rm
ijpfm�

= �j�g
ij
fpf�pi�− gij
f

p
�if�pj − �j�g

ij
�fpf�pi + gij
fpfmR
m
ijp�

Thus, if u = ��f �2, then (4.8) implies that

�j�
g
ijui�

2
√
1+ 
2��f �2 + Biui + Bu1/2 + gij�f p
pf�ij − 
f

p
�if�pj�√

1+ 
2��f �2 ≥ �u�

for some coefficients Bi and B, with B bounded. Moreover at a critical point for u,

gij�f p
pf�ij − 
f
p
�if�pj� = gij�f p
pf�ij − 
f

p
�if�pj� ≤ −1

2

��2f �2 + cu�

An alternate approach to deal with the gijf�ij term is to solve for it in (4.3), leaving
a manageable number of first derivatives of f . Hence from the maximum principle
we obtain

sup
M̃

��f�� ≤ c�−1� (4.9)

With the global C1 bounds the equation (4.3) is uniformly elliptic. Standard
theory [11] then gives C1�� estimates up to the boundary. The Schauder estimates
may now be applied to obtain global C2�� bounds. Thus we may apply the continuity
method, as in [3], to the family of equations

H�f����− �K�f���� = �f���� 0 ≤ � ≤ 1� (4.10)

f��� =
��

2�
on �M̃� f��� = 0 on ��M̃� (4.11)
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Existence and Blow-Up Behavior for Solutions 2223

to obtain a solution of boundary value problem (4.3), (4.4). Furthermore, by sending
��M̃ to infinity we obtain a solution on all of M̃ with the usual decay (1.9). Lastly,
note that the global estimates of this section also hold when M does not have
boundary; of course they are easier to prove in this case, as there is no need for an
extension M̃ or boundary gradient estimates. Thus, in the case that M does not have
boundary, we may set F = �f� and apply the results of Sections 2 and 3, as well
as the global estimates of this section, and let � → 0 to obtain the following result
(see [19] for details).

Theorem 4.1. Suppose that �M� g� k� is a smooth, complete, asymptotically flat initial
data set, and that 
 is smooth, strictly positive, and satisfies (1.8). Then there exist
disjoint open sets �+��− ⊂ M , and a smooth function f � M − ��+ ∪�−� → �
satisfying the generalized Jang equation (1.6) as well as (1.9). Furthermore ��+ (��−)
is a future (past) apparent horizon with f�x� → ±� as x → ��±. More precisely
graph�f� is asymptotic to the cylinders ��+ ×�+ and ��− ×�−.

5. Blow-Up Solutions for the Generalized Jang Equation

Consider the solutions f� given in the previous section, defined on M̃ and with fall-
off (1.9) at spatial infinity. Our goal in the current section is to produce solutions
which blow-up at the outermost apparent horizon boundary of M , by letting � → 0.
We will also construct appropriate super solutions in order to obtain an estimate
for the rate of blow-up. As in the previous section we will assume here that the
boundary of M is an outermost future apparent horizon with one component.
All arguments to follow may be easily extended to the general case in which the
boundary is an outermost apparent horizon, with several future and past horizon
components.

Observe that the gradient estimate (4.9) and the boundary condition (4.4) imply
that there exists � independent of �, such that

f��x� ≥
�

4�
for dist�x� �M̃� < �� (5.1)

As in [19] a subsequence of the �-Jang surfaces converges to a properly embedded
submanifold of M̃ ×�. This convergence determines three types of domains:

M̃+ = �x ∈ M̃ � f�i �x� → +� locally uniformly as i → ���

M̃− = �x ∈ M̃ � f�i �x� → −� locally uniformly as i → ���

M̃0 =
{
x ∈ M̃ � lim sup

i→�
�f�i �x�� < �

}
�

(5.2)

By (5.1), M̃+ �= ∅ and M̃+ contains a neighborhood of �M̃ . Since �M̃+ − �M̃ consists
of apparent horizons and the region M̃ −M is foliated by surfaces with + < 0, we
must have that M̃ −M ⊂ M̃+. Thus �M̃+ is an apparent horizon in M . As �M is the
outermost apparent horizon in M , we conclude that the closure of M̃+ is M̃ −M .
A standard barrier argument [19] at spatial infinity shows that the �-Jang surfaces
are uniformly bounded there, so that M̃0 contains a neighborhood of spatial infinity.
It follows that M̃0 = M , and the limiting Jang surface � blows-up in the form of a
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2224 Han and Khuri

cylinder over �M . This line of argument was used by Metzger [17] for the classical
Jang equation.

This result holds for all warping factors 
 which are strictly positive up to and
including the boundary. We would now like to examine what happens when 
 is
allowed to vanish on the boundary. From now on, let

��x� = dist�x� �M��

the distance to the boundary, and denote by S� the level sets of the geodesic flow
�� = n emanating from �M , where n is the unit outer normal (pointing towards
spatial infinity) of the surfaces S�. We assume that


 = �b
̃ near �M�

where 
̃ is some positive function, and then set


	 = ��+ 	�b
̃ near �M�

where 	 > 0 is a constant. The function 
	 is then naturally extended to the rest
of M . When 
 is replaced by 
	, we write the corresponding generalized Jang
equation as

H	�f�− K	�f� = 0� (5.3)

For each 	 > 0 a blow-up solution f	 of (5.3) exists. We aim to show that for
some subsequence 	i → 0, the surfaces �	i

= �t = f	i �x�� converge smoothly away
from the boundary to a blow-up solution � = �t = f�x�� whose asymptotics at the
boundary depend on the rates at which 
 and + vanish.

We now establish the existence of blow-up solutions with the desired upper
bound in the first case of Theorem 1.1. The lower bound will be established in the
next section.

Proposition 5.1. Suppose that �M� g� k� is a smooth, asymptotically flat initial data set,
with outermost apparent horizon boundary �M consisting of a single future apparent
horizon component. Suppose further that 
 is a smooth function, strictly positive away
from �M and satisfying (1.8) and (1.10), and that + satisfies (1.12). Then for b ≥ − l−1

2 ,
there exists a smooth solution f of the generalized Jang equation (1.6), satisfying (1.9),
and in a neighborhood of �M

f ≤ ��−b− l−1
2 + � if b > − l− 1

2
�

f ≤ −� log �+ � if b = − l− 1
2

�

(5.4)

for some positive constants � and �.

Proof. Let f	�� denote solutions of the �-regularized generalized Jang equation with
warping factor 
	, as constructed in the previous section,

H	�f	���− K	�f	��� = �f	���
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Existence and Blow-Up Behavior for Solutions 2225

We now proceed to construct an appropriate upper barrier function � for f	�� which
is independent of 	 and �. For this we will assume that (1.12) holds for � ∈ �0� �0�,
with �0 sufficiently small. The upper barrier � will be a function of � alone, namely
� = ����. Recall that

H	���− K	���− �� = 
	�
′′ + 2
′

	�
′

�1+ 
2
	�

′2�3/2
+ 
	�

′+�S��√
1+ 
2

	�
′2 − knn

1+ 
2
	�

′2

−
(
1+ 
	�

′√
1+ 
2

	�
′2

)
TrS�k− ���

In the following, � will be a decreasing function, that is, �′ < 0. Hence, we have

H	���− K	���− �� = −+�S��+

	�

′′ + 2
′
	�

′

�1+ 
2
	�

′2�3/2
− knn

1+ 
2
	�

′2

+ HS�√
1+ 
2

	�
′2�
√
1+ 
2

	�
′2 − 
	�

′�
− ��� (5.5)

Consider

���� = ��−a + ��

for some constants a� �� � ≥ 0. In order for �
�′� → � as � → 0, we require that
a > b − 1. A straightforward calculation shows that

�
	�
′′ + 2
′

	�
′�

�1+ 
2
	�

′2�3/2
+ 1

1+ 
2
	�

′2 ≤ C

a2�2
�a+ b + 1��2a−2b+1�

for � sufficiently small. By the assumption + ≥ c−1�l, we obtain

H	���− K	���− �� ≤ −c−1�l + C

a2�2
�a+ b + 1��2a−2b+1�

Now set a = b + l−1
2 , and notice that this automatically satisfies the previous

condition a > b − 1. If a > 0 and � is chosen sufficiently large, then � is a super
solution,

H	���− K	���− �� ≤ 0�

If a = 0, then setting

���� = −� log �+ �

yields a similar result.
In order to obtain the estimate, recall that �f	��� will be uniformly bounded away

from the boundary, say at the surface corresponding to � = �0 > 0. This follows
from the Harnack inequality and parametric estimates, as in [19]. We may then

D
ow

nl
oa

de
d 

by
 [

St
on

y 
B

ro
ok

 U
ni

ve
rs

ity
] 

at
 1

4:
48

 1
4 

Ja
nu

ar
y 

20
14

 



2226 Han and Khuri

choose � sufficiently large independent of 	 and � such that ���0� ≥ f	���S�0 . A
standard comparison argument then shows that

f	���S� ≤ ���� for � ∈ �0� �0�� (5.6)

As we have shown above, letting � → 0 yields a blow-up solution �	 to the
generalized Jang equation for each positive 	. The solution f	 must of course also
satisfy the asymptotics (5.6).

Let us now extract a subsequence 	i → 0 such that the surfaces �	i
converge

smoothly away from the boundary to a solution � = �t = f�x�� of the generalized
Jang equation. This may be proved in the usual way [19], making use of the
parametric estimates of Section 2 and the Harnack inequality of Section 3.
Moreover the asymptotics (5.6) still hold for f . �

Since the warping factor 
 vanishes at the boundary, we cannot say, without
further analysis, precisely how the solution behaves at the boundary. For instance,
although the solutions �	i

blow-up in the form of a cylinder over �M , it may be
the case that as 	i → 0 the blow-up solutions become arbitrarily close to �M ×�
and eventually (in the limit) coincide or ‘stick’ to the cylinder at certain points. In
order to prevent this, certain inequalities should hold between the vanishing rates of

 and +; this issue is the primary focus of the next section.

It turns out that the blow-up rates of (5.4) are not the only asymptotics for
the generalized Jang equations. The next result provides other possibilities for upper
barriers.

Proposition 5.2. Suppose that �M� g� k� is a smooth, asymptotically flat initial data set,
with outermost apparent horizon boundary �M consisting of a single future apparent
horizon component. Suppose further that 
 is a smooth function, strictly positive away
from �M and satisfying (1.8) and (1.10), and that + satisfies (1.12). Then for b ≥ 1/2,
there exists a smooth solution f of the generalized Jang equation (1.6), satisfying (1.9),
and in a neighborhood of �M

f ≤ ��1−2b + � if b > 1
2 �

f ≤ −� log �+ � if b = 1
2 �

(5.7)

for some positive constants � and �.

Proof. Recall the calculation in (5.5). Our strategy will be to choose the upper
barrier function �	, so that the second derivative of �	 will dominate all other terms
in (5.5), except −+�S��. To this end, consider

�′′
	 +

2b
�+ 	

�′
	 =  �′

	

for some  to be determined. It is an easy exercise to show that its solution is
given by

�	��� = �1

∫ 1

�+	

e s

s2b
ds + �2� (5.8)
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Existence and Blow-Up Behavior for Solutions 2227

for some positive �1 and �2 to be determined. It is obvious that �	 is monotonically
decreasing. Therefore

�′′
	 + 2�log
	�

′�′
	 = �′′

	 +
2b

�+ 	
�′

	 + 2�log 
̃�′�′
	 ≤ �′′

	 +
2b

�+ 	
�′

	 − c�′
	

= � − c��′
	 ≤

 

2
�′

	 < 0

for large  . Hence, (5.5) becomes

H	��	�− K	��	�− ��	 ≤ −+ +  
	�
′
	

2�1+ 
2
	�

′2
	 �

3/2
+ c
−2

	 ��′
	�−2

≤ −c−1�l −
(
 

2
− c

)

−2

	 ��′
	�−2 < 0�

if again  is large enough. It follows that �	 is a super solution.
Recall that f	����M ≤ c�−1 by (4.5), and note that

�	�0� ≥ �	1−2b + � if b >
1
2
�

�	�0� ≥ −� log 	+ � if b = 1
2
�

This shows that �	��M ≥ f	����M for sufficiently large �, if 	 = ��2b−1�−1
when b >

1/2, and 	 = e−�−1
when b = 1/2. The maximum principle then implies (if � is

chosen large enough) that f	�� ≤ �	 for � ∈ �0� �0�. Let us now extract a subsequence
�i → 0 such that the surfaces �	i��i

converge smoothly away from the boundary to
a solution � = �t = f�x�� of the generalized Jang equation. This may be proved in
the usual way as at the end of Proposition 5.1, even though here 	i = �

�2b−1�−1

i when
b > 1/2, and 	i = e−�−1

i when b = 1/2. It follows that the solution f must satisfy the
asymptotics (5.7). �

Again, because the warping factor 
 vanishes at the boundary, we cannot
say, without further analysis, precisely how the solution behaves at the boundary.
It might coincide or ‘stick’ to the cylinder over the boundary at certain points.
Nevertheless, the barrier construction yields an upper bound for the asymptotics.

We may now compare the different asymptotics (5.4) and (5.7). Observe that
2b − 1 < b + l−1

2 only when b < l+1
2 , and therefore the asymptotics in (5.7) only

improve the ones in (5.4) when 1
2 ≤ b < l+1

2 .

6. Further Analysis of the Blow-Up Solutions

The purpose of this section is to obtain subsolutions for the generalized Jang
equation and to prove Theorem 1.1. It will be shown that subsolutions exist with
the same asymptotics as described in Propositions 5.1 and 5.2. An appropriate
comparison argument will then be employed to prove Theorem 1.1. As in the
previous two sections, we will assume for simplicity that the boundary of M is an
outermost future apparent horizon with one component. All arguments to follow
may be extended to the general case in which the boundary is an outermost apparent
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2228 Han and Khuri

horizon, with several future and past horizon components. Moreover the additional
arguments needed for such an extension will be recorded at the end of this section
in the proof of Theorem 1.1.

Let ���� be a function of � alone, which satisfies �′ < 0 and

�
�′� → � as � → 0� (6.1)

Then according to (5.5) there exist bounded functions c1 and c2, with c1 ≥ 1
2 for

small �, such that

H���− K��� = −+�S��−
c1

�2b�′2

(
�′′

�′ +
2b
�

)
+ c2

�2b�′2 � (6.2)

Lemma 6.1.

(1) Suppose that − l−1
2 ≤ b < l+1

2 , and that (1.12) and (1.10) hold for � ∈ �0� �0�. Then
for sufficiently small �0 there exist sub and supersolutions � and � of the generalized
Jang equation, satisfying (6.1), and such that

�−1�−b− l−1
2 + �−1 ≤ �� � ≤ ��−b− l−1

2 + � if − l− 1
2

< b <
l+ 1
2

�

−�−1 log �+ �−1 ≤ �� � ≤ −� log �+ � if b = − l− 1
2

�

(6.3)

for some positive constants � and �. Moreover

H���− K��� ≥  �l� H���− K��� ≤ −c−1

2
�l�

where the constant  > 0 may be chosen arbitrarily large and c−1 is as in (1.12).
(2) Suppose that 1

2 ≤ b < l+1
2 , and that (1.10) and (1.11) hold for � ∈ �0� �0�. Then for

sufficiently small �0 there exist sub and supersolutions ! and ! of the generalized
Jang equation, satisfying (6.1), and such that

�−1�1−2b + �−1 ≤ !� ! ≤ ��1−2b + � if
1
2
< b <

l+ 1
2

�

−�−1 log �+ �−1 ≤ !� ! ≤ −� log �+ � if b = 1
2
�

for some positive constants � and �. Moreover

H�!�− K�!� ≥  �̃l� H�!�− K�!� ≤ − �̃l�

where the constant  > 0 may be chosen arbitrarily large and 2b − 1 < l̃ ≤
min�l� 2b�.

Proof. (1) First consider the case − l−1
2 < b < l+1

2 and take the most obvious
choice

���� = ��−a + ��
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Existence and Blow-Up Behavior for Solutions 2229

where a is to be determined. A calculation shows that

�′′

�′ +
2b
�

= 2b − a− 1
�

�

and �
�′� = a��b−a−1 → � as � → 0 if a > b − 1. By applying (1.12) to (6.2) we then
have

H���− K��� = −c3�
l − �2b − a− 1�c1

a2�2
�2a−2b+1 + c2

a2�2
�2a−2b+2�

where c3 ≥ c−1 > 0 is a bounded function. Setting a = b + l−1
2 yields

H���− K��� = −c3�
l + 2�l+ 1− 2b�c1

�2�2b + l− 1�2
�l + 4c2

�2�2b + l− 1�2
�l+1�

Thus if �0 is sufficiently small, then by defining � to have the structure of � with �

sufficiently small

H���− K��� ≥ �−1�l�

and by defining � to have the structure of � with � sufficiently large

H���− K��� ≤ −c−1

2
�l�

Now consider the case when b = − l−1
2 , and take

���� = −� log �+ ��

Observe that

�′′

�′ +
2b
�

= − l

�
�

and �
�′� = ��−
l+1
2 → � as � → 0. By applying (1.12) to (6.2) we then have

H���− K��� = −c3�
l + lc1

�2
�l + c2

�2
�l+1�

Thus if �0 is sufficiently small, then by defining � to have the structure of � with �

sufficiently small

H���− K��� ≥ �−1�l�

and by defining � to have the structure of � with � sufficiently large

H���− K��� ≤ −c−1

2
�l�
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2230 Han and Khuri

(2) Assume that 1
2 ≤ b < l+1

2 , and let !��� be a function of � alone satisfying
(6.1). According to (6.2) and (1.11)

H�!�− K�!� = c4�
l − c1

�2b!′2

(
!′′

!′
+ 2b

�

)
+ c2

�2b!′2
�

where c4 is a bounded function. This suggests that we study the ODE

1
�2b!′2

(
!′′

!′
+ 2b

�

)
= ∓ �̃l� (6.4)

The choice of ∓ will be used when defining the sub and supersolutions, respectively.
In order to solve (6.4) observe that this equation is equivalent to(

�−4b

!′2

)′
= ±2 �̃l−2b�

and hence

!′ = −
( ±2 

l̃+ 1− 2b
�̃l+1+2b +"2�4b

)− 1
2

(6.5)

for some constant ". We choose " > 0, since if " = 0 and − is chosen in (6.4),
then (6.5) yields similar asymptotics as in (1). Notice also that the expression inside
the square root is positive for small �, since 4b < l̃+ 1+ 2b and " > 0. It follows
that

"−1

2
�−2b ≤ −!′ ≤ 2"−1�−2b

for sufficiently small �. This shows that (6.1) holds. Furthermore

H�!�− K�!� = c4�
l ± c1 �̃

l + c5"
2�2b�

for some bounded function c5. We define !, ! to be the solutions of (6.4) constructed
above and corresponding to − , + respectively. By choosing  sufficiently large the
desired result follows, since l̃ ≤ min�l� 2b�. �

The existence of two subsolutions with different asymptotics, when 1
2 ≤ b < l+1

2 ,
indicates that there will be two different blow-up solutions of the generalized Jang
equation, one corresponding to each of the distinct asymptotics. These solutions
will arise from two different sequences of solutions to the regularized equation.
More precisely, consider the generalized Jang equation with 
 = �b
̃ replaced by

	 = ��+ 	�b
̃, as in (5.3). According to the proof of Proposition 5.1, for each
	 > 0, there exists a blow-up solution t = f	 which asymptotically approaches the
cylinder �M ×� at a rate given by (5.4). A subsequence will then converge to a
blow-up solution of the generalized Jang equation as 	 → 0, and this solution will
satisfy the asymptotics (1.13). The second sequence of solutions will arise from the
	-regularized generalized Jang equation, and will be constructed to have finite values
at �M . However, as 	 → 0 these boundary values will become arbitrarily large, and
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Existence and Blow-Up Behavior for Solutions 2231

a subsequence will converge to a blow-up solution of the generalized Jang equation
which satisfies the asymptotics (1.14).

We first analyze the case of the solutions t = f	 with asymptotics given by (5.4).
Consider the 	-regularized generalized Jang equation applied to a function ���� as
in (6.2),

H	���− K	��� = −+�S��−
c1

��+ 	�2b�′2

(
�′′

�′ +
2b

�+ 	

)
+ c2

��+ 	�2b�′2 � (6.6)

Let � be the subsolution constructed in (1) of Lemma 6.1, and consider

�
	
��� �= ���+ 	��

It is clear from the proof of Lemma 6.1 that �
	
is a subsolution of the 	-regularized

generalized Jang equation,

H	��	
�− K	��	

� ≥  ��+ 	�l > 0� (6.7)

We will show that �
	
acts as a lower barrier for the regularized solutions f	.

Proposition 6.2. If f	�S�0 ≥ �
	
��0� then f	 ≥ �

	
for all � ∈ �0� �0�.

Proof. Consider the function w	 = f	 − �
	
. Since �

	
�0� is finite and f	 blows-up

at �M , we have that w	��M ≥ 0; moreover, by assumption w	�S�0 ≥ 0. Suppose that
w	 attains an interior negative minimum, then at that point

�f	 = ��
	
� �2w	 ≥ 0�

It follows that at the minimum point

�H	�f	�− K	�f	��− �H	��	
�− K	��	

�� =
(
gij − 
2

	f
i
	f

j
	

1+ 
2
	��f	�2

)

	�ijw	√

1+ 
2
	��f	�2

≥ 0�

On the other hand, by (6.7)

�H	�f	�− K	�f	��− �H	��	
�− K	��	

�� ≤ − ��+ 	�l < 0�

This contradiction shows that w	 ≥ 0 for all � ∈ �0� �0�. �

We are now ready to prove the primary existence result for the first asymptotics
of Theorem 1.1.

Theorem 6.3. Suppose that �M� g� k� is a smooth, asymptotically flat initial data set,
with outermost apparent horizon boundary �M consisting of a single future apparent
horizon component. Suppose further that 
 is a smooth function, strictly positive
away from �M and satisfying (1.8) and (1.10), and that + satisfies (1.12) for � ∈
�0� �0�. If − l−1

2 ≤ b < l+1
2 then there exists a smooth solution f of the generalized
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2232 Han and Khuri

Jang equation (1.6), satisfying (1.9), and such that the following estimates hold in a
neighborhood of �M

�−1�−b− l−1
2 + �−1 ≤ f ≤ ��−b− l−1

2 + � if − l− 1
2

< b <
l+ 1
2

�

−�−1 log �+ �−1 ≤ f ≤ −� log �+ � if b = − l− 1
2

�

(6.8)

for some positive constants � and �.

Proof. According to the proof of Proposition 5.1, for each 	 > 0, there exists a
blow-up solution t = f	 of equation (1.6) with 
 replaced by 
	, and this solution
asymptotically approaches the cylinder �M ×� at a rate given by (5.4). As in the
proof of Proposition 5.1, there is a subsequence 	i → 0 such that these graphs
converge smoothly away from the boundary to a solution t = f of the generalized
Jang equation (1.6), which satisfies (1.9). This implies that there exists a fixed value
for �

	i
��0�, independent of 	i, such that f	i �S�0 ≥ �

	i
��0�. In fact by writing

�
	i
��� = �−1

i ��+ 	i�
−b− l−1

2 + �−1
i �

we can achieve this by choosing fixed �i = � and �i = � for all i. Therefore �
	i

converges to a function � satisfying the estimates (6.3). Moreover by Proposition 6.2,
f	i ≥ �

	i
for � ∈ �0� �0�, and therefore f satisfies (6.8). �

Blow-up solutions of the generalized Jang equation satisfying (1.14) will now
be constructed. These will arise from a sequence of solutions to the 	-regularized
equation with finite boundary values. Assume that 1

2 ≤ b < l+1
2 and that (1.11)

holds, and let !, ! be the functions constructed in Lemma 6.1. Set

!
	
��� �= !��+ 	� and !	��� �= !��+ 	��

and note that these translated functions are sub and supersolutions for the
	-regularized generalized Jang equation. In particular, from (6.6) and the proof of
Lemma 6.1 we have

H	�!	�− K	�!	� ≥  ��+ 	�̃l� H	�!	�− K	�!	� ≤ − ��+ 	�̃l� (6.9)

Let T	 = 	1−2b if b > 1
2 and T	 = − log 	 if b = 1

2 , and observe that T	 ∼ !
	
�0� ∼

!	�0�. Consider now the following boundary value problem for the 	-regularized
generalized Jang equation

H	�h	�− K	�h	� = 0 on M� (6.10)

h	 = T	 on �M� h	 → 0 as �x� → �� (6.11)

Proposition 6.4. Suppose that �M is an outermost future apparent horizon having one
component, and that (1.11) holds for � ∈ �0� �0�. If

1
2 ≤ b < l+1

2 , then there exists a
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Existence and Blow-Up Behavior for Solutions 2233

smooth solution of (6.10), (6.11), which is C0 up to the boundary, and satisfies the
following estimates in a neighborhood of �M

�−1��+ 	�1−2b + �−1 ≤ h	 ≤ ���+ 	�1−2b + � if
1
2
< b <

l+ 1
2

�

−�−1 log��+ 	�+ �−1 ≤ h	 ≤ −� log��+ 	�+ � if b = 1
2
�

(6.12)

for some positive constants � and � independent of 	.

Proof. We first solve a boundary value problem for the �	-regularized generalized
Jang equation:

H	�h	���− K	�h	��� = ��h	�� − !� on M� (6.13)

h	�� = T	 on �M� h	�� → 0 as �x� → �� (6.14)

where ! is a smooth function on M such that ! = T	 on �M , supM �!� ≤ T	, and ! ≡
0 in a neighborhood of spatial infinity. Moreover, we require that ! is decreasing in
� near �M .

We now employ the continuity method to show that a unique solution exists for
(6.13) and (6.14). This is similar to arguments used for (4.10) and (4.11). To begin,
observe that the maximum principle yields the bound

sup
M

�h	��� ≤ T	 + c�−1�

To establish boundary gradient estimates, we construct subsolutions and
supersolutions.

Fix a �0 sufficiently small. For subsolutions, take !
	��

as in Lemma 6.1.
Specifically, !

	��
satisfies

H	�!	���− K	�!	��� ≥  ��+ 	�̃l�

for some positive  . Since this subsolution is a solution to a second order ODE,
there are two free parameters that may be chosen appropriately so that

!
	��
�0� = T	� !	����0� = −�T	 + c�−1��

and

!
	��

≤ ! for � ∈ �0� �0��

This shows that w	�� �= h	�� − !
	��

≥ 0 along the surfaces �M and S�0 . Suppose
that w	�� achieves an interior negative minimum. Then at that point, a standard
comparison argument yields

�H	�h	���− K	�h	����− �H	�!	���− K	�!	���� ≥ 0�
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2234 Han and Khuri

On the other hand, according to (6.9) and w	�� < 0 at the point in question, we have

�H	�h	���− K	�h	����− �H	�!	���− K	�!	���� ≤ ��h	�� − !�−  ��+ 	�̃l

= �w	�� + ��!
	��

− !�−  ��+ 	�̃l < 0�

It follows that h	�� ≥ !
	��

for all � ∈ �0� �0�, and this yields a lower bound for ��h	��.
For supersolutions, let !̃ be defined in the same way as !, from the proof of

Lemma 6.1, except that (6.5) is replaced by

!̃′ =
( −2 

l̃+ 1− 2b
�̃l+1+2b +"2�4b

)− 1
2

�

Then !̃	�� �= !̃��+ 	� satisfies

H	�̃!	���− K	�̃!	��� ≤ − ��+ 	�̃l�

Choose the two parameters defining !̃	�� appropriately so that

!̃	���0� = T	� !̃	����0� = T	 + c�−1�

Then !	�� ≥ ! for all � ∈ �0� �0�. As above, a comparison argument can be employed
to show that h	�� ≤ !̃	�� for all � ∈ �0� �0�. This yields an upper bound for ��h	��.
A solution of (6.13), (6.14) is now guaranteed, and uniqueness follows from a
maximum principle argument.

As in the proof of Theorem 6.3, we may now let � → 0 and extract a
subsequence of solutions, still denoted h	��, which converges smoothly away from
the horizon to a solution h	 of (6.10). Moreover

h	 → 0 as �x� → ��

We need to show that

h	 = T	 on �M�

Note that the functions h	�� are uniformly bounded, independent of � (in fact
independent of 	 as well), when restricted to the surface S�0 . It follows that h	���S�0 <
T	 for 	 sufficiently small. We may then choose sub and supersolutions !

	
≤ !	,

satisfying (6.9), the estimate (6.12) with constants � and � independent of �, and
such that

!
	
�0� = h	����M = !	�0�� !

	
��0� ≤ h	���S�0 ≤ !	��0��

and

!
	
≤ ! ≤ !	 for � ∈ �0� �0��

A comparison argument, as in the first half of this proof, may now be used
to establish (6.12) for h	��. This establishes C0 and boundary gradient estimates,
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Existence and Blow-Up Behavior for Solutions 2235

independent of �. We may now apply Theorem 15.2 of [11] to obtain global C1

bounds independent of �. It follows that the limit h	 is C
0 up to the boundary.

Lastly we may take the subsequential limit h	 → h as 	 → 0, to find that
the functions h	 are uniformly bounded, independent of 	, when restricted to the
surface S�0 . Then as in the previous paragraph, sub and supersolutions !

	
and !	 may

be used to obtain the estimate (6.12) with constants � and � independent of 	. �

Theorem 6.5. Suppose that �M� g� k� is a smooth, asymptotically flat initial data set,
with outermost apparent horizon boundary �M consisting of a single future apparent
horizon component. Suppose further that 
 is a smooth function, strictly positive away
from �M and satisfying (1.8) and (1.10), and that + satisfies (1.11). If 1

2 ≤ b < l+1
2 then

there exists a smooth solution h of the generalized Jang equation (1.6), satisfying (1.9),
and such that the following estimates hold in a neighborhood of �M

�−1�1−2b + �−1 ≤ h ≤ ��1−2b + � if
1
2
< b <

l+ 1
2

�

−�−1 log �+ �−1 ≤ h ≤ −� log �+ � if b = 1
2
�

(6.15)

for some positive constants � and �.

Proof. By Proposition 6.4, for each 	 > 0 there exists a solution t = h	 of boundary
value problem (6.10), (6.11). As in the proof of Theorem 6.3, there is a subsequence
	i → 0 such that these graphs converge smoothly away from the boundary to a
solution t = h of the generalized Jang equation (1.6), which satisfies (1.9). Since the
constants � and � in (6.12) are independent of 	, the limit h satisfies (6.15). �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. This follows from Theorems 6.3 and 6.5 if the boundary has
one future apparent horizon component. Similar arguments hold if the boundary
has a single past apparent horizon component.

Now consider the case of multiple components in which some components
belong to the category (1) and some belong to the category (2). The asymptotics
of (1) arise from taking the limit as � → 0 to obtain a blow-up solution, and then
taking the limit as 	 → 0. The asymptotics of (2) arise from taking the limit as
� → 0 to obtain a solution with finite boundary values (6.11), and then taking the
limit as 	 → 0 to obtain the blow-up solution. Moreover the relevant constructions
may be performed in a neighborhood of each component, so that this process of
letting � → 0 first, and then taking the limit 	 → 0, may be carried out to obtain
the desired result. �

We now give an example to show that the nice asymptotics described in
Theorems 6.3 and 6.5 can fail if b = l+1

2 . In particular, we will exhibit a solution of
the generalized Jang equation which sticks to the cylinder.

Example 6.6. Let us consider the exterior region of the Schwarzschild spacetime
with metric

−
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2d�2�
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where d�2 is the round metric on �2. Let t = f�r� be a radial graph, with induced
metric

g =
((

1− 2m
r

)−1

−
(
1− 2m

r

)
f ′2
)
dr2 + r2d�2�

As is calculated in [5], the second fundamental form of the graph is given by

kij =

�ijf + 
ifj + 
jfi√

1+ 
2��f �2 �

where 
 =
√
1− 2m

r
and the covariant derivatives are calculated with respect to the

metric g. Thus �M = �3 − B2m�0�� g� k� forms an initial data set for which the graph
t = f�r� is a solution of the generalized Jang equation. We choose a solution t =
f�r� such that the function f is smooth up to the boundary r = 2m. In particular,
f�2m� < � and we may consider this as an example of a Jang graph ‘sticking’ to
the cylinder. For such an f , we note that

g11 =
(
1− 2m

r

)−1

−
(
1− 2m

r

)
f ′2 ∼

(
1− 2m

r

)−1

�

Therefore the distance to the boundary is given by

� =
∫ r

2m

√
g11 ∼

√
1− 2m

r
�

This implies that 
 ∼ �, or rather b = 1. We now compute the null expansion of the
coordinate spheres with respect to the initial data metric g. A standard formula [5]
yields

HSr
= 2

√
g11

r
∼
√
1− 2m

r
�

and the trace of the initial data k over the coordinate spheres is given by

TrSr k = − 
#ij�1
ijf

′√
1+ 
2��f �2 = 2

r


g11f ′√
1+ 
2g11f ′2 ∼

(
1− 2m

r

) 3
2

�

It follows that

± = HSr
± TrSr k ∼

√
1− 2m

r
�

In terms of the notation used above, we have ± ∼ �, and in particular, l = 1.
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