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Abstract We establish a Penrose-like inequality for general (not necessarily time-
symmetric) initial data sets of the Einstein–Maxwell equations, which satisfy the dom-
inant energy condition. More precisely, it is shown that the ADM energy is bounded
below by an expression which is proportional to the sum of the square root of the area
of the outermost future (or past) apparent horizon and the square of the total charge.
The proportionality constants depend on the solution to a linear elliptic equation which
incorporates the charge. In addition, a corrected version of the Penrose-like inequality
(Commun Math Phys 290(2):779–788, 2009) is presented.

Keywords Penrose inequality · Jang equation · Conformal deformation

1 Introduction

Consider an initial data set (M, g, k, E) for the Einstein–Maxwell equations with
vanishing magnetic field. Here M is a Riemannian 3-manifold with metric g, k is
a symmetric 2-tensor representing the second fundamental form of the embedding
into spacetime, and E denotes the electric field. It is assumed that the manifold has
a boundary ∂M consisting of an outermost apparent horizon. That is, if H denotes
mean curvature with respect to the normal pointing towards spatial infinity, then each
boundary component S ⊂ ∂M satisfies θ+(S) := HS + T rSk = 0 (future horizon) or
θ−(S) := HS − T rSk = 0 (past horizon), and there are no other apparent horizons
present. Moreover the data are taken to be asymptotically flat with one end, in that
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2342 M. A. Khuri

outside a compact set the manifold is diffeomorphic to the complement of a ball in R
3,

and in the coordinates given by this asymptotic diffeomorphism the following fall-off
conditions hold

|∂m(gi j − δi j )| = O(|x |−m−1), |∂mki j | = O(|x |−m−2), |∂m Ei | = O(|x |−m−2),

m = 0, 1, 2, as |x | → ∞.

With a vanishing magnetic field, the matter and current densities for the non-
electromagnetic matter fields are given by

2μ = R + (T rk)2 − |k|2g − 2|E |2g,
J = div(k − (T rk)g), (1.1)

where R denotes the scalar curvature of g. The following inequality will be referred
to as the dominant energy condition

μ ≥ |J |g. (1.2)

Note that this dominant energy condition differs from the standard one, in that the
energy density for the electric field is removed. Under these hypotheses and based
on heuristic arguments of Penrose [19] which rely heavily on the cosmic censorship
conjecture, the following inequality relating the ADM energy and the minimal area A
required to enclose the boundary ∂M , has been conjectured to hold

E ADM ≥
√

A
16π

+
√
π

A Q2, (1.3)

where Q = limr→∞ 1
4π

∫
Sr

Eiνi is the total electric charge, with Sr coordinate spheres
in the asymptotic end having unit outer normal ν. Inequality (1.3) has been proven
by Jang [12] for time-symmetric initial data with a connected horizon, under the
assumption that a smooth solution to the Inverse Mean Curvature Flow (IMCF) exists.
Moreover in light of Huisken and Ilmanen’s work [10], the hypothesis of a smooth
IMCF can be discarded. However without the assumption of a connected horizon,
counterexamples [21] are known to exist (these examples do not provide a contra-
diction to the cosmic censorship conjecture), although (1.3) remains true [16] if an
auxiliary inequality holds between the area and charge. In the non-time-symmetric
case this inequality has been proven under the additional hypothesis of spherically
symmetric initial data [8]. In the general case, with a connected horizon, the validity
of (1.3) has been reduced to solving a coupled system of equations involving the gen-
eralized Jang equation and the IMCF [6]. In the case of equality, it is expected that the
initial data arise from the Reissner-Nordström spacetime; this has been confirmed in
the time-symmetric case [6].

In this paper we establish a Penrose-like inequality including charge, without any
assumption on k or on the connectedness of the boundary. The primary difficulty in
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A Penrose-like inequality with charge 2343

the non-time-symmetric (and non-maximal) case is the lack of the following positive
lower bound for the scalar curvature

R ≥ 2|E |2g. (1.4)

In order to circumvent this issue, we seek a deformation of the initial data to a new set
(M, g, E), where M is diffeomorphic to M , and the metric g and vector field E are
related to g and E in a precise way described below. The purpose of the deformation
is to obtain new initial data which satisfy (1.4) in a weak sense, while preserving the
relevant geometric and physical quantities, such as the charge density, total charge,
ADM energy, and boundary area. The desired deformation is a generalization of a
procedure introduced by Jang [11] and studied extensively by Schoen and Yau [20].
More precisely, consider the product 4-manifold (M ×R, g + dt2), and let M = {t =
f (x)} be the graph of a function f inside this setting. Then the induced metric on M
is given by g = g + d f 2. In order to obtain the most desirable positivity property for
the scalar curvature of the graph, the function f should satisfy

(
gi j − f i f j

1 + |∇ f |2g

) ⎛
⎝ ∇i j f√

1 + |∇ f |2g
− ki j

⎞
⎠ = 0, (1.5)

where ∇ denotes covariant differentiation with respect to the metric g, fi = ∂i f , and
f i = gi j f j . Equation (1.5) is referred to as the Jang equation, and when it is satisfied
M will be called the Jang surface. The scalar curvature of the Jang surface [20] is
given by

R = 2(μ− J (w))+ 2|E |2g + |h − k|2g + 2|q|2g − 2div(q), (1.6)

here div is the divergence operator with respect to g, h is the second fundamental
form of the graph t = f (x) in the Lorentzian 4-manifold (M × R, g − dt2), and w
and q are 1-forms given by

hi j = ∇i j f√
1 + |∇ f |2g

, wi = fi√
1 + |∇ f |2g

, qi = f j√
1 + |∇ f |2g

(hi j − ki j ). (1.7)

The existence and regularity theory for Eq. (1.5) is well-understood. In particular, it
is shown in [7] and [18] that there exists a smooth solution on M which blows-up in
the form of a cylinder over the outermost apparent horizon, with f (x) → ∞ (−∞) at
each component of ∂M depending on whether it is a future (or past) apparent horizon.
Let τ(x) = dist (x, ∂M), and denote the level sets of τ by Sτ . If |θ±(Sτ )| ∼ τ l near
a future (past) apparent horizon component of the boundary, then according to [7] the
blow-up solution satisfies the following asymptotics near that boundary component

α−1τ− l−1
2 + β−1 ≤ ± f ≤ ατ− l−1

2 + β, (1.8)
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for some positive constants α and β. Moreover the solution decays sufficiently fast at
spatial infinity so that the ADM energies agree E ADM (g) = E ADM (g).

When the dominant energy condition is satisfied, all terms appearing on the right-
hand side of (1.6) are nonnegative, except possibly the last term. Thus the scalar
curvature is nonnegative modulo a divergence, so it may be described as weakly non-
negative. For the topic of interest here, a stronger condition than simple nonnegativity
is required, more precisely we seek an inequality (holding in the weak sense) of the
following form

R ≥ 2|E |2g, (1.9)

where E is an auxiliary electric field defined on the Jang surface. This auxiliary electric
field is required to satisfy three properties, namely

|E |g ≥ |E |g, div E = 0, Q = Q, (1.10)

where Q is the total charge defined with respect to E . In particular, if the first inequality
of (1.10) is satisfied, then the dominant energy condition (1.2) and the scalar curvature
formula (1.6) imply that (1.9) holds weakly. It turns out that there is a very natural
choice for this auxiliary electric field, namely E is the induced electric field on the
Jang surface M arising from the field strength F of the electromagnetic field on
(M × R, g + dt2). More precisely Ei = F(N , Xi ), where N and Xi are respectively
the unit normal and canonical tangent vectors to M

N = ∂t − f i∂i√
1 + |∇ f |2g

, Xi = ∂i + fi∂t , (1.11)

and F = 1
2 Fabdxa ∧ dxb is given by F0i = Ei and Fi j = 0 for i = 1, 2, 3, with

xi , i = 1, 2, 3 coordinates on M and x0 = t . In matrix form

F =

⎛
⎜⎜⎝

0 E1 E2 E3
−E1 0 0 0
−E2 0 0 0
−E3 0 0 0

⎞
⎟⎟⎠ . (1.12)

In [6] it is shown that

Ei = Ei + fi f j E j√
1 + |∇ f |2g

, (1.13)

and that all the desired properties of (1.10) hold. This auxiliary electric field was also
used in [15].

The fact that inequality (1.9) holds in a weak sense, allows us to find (a proof is
given in the next section) a unique positive solution to the prescribed scalar curvature
equation
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u − 1

8
Ru + 1

4
|Ê |2ĝu5 = 0 on M (1.14)

with the following boundary conditions. Namely, u vanishes asymptotically along the
cylindrical ends of M or alternatively u(x) → 0 as x → ∂M , and

u(x) = 1 + A

|x | + O

(
1

|x |2
)

as |x | → ∞ (1.15)

for some constant A. Here 
 is the Laplacian with respect to g, ĝ = u4g, and Ê i =
u−4 E

i
. Equation (1.14) expresses the fact that the scalar curvature of ĝ is given by

R̂ = 2|Ê |2ĝ. (1.16)

It follows that the conformally deformed initial data (M, ĝ, Ê) satisfies the desired
version (1.4) of the dominant energy condition. We point out that the process of
conformally changing the Jang initial data in order to obtain favorable properties
for the scalar curvature was first used by Schoen and Yau [20] in their proof of the
positive mass theorem. In fact when E = 0, the solution u of (1.14) coincides with
the conformal factor used in [20].

We now state the main theorem. Recall that the Hawking mass of a surface S ⊂ M ,
with area |S|, is given by

MH (S) =
√ |S|

16π

⎛
⎝1 − 1

16π

∫

S

H2

⎞
⎠ , (1.17)

and that S is said to be area outerminimizing if every surface which encloses it has
area greater than or equal to |S|. If a connected surface S encloses the boundary ∂M ,
the region between S and spatial infinity will be denoted by MS .

Theorem 1.1 Let (M, g, k, E) be a smooth asymptotically flat initial data set for the
Einstein–Maxwell equations with total charge Q, divE = 0, and satisfying the dom-
inant energy condition μ ≥ |J |g. If the boundary consists of an outermost apparent
horizon with components ∂i M, i = 1, . . . , n, then

E ADM (g) ≥ σ1

2(1 + σ1)

n∑
i=1

√ |∂i M |g
π

+ σ2

√
π

|∂M |g Q2 (1.18)

with

σ1 =
(

n∑
i=1

√
4π |∂i M |g

)−1

‖ ∇u ‖2
L2(M)

, σ2 = sup
S

√
|∂M |g
|S|ĝ min

MS
u4, (1.19)

where the supremum is taken over all connected surfaces S which enclose ∂M, are
area outerminimizing, and have nonnegative Hawking mass all with respect to ĝ.
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Note that the constants σ1, σ2 are scale invariant making them independent of
|∂M |g , and it is clear that σ1 is strictly positive. It will be proven below that σ2 is
also strictly positive. Thus inequality (1.18) has a similar structure to that of (1.3),
and it applies in a more general setting without restriction on the number of boundary
components. This theorem also applies without the assumption of time-symmetric or
maximal data, whereas (1.3) has so far only been confirmed with these added hypothe-
ses. It turns out that the case of equality in (1.18) cannot occur, which indicates that
this inequality is not optimal. Lastly, similar Penrose-like inequalities have previously
been discussed in [9] and [13], without a contribution from the total charge. Issues
with [9] have been raised in [1] and [17] (and partially addressed in [1]), while issues
with [13] have been pointed out in [14] and are resolved in the appendix of the present
paper.

We remark that it is the special geometry of the Jang surface, namely that it blows-
up as a cylinder over the horizon, which is responsible for a definite contribution of
area from each boundary component to the right-hand side of (1.18). This will be
examined in Sect. 4. There it will also be shown that the constant σ1 may be written
as an infimum over all functions satisfying appropriate asymptotics.

2 The conformal factor

In the work of Schoen and Yau [20] existence of a unique solution to the following
boundary value problem was established:


z − 1

8
Rz = 0 on M, (2.1)

with z(x) → 0 as x → ∂M and z(x) → 1 as |x | → ∞. The inequality (4.6) in
[20] shows that the first eigenvalue, ηi , of the operator 
 − 1

8 K on ∂i M , is strictly
positive (here K denotes Gaussian curvature). As observed by Schoen and Yau, z ∼
e∓√

ηi tζi (y), that is the conformal factor z is asymptotic to e∓√
ηi tζi (y) depending

on whether the Jang surface blows up or down, where ζi is the corresponding first
eigenfunction.

The same methods of [20] may also be used to establish the existence of a unique
solution to the following boundary value problem:


u − 1

8
Ru + 1

4
|E |2gu = 0 on M, (2.2)

with

u(x) → 0 as x → ∂M, and u(x) → 1 as |x | → ∞. (2.3)

Note that Eq. (2.2) is equivalent to Eq. (1.14). In light of (1.6) and the dominant
energy condition (1.2), a slightly modified version of (4.6) in [20] shows that the
first eigenvalue, λi , of the operator 
 − 1

8 K + 1
4 (E · n)2 on ∂i M , is strictly positive

(here n denotes the unit normal to ∂i M) if the initial data are slightly perturbed so that
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μ > |J |g at ∂M . Moreover as in [20], u ∼ e∓√
λi tφi (y), where φi is the corresponding

first eigenfunction.
For the purposes of the proof of Theorem 1.1, it will be convenient to consider

auxiliary boundary value problems, for which the solutions uT will converge to u; this
will also yield an alternate proof of existence for u. In order to describe the auxiliary
problems, for each T > 0 let MT denote the portion of the Jang surface M which
lies between the hyperplanes t = ±T . Let χT (y) denote the one parameter family of
functions defined on a given boundary component ∂i M as the restriction of |q|g to
∂i MT . According to the parametric estimates for the Jang equation [20], the sequence
of functions χT is uniformly bounded and equicontinuous. Therefore after passing to a
subsequence (still denoted by χT for convenience) we have that χT → χ as T → ∞,
for some continuous function χ . There are two cases to consider, namely, case 1 when
χ vanishes identically, and case 2 when χ does not vanish identically.

We will slightly perturb u in order to prescribe appropriate boundary conditions
on certain cylindrical ends. For large T and T0(T > T0), let (MT − MT0)i denote
the component of MT − MT0 associated with the boundary component ∂i M . Let
i = 1, . . . ,m index the boundary components which fall under case 1, and let
i = m + 1, . . . , n index the boundary components which fall under case 2. Set
M̂T = M − ⋃m

i=1(M − MT )i , that is, M̂T is the Jang surface after the cylindri-
cal ends corresponding to case 1 have been removed. Consider the boundary value
problem


uT − 1

8
RuT + 1

4
|E |2guT = 0 on M̂T , (2.4)

∂N uT + 1

4
HuT = 1

4

√
16π

|∂i MT |ĝT

u3
T on ∂i MT , i = 1, . . . ,m, (2.5)

uT (x) → 0 as x → ∂i M, i = m + 1, . . . , n, uT (x) → 1 as |x | → ∞,

(2.6)

where the unit normal N (with respect to g) points towards spatial infinity and ĝT =
u4

T g. Note that the boundary condition (2.5) expresses the fact that the mean curvature

of ∂i MT , i = 1, . . . ,m, with respect to ĝT , is given by Ĥ =
√

16π
|∂i MT |ĝT

. The solutions

uT to this problem approximate the solution u of (2.2) for large T , as is shown in
Theorem 3.1 below. Furthermore, as in [20] a separation of variables argument can be
used to show that the solution uT possesses the same asymptotics as u along the ends
corresponding to ∂i M, i = m + 1, . . . , n, namely

uT ∼ e∓√
λi tφi (y). (2.7)

Theorem 2.1 If T is sufficiently large, then there exists a smooth positive solution to
boundary value problem (2.4), (2.5), (2.6).
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Proof Consider the functional

P(v) = 1

2

∫

M̂T

(
|∇v|2 + 1

8
R(1 + v)2 − 1

4
|E |2g(1 + v)2

)

−
m∑

i=1

1

8

∫

∂i MT

H(1 + v)2 +
m∑

i=1

√
π

2

⎛
⎜⎝

∫

∂i MT

(1 + v)4

⎞
⎟⎠

1/2

(2.8)

on the space of functions

W =
{
v ∈ W 1,2

loc (M̂T ) | |x | j−1∇ j
v ∈ L2(M̂T ), j = 0, 1, 1 + v ∈ W 1,2

0 (M̂T )
}
,

(2.9)

where W 1,2
0 (M̂T ) is the closure, in the W 1,2-norm, of the space of smooth functions

which have compact support when restricted to each cylindrical end indexed by i =
m + 1, . . . , n. Here W 1,2 ⊂ L2 is the space of functions with square integrable first
derivatives.

In order to establish the existence (as well as the asymptotic behavior) of a solution
vT ∈ W∩C∞(M̂T ), it is enough, by the arguments of [9], to show that for T sufficiently
large the functional P is nonnegative. To see that this is the case, use formula (1.6)
and (1.10), and integrate the divergence term by parts to find that for any v ∈ W ,

P(v) ≥
∫

M̂T

(
3

8
|∇v|2 + 1

8
(μ− |J |g)(1 + v)2

)
+

m∑
i=1

√
π

2

⎛
⎜⎝

∫

∂i MT

(1 + v)4

⎞
⎟⎠

1/2

−
m∑

i=1

1

8

∫

∂i MT

(H − q(N ))(1 + v)2. (2.10)

According to [3] (also [4]) H → 0 as T → ∞, and since the boundary components
∂i MT belong to case 1 we have that q(N ) → 0 as T → ∞. Moreover, the area of
∂i MT approximates the area of ∂i M . It then follows from Jensen’s Inequality

⎛
⎜⎝

∫

∂i MT

(1 + v)2

⎞
⎟⎠

2

≤ |∂i MT |g
∫

∂i MT

(1 + v)4, (2.11)

that for T sufficiently large P is nonnegative.
It remains to show that uT = 1 + vT is strictly positive. So suppose that uT is not

positive and let D− be the domain on which uT < 0. Since uT → 1 as |x | → ∞, the
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closure of D− ∩ MT must be compact. Now multiply equation (2.4) through by uT

and integrate by parts to obtain ∫

D−

|∇uT |2 ≤ 0. (2.12)

Note that if D− ∩ ∂i MT �= ∅, i = 1, . . . ,m then the same arguments used above to
show that P is nonnegative, must be employed. It follows that uT ≥ 0. To show that
uT > 0, one need only apply Hopf’s maximum principle (the boundary condition of
(2.5) must be used to obtain this conclusion at ∂i MT , i = 1, . . . ,m). ��

Multiply equation (2.4) by uT = 1 + vT and integrate by parts to obtain

P(vT ) := lim
r→∞

1

2

∫

|x |=r

uT ∂N uT

≥
∫

MT

1

4
|∇vT |2 +

(
1

8
(μ− |J |)+ 1

16
|q|2g

)
(1 + vT )

2

+
∫

∂MT

1

8
q(N )(1 + vT )

2 + 1

2
uT ∂N uT . (2.13)

A standard formula yields

∂N uT = 1

4
Ĥu3

T − 1

4
HuT , (2.14)

where Ĥ and H are the mean curvatures with respect to ĝT and g, respectively. It
follows that

P(vT ) ≥
∫

MT

1

4
|∇vT |2 +

(
1

8
(μ− |J |)+ 1

16
|q|2g

)
(1 + vT )

2

+
∫

∂MT

1

8
(q(N )− H)(1 + vT )

2 + 1

8
Ĥ(1 + vT )

4. (2.15)

The quantity P(vT ) appears in the formula for the ADM energy of the metric ĝT ,
more precisely E ADM (ĝT ) = E ADM (g) − π−1P(vT ). Therefore it is important to
estimate P(vT ) from below.

Lemma 2.2 Let uT = 1 + vT be the function produced in Theorem 2.1, then

P(vT ) ≥
∫

MT

1

4
|∇vT |2 +

(
1 − ϑT

2

) n∑
i=1

√
π

|∂i MT |g

∫

∂i MT

(1 + vT )
2 (2.16)

where ϑT → 0 as T → ∞.

123

Author's personal copy
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Proof There are two cases to consider.
Case 1: χ ≡ 0.
This case corresponds to the boundary components ∂i M, i = 1, . . . ,m. Here the

methods of the proof of Theorem 2.1 apply to yield

∫

∂i MT

1

8
(q(N )− H)(1 + vT )

2 + 1

8
Ĥ(1 + vT )

4

≥
(

1 − ϑT

2

) √
π

|∂i MT |g

∫

∂i MT

(1 + vT )
2, (2.17)

for some constants ϑT → 0 as T → ∞.
Case 2: χ does not vanish identically.
This case corresponds to the boundary components ∂i M, i = m+1, . . . , n. For each

such component there is a set of positive measure �i ⊂ ∂i M on which χTj ≥ 2ε > 0
for a subsequence of heights Tj → ∞. Let (MT − MT ′) ∩�i denote the portion of
(MT − MT ′)i which, after projection onto the vertical cylinder over ∂i M , corresponds
with �i × (T ′, T ). Similarly let ∂i MT ∩�i denote the portion of ∂i MT which, after
projection onto the vertical cylinder over ∂i M , corresponds with�i ×{T }. Since |q|g
is uniformly bounded in C1, there is a δ > 0 independent of j , such that |q|g ≥ ε on
(MTj +δ − MTj −δ) ∩ �i for each j . If N (T − T0) denotes the number of Tj in the
interval (T0, T ), then using the asymptotics of uT , it follows that for sufficiently large
T and T0 we have

∫

(MT −MT0 )i

|q|2g(1 + vT )
2 ≥

∫

(MT −MT0 )∩�i

|q|2g(1 + vT )
2

≥ ε2
N (T −T0)∑

j=0

∫

(MT j +δ−MT j −δ)∩�i

(1 + vT )
2

≥ δε2N (T − T0)

∫

∂i MT ∩�i

(1 + vT )
2. (2.18)

Note that in the last step in the above sequence of inequalities, the factor δ can be
pulled out in light of (2.7) and the fact that the metric on (MTj +δ − MTj −δ) ∩ �i

approximates the product metric on �i × (Tj − δ, Tj + δ). Furthermore, using (2.7)
again yields

∫

∂i MT ∩�i

(1 + vT )
2 ≥ C0

∫

∂i MT

(1 + vT )
2, (2.19)
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for some positive constant C0 independent of T . Hence

∫

(MT −MT0 )i

1

16
|q|2g(1 + vT )

2 ≥ C1N (T − T0)

√
π

|∂i MT |g

∫

∂i MT

(1 + vT )
2. (2.20)

From [20] (page 257)

ĝT ∼ φ4
i (y)(dρ

2 + 4λiρ
2dθ2) (2.21)

for ρ near zero, where ρ = (2
√
λi )

−1e∓2
√
λi t and dθ2 is the induced metric on ∂i M .

Therefore

Ĥ ∼ φ−2
i (y)

(
2

ρ

)
∼ 4

√
λi u

−2
T = 4

√
λi (1 + vT )

−2. (2.22)

By applying (2.20), and using the fact that q(N ) − H is uniformly bounded and
N (T − T0) → ∞ as T → ∞, we then have

∫

(MT −MT0 )i

1

16
|q|2g(1 + vT )

2 +
∫

∂i MT

1

8
(q(N )− H)(1 + vT )

2 + 1

8
Ĥ(1 + vT )

4

≥ C1N (T − T0)

√
π

|∂i MT |g

∫

∂i MT

(1 + vT )
2 − C2

∫

∂i MT

(1 + vT )
2

≥
(

1 − C3N (T − T0)
−1

) √
π

|∂i MT |g

∫

∂i MT

(1 + vT )
2 (2.23)

for T sufficiently large so that C1N (T − T0) ≥ 1.
We may now combine (2.15), (2.17), and (2.23) to obtain the desired result. ��

3 Proof of the main theorem

Consider the manifold (M̂T , ĝT ). Along the infinite cylindrical ends over ∂i M, i =
m + 1, . . . , n, the conformal factor uT decays exponentially fast. Therefore as in [20]
these ends may be closed by adding a point at infinity. The remaining cylindrical ends,
indexed by i = 1, . . . ,m, correspond to the boundary components of M̂T which satisfy
the hypotheses of Herzlich’s version of the positive mass theorem [9]. Alternatively,
these boundary components have zero Hawking mass

MH (∂i M̂T ) :=
√

|∂i M̂T |ĝ
16π

⎛
⎜⎝1 − 1

16π

∫

∂i M̂T

Ĥ2

⎞
⎟⎠ = 0. (3.1)
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It follows that the ADM energy E ADM (ĝT ) is nonnegative. Combining this with the
lower bound for P(vT ) yields a lower bound for the ADM energy of g, from the
formula

E ADM (g) = E ADM (g) = E ADM (ĝT )+ π−1P(vT ). (3.2)

We now estimate the positive contributions from both terms on the right-hand side of
(3.2). Let us begin with E ADM (ĝT ). Consider a connected surface S which encloses
∂M , is area outerminimizing, and has nonnegative Hawking mass all with respect to
ĝT . Let {S�}∞�=0 be a weak inverse mean curvature flow (see [10]) emanating from
S = S0. Then according to Geroch monotonicity [10]

E ADM (ĝT ) ≥
∞∫

0

⎛
⎜⎝ |S�|1/2ĝT

(16π)3/2

∫

S�

R̂T dθĝT

⎞
⎟⎠ d�, (3.3)

where R̂T is the scalar curvature of ĝT . Let N̂T denote the unit normal to S� with

respect to ĝT , and set Ê i
T = u−4

T E
i
. By (1.16) R̂T = 2|ÊT |2ĝT

, and with the help of
Cauchy-Schwarz, (1.10), and Hölder’s inequality

∫

S�

|ÊT |2ĝT
dθĝT ≥

∫

S�

ĝT (ÊT , N̂T )
2dθĝT

=
∫

S�

g(E, N )2dθg

≥ |S�|−1
g

⎛
⎜⎝

∫

S�

g(E, N )dθg

⎞
⎟⎠

2

(3.4)

= (4πQ)2

|S�|g
= |S�|ĝT

|S�|g
(4πQ)2

|S�|ĝT

.

A basic property of inverse mean curvature flow is that the area of the flow surfaces
increases exponentially, in particular |S�|ĝT = |S0|ĝT e�. Moreover, if MS denotes the
region between spatial infinity and the surface S, then

|S�|ĝT

|S�|g ≥ min
MS

u4
T . (3.5)

It follows that
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E ADM (ĝT ) ≥
(√

|∂M |g
|S|ĝT

min
MS

u4
T

) √
π

|∂M |g Q2. (3.6)

Since this inequality is true for all surfaces S which enclose ∂M , are area outermini-
mizing, and have nonnegative Hawking mass all with respect to ĝT , we then have

E ADM (ĝT ) ≥ σ2,T

√
π

|∂M |g Q2 (3.7)

where

σ2,T = sup
S

√
|∂M |g
|S|ĝT

min
MS

u4
T . (3.8)

Note that the set of surfaces S which have the above desired properties is nonempty.
To see this we may simply start an inverse mean curvature flow from one of the
boundary components ∂i M̂T , i = 1, . . . ,m, then for sufficiently large �, each of the
flow surfaces S� encloses ∂M , is area outerminimizing, and has nonnegative Hawking
mass. In particular, σ2,T is strictly positive.

The positive contribution from P(vT )will now be estimated. Suppose that P(vT ) ≤
η

∑n
i=1

√
π |∂i MT |g for some positive constant η. Then by Lemma 2.2

∫

MT

1

4
|∇vT |2 +

(
1 − ϑT

2

) n∑
i=1

√
π

|∂i MT |g

∫

∂i MT

(1 + vT )
2 ≤ η

n∑
i=1

√
π |∂i MT |g.

(3.9)

However by Young’s inequality

(1 + vT )
2 ≥ 1 − 1

δ
+ (1 − δ)v2

T (3.10)

for any δ > 0, and therefore

∫

MT

1

4
|∇vT |2 + (1 − δ)

(
1 − ϑT

2

) n∑
i=1

√
π

|∂i MT |g

∫

∂i MT

v2
T

≤ (η − 1

2
(1 − δ−1)(1 − ϑT ))

n∑
i=1

√
π |∂i MT |g. (3.11)

The left-hand side is nonnegative if δ − 1 ≤ σ1,T where
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σ1,T =
∫

MT
|∇vT |2

2(1 − ϑT )
∑n

i=1

√
π

|∂i MT |g
∫

∂i MT

v2
T

. (3.12)

It follows that η ≥ δ−1(δ − 1)(1 − ϑT )/2 for all such δ. In particular by choosing
δ = 1 + σ1,T we conclude that

P(vT ) ≥ σ1,T (1 − ϑT )

2(1 + σ1,T )

n∑
i=1

√
π |∂i MT |g. (3.13)

The combination of (3.2), (3.7), and (3.13) now produces

E ADM (g) ≥ σ1,T (1 − ϑT )

2(1 + σ1,T )

n∑
i=1

√
|∂i MT |g
π

+ σ2,T

√
π

|∂M |g Q2. (3.14)

Theorem 3.1 After possibly passing to a subsequence, uT → u in C∞
loc(M) as T →

∞, where u is the unique solution of boundary value problem (2.2), (2.3).

Proof Together (2.16), (3.2), and (3.7) show that the sequence of functions {uT } is
uniformly bounded in W 1,2

loc (M). Thus with the help of elliptic estimates and Sobolev
embeddings, a subsequence converges on compact subsets to a smooth uniformly
bounded solution u∞ of


u∞ − 1

8
Ru∞ + 1

4
|E |2gu∞ =0 on M, u∞ = 1+ A∞

|x | + O(|x |−2) as |x | → ∞.

(3.15)

Moreover since M approximates a cylinder on regions where it blows-up, comparison
with a bounded solution of the same equation on the cylinder (as is done in [20]) shows
that u∞(x) → 0 as x → ∂M ; in fact the decay rate is of exponential strength. Thus
u∞ satisfies boundary value problem (2.2), (2.3), and therefore must coincide with
the unique solution to this problem u = u∞. ��

Theorem 3.1 shows that after passing to a subsequence, σ1,T → σ1 and σ2,T → σ2
as T → ∞. Theorem 1.1 now follows from (3.14).

Lastly we analyze what happens when equality occurs in Theorem 1.1. By slightly
modifying the arguments presented, we find that equality in (1.18) implies that

∫

M

|∇u|2 = 0, (3.16)

and therefore u must be constant. However this is impossible since

u(x) →
{

1 as |x | → ∞,

0 as x → ∂M.
(3.17)

We conclude that the case of equality cannot occur.
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4 Further properties of the constant σ1

In this section it will be shown how the constant σ1 of Theorem 1.1 may be redefined
as an infimum over conformal factors which satisfy appropriate asymptotics. We also
describe how the area of each boundary component ∂i M , naturally arises and makes
a definite contribution to the right-hand side of (1.18).

First observe that a slight improvement of the estimate in Lemma 2.2 is possible,
by utilizing all of the terms in (2.15), namely

P(vT ) ≥
∫

MT

1

4
|∇vT |2 +

(
1

8
(μ− |J |g)+ 1

20
|q|2g

)
(1 + vT )

2

+
(

1 − ϑT

2

) n∑
i=1

√
π

|∂i MT |g

∫

∂i MT

(1 + vT )
2. (4.1)

By following the arguments in Sect. 3, we obtain a lower bound of the form

P(v) ≥ σ 1,T (1 − ϑT )

2(1 + σ 1,T )

n∑
i=1

√
π |∂i MT |g, (4.2)

where

σ 1,T =
∫

MT
|∇vT |2 +

(
1
2 (μ− |J |g)+ 1

5 |q|2g
)
(1 + vT )

2

2(1 − ϑT )
∑n

i=1

√
π

|∂i MT |g
∫

∂i MT

v2
T

. (4.3)

It follows that if σ 1,T → σ 1 then

σ 1 =
(

n∑
i=1

√
4π |∂i M |g

)−1 ∫

M

|∇u|2 +
(

1

2
(μ− |J |g)+ 1

5
|q|2g

)
u2

≥
(

n∑
i=1

√
4π |∂i M |g

)−1

inf
w

∫

M

|∇w|2 +
(

1

2
(μ− |J |g)+ 1

5
|q|2g

)
w2, (4.4)

where the infimum is taken over all smooth functions w satisfying the following
asymptotics

w ∼ e∓√
κi t as x → ∂i M, w → 1 as |x | → ∞, (4.5)

for some positive constants κi ≤ 2λi ; here λi , as in Sect. 2, is the first eigenvalue of

− 1

8 K + 1
4 (E · n)2 on ∂i M . Therefore we may redefine the constant σ1 appearing

in Theorem 1.1 to be given by the infimum on the right-hand side of (4.4).
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The infimum is realized by the unique (positive) solution of the equation


w −
[

1

2
(μ− |J |g)+ 1

5
|q|2g

]
w = 0 on M, (4.6)

with asymptotics

e±√
γi tw → ψi as x → ∂i M, w → 1 as |x | → ∞, (4.7)

where γi is the first eigenvalue andψi the corresponding eigenfunction for the operator

 − [ 1

2 (μ− |J |g)+ 1
5χ

2
]

on ∂i M , with χ defined as in Sect. 2. Note that this is
consistent with the fact that γi ≤ 2λi . To see this, observe that for any ξ ∈ C∞

c (M)

∫

M

(
−R+2|E |2g +2(μ− |J |g)+|q|2g

)
ξ2 ≤

∫

M

(
−|q|2g + 2div(q)

)
ξ2

≤
∫

M

4|∇ξ |2, (4.8)

from which it follows that

4
∫

M

[
|∇ξ |2+

(
1

2
(μ− |J |g)+ 1

4
|q|2g

)
ξ2

]
≤ 8

∫

M

[
|∇ξ |2+

(
1

8
R− 1

4
|E |2g

)
ξ2

]
.

(4.9)

By translating the Jang surface in the t-direction as in [20] (page 254), we find

∫

∂i M

[
|∇ϕ|2+

(
1

2
(μ−|J |g)+ 1

4
χ2

)
ϕ2

]
≤ 2

∫

∂i M

[
|∇ϕ|2+

(
1

8
K − 1

4
(E · n)2

)
ϕ2

]

(4.10)

for any ϕ ∈ C∞(∂i M), so that γi ≤ 2λi .
Next we describe (heuristically) how the area of each boundary component ∂i M ,

naturally arises and makes a definite contribution to the right-hand side of (1.18). This
is primarily a consequence of the cylindrical geometry of the Jang surface near the
horizon. Recall that as in (3.13), the goal is to obtain a lower bound for P(vT ) and then
let T → ∞. Observe that since (M − Mt0)i approximates a cylinder for sufficiently
large t0, it follows that

4P(v) ≥
∫

M

|∇u|2 ≥ 1

2

n∑
i=1

∫

(M−Mt0 )i

(∂t u)
2. (4.11)
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Furthermore, since u ∼ e∓√
λi (t−t0)φi where φi is the principal eigenfunction of the

operator
− 1
8 K + 1

4 (E · n)2 on ∂i M , normalized so that ‖ φi ‖2
L2= |∂i M |g , we find

that

P(v) ≥
n∑

i=1

ci

⎛
⎜⎝

∫

∂i M

φ2
i

⎞
⎟⎠

⎛
⎝

∞∫
t0

λi e
−2

√
λi (t−t0)

⎞
⎠ =

∑
i=1

ci

2

√
λi |∂i M |g (4.12)

where the constants ci > 0 depend on u. As λi is the principal eigenvalue for a self-
adjoint elliptic operator on the 2-sphere, it should behave similarly to the principal
eigenvalue of the Laplacian in thatλi ∼ |∂i M |−1

g . Thus we find a natural contribution to
the right-hand side of (1.18), from each boundary component, in the form of

√|∂i M |g .
Another somewhat more vague approach to arrive at the same intuitive conclusion,

is to realize that P(v) is related to the electrostatic capacity of ∂M , which in turn
is related to

√|∂M |g . There are several well-known results, and also conjectures
(of Pólya and Szegö), concerning the relationship of capacity to the square root of
boundary area in Euclidean space. It remains to be seen exactly how these generalize
to a Riemannian manifold, although one result in this direction may be found in [5].

5 Appendix: The uncharged case

In this section we make clear how the arguments above correct issues associated with
the uncharged Penrose-like inequality discussed in [13]. Recall that two errors were
pointed out in the erratum [14]. The first concerns the constant σ in the statement of
Theorem 1.2 [13]; namely, this constant is in fact zero. The second error concerns
Lemma 2.2 [13], in that the quantity H − q(N ) may not necessarily approach zero
as r → 0. By setting the electric field E = 0 in the results of the present paper, both
problems are resolved; in particular, Lemma 2.2 [13] is not needed. However, for the
convenience of the reader, we explicitly carry out the revised proofs below for the
uncharged case.

LetχT (y) denote the one parameter family of functions defined on a given boundary
component ∂i M as the restriction of |q|g to ∂i MT . According to the parametric esti-
mates for the Jang equation [20], the sequence of functions χT is uniformly bounded
and equicontinuous. Therefore after passing to a subsequence (still denoted by χT

for convenience) we have that χT → χ as T → ∞, for some continuous function
χ . There are two cases to consider, namely, case 1 when χ vanishes identically (in
which case the conclusion of Lemma 2.2 holds), and case 2 when χ does not vanish
identically.

Before considering both cases, we construct an appropriate conformal factor. In the
work of Schoen and Yau [2] existence of a unique solution to the following boundary
value problem was established:


u − 1

8
Ru = 0 on M, (5.1)
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with u(x) → 0 as x → ∂M and u(x) → 1 as |x | → ∞. A slightly modified version
of (4.6) in [20] shows that the first eigenvalue, ηi, of the operator 
− 1

8 K on ∂i M , is
strictly positive (here K denotes Gaussian curvature). As observed by Schoen and Yau,
u ∼ e∓√

ηi tζi (y), that is the conformal factor u is asymptotic to e∓√
ηi tζi (y) depending

on whether the Jang surface blows up or down, where ζ1 is the corresponding first
eigenfunction.

We will slightly perturb u in order to prescribe appropriate boundary conditions
on certain cylindrical ends. For large T and T0 (T > T0), let (MT − MT0)i denote
the component of MT − MT0 associated with the boundary component ∂i M . Let
i = 1, . . . ,m index the boundary components which fall under case 1, and let i =
m + 1, . . . , n index the boundary components which fall under case 2. Set M̂T =
M − ⋃m

i=1(M − MT )i , that is, M̂T is the Jang surface after the cylindrical ends
corresponding to case 1 have been removed. Consider the boundary value problem


uT − 1

8
RuT = 0 on M̂T , (5.2)

∂N uT + 1

4
HuT = 1

4

√
16π

|∂i MT |ĝT

u3
T on ∂i MT , i = 1, . . . ,m,

uT (x) → 0 as x → ∂i M, i = m + 1, . . . , n, uT (x) → 1 as |x | → ∞,

where the unit normal N points towards spatial infinity and ĝT = u4
T g. The unique

solution to this problem exists by Theorem 2.1 (with E = 0), and it approximates the
solution u of (5.1) for large T , as is shown in Theorem 5.1 below. Note that as in [20]
a separation of variables argument can be used to show that this solution possesses the
same asymptotics as u, namely

uT ∼ e∓√
ηi tζi (y) (5.3)

along the ends corresponding to ∂i M, i = m + 1, . . . , n.
Multiply equation (5.2) by uT = 1 + vT and integrate by parts to obtain

Q(vT ) := lim
r→∞

1

2

∫

|x |=r

uT ∂N uT

≥
∫

MT

1

4
|∇vT |2 +

(
π(μ− |J |)+ 1

16
|q|2g

)
(1 + vT )

2

+
∫

∂MT

1

8
q(N )(1 + vT )

2 + 1

2
uT ∂N uT .

A standard formula yields

∂N uT = 1

4
Ĥu3

T − 1

4
HuT ,
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where Ĥ and H are the mean curvatures with respect to ĝT and g, respectively. It
follows that

Q(vT ) ≥
∫

MT

1

4
|∇vT |2 +

(
π(μ− |J |)+ 1

16
|q|2g

)
(1 + vT )

2

+
∫

∂MT

1

8
(q(N )− H)(1 + vT )

2 + 1

8
Ĥ(1 + vT )

4, (5.4)

where μ and J are given by (1.1) with E = 0.
Case 1: χ ≡ 0.
This case corresponds to the boundary components ∂i M, i = 1, . . . ,m. Here the

conclusion of Lemma 2.2 [13] is valid, and the boundary conditions of (3.1) in [13]
hold. Thus the methods of [13] (as in the proof of Theorem 3.1) apply to yield

∫

∂i MT

1

8
(q(N )− H)(1 + vT )

2 + 1

8
Ĥ(1 + vT )

4

≥
(

1 − ϑT

2

) √
π

|∂i MT |
∫

∂i MT

(1 + vT )
2, (5.5)

where the constants ϑT → 0 as T → ∞. ��
Case 2: χ does not vanish identically.
Here we may follow the proof in Lemma 2.2 (of the present paper) directly to obtain

∫

(MT −MT0 )i

1

16
|q|2g(1 + vT )

2 +
∫

∂i MT

1

8
(q(N )− H)(1 + vT )

2 + 1

8
Ĥ(1 + vT )

4

≥
(

1 − CN (T − T0)
−1

) √
π

|∂i MT |
∫

∂i MT

(1 + vT )
2, (5.6)

for T sufficiently large. ��
By combining (5.4), (5.5), and (5.6) we conclude that

Q(vT ) ≥
∫

MT

1

4
|∇vT |2 +

(
1 − ϑT

2

) n∑
i=1

√
π

|∂i MT |
∫

∂i MT

(1 + vT )
2. (5.7)

Theorem 5.1 Let (M, g, k) be an asymptotically flat initial data set for the Einstein
equations satisfying the dominant energy condition. If the boundary consists of an
outermost apparent horizon with components ∂i M having area |∂i M |, i = 1, . . . , n,
then
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E ADM (g) ≥ σ

2(1 + σ)

n∑
i=1

√ |∂i M |
π

where

σ =
(

n∑
i=1

√
4π |∂i M |

)−1

‖ ∇u ‖2
L2(M)

.

Proof Consider the manifold (M̂T , ĝT ). Along the infinite cylindrical ends over
∂i M, i = m + 1, . . . , n, the conformal factor uT decays exponentially fast. There-
fore as in [20] these ends may be closed by adding a point at infinity. The remaining
cylindrical ends, indexed by i = 1, . . . ,m, correspond to the boundary components of
M̂T which satisfy the hypotheses of Herzlich’s version of the positive mass theorem
(Theorem 1.4 of [13]). It follows that E ADM (ĝT ) is nonnegative. At this point, we can
apply (5.7) and follow the same procedure as in section §4 of [13] to obtain

E ADM (g) ≥ σT (1 − ϑT )

2(1 + σT )

n∑
i=1

√
|∂i MT |
π

,

where

σT =
∫

MT
|∇vT |2

2(1 − ϑT )
∑n

i=1

√
π

|∂i MT |
∫
∂i MT

v2
T

.

Moreover, the same arguments in the paragraph after (4.4) in [13] show that uT → u∞,
where u∞ is a bounded solution of boundary value problem (5.1), and σT → σ∞.
Since there is a unique bounded solution of (5.1), it follows that u∞ = u and σ∞ = σ ,
from which we obtain the desired result. ��

Note that in [13], in the last step, we replaced σ∞ with a different definition of σ
that employed an infimum. The purpose of this replacement was solely to give our
result an expression akin to that in Herzlich’s Penrose-like inequality [9]. Alas, this
misguided sense of aesthetics resulted in the error mentioned at the beginning of the
appendix.

Lastly, we mention that the definition of σ in the current theorem is strictly positive,
and σ is dimensionless making it independent of the area of ∂M .
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