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LOCAL SOLVABILITY OF DEGENERATE MONGE-AMPERE
EQUATIONS AND APPLICATIONS TO GEOMETRY

MARCUS A. KHURI

ABSTRACT. We consider two natural problems arising in geometry which are
equivalent to the local solvability of specific equations of Monge-Ampeére type.
These are: the problem of locally prescribed Gaussian curvature for surfaces
in R3, and the local isometric embedding problem for two-dimensional Rie-
mannian manifolds. We prove a general local existence result for a large class
of degenerate Monge-Ampere equations in the plane, and obtain as corollar-
ies the existence of regular solutions to both problems, in the case that the
Gaussian curvature vanishes and possesses a nonvanishing Hessian matrix at
a critical point.

1. INTRODUCTION

Let K (u,v) be a function defined in a neighborhood of a point in R?, say (u,v) =
0. A well-known problem is to ask, when does there exist a piece of a surface
z = z(u,v) in R? having Gaussian curvature K?

The classical results on this problem may be found in [I0, 19, 20]. They show
that a solution always exists when K is analytic or K does not vanish at the origin.
In the case that K > 0 and is sufficiently smooth, or K(0) = 0 and |VK(0)| # 0,
Lin provides an affirmative answer in [I5] [16] (see [4] for a simplified proof of [16]).
When K < 0 and VK possesses a certain nondegeneracy, Han, Hong, and Lin [§]
show that a solution always exists. Furthermore, if K degenerates to arbitrary
finite order on a single smooth curve, then Han and the author independently
provide an affirmative answer in [l [IT] (see also [6] for improved regularity). For
an excellent survey of these results and related topics, see [7]. In this paper we
prove the following,

Theorem 1.1. Suppose that K(0) = |[VK(0)| =0, V2K (0) has at least one nega-
tive eigenvalue, and K € C', 1 > 100. Then there exists a piece of a C*™% surface
in R® with Gaussian curvature K.

If a surface in R3 is given by z = z(u,v), then its Gaussian curvature is given by
ZuuZow — 22, = K(1 4+ |Vz]?)% (1.1)
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Therefore our problem is equivalent to the local solvability of the above equation.

Another well-known and related problem, is that of the local isometric embedding
of surfaces into R3. That is, if (M?, ds?) is a two-dimensional Riemannian manifold,
when can one realize this, locally, as a small piece of a surface in R3? Suppose
that ds? = Edu® + 2Fdudv + Gdv? is given in the neighborhood of a point, say
(u,v) = 0. Then we must find three function z(u,v), y(u,v), z(u,v), such that
ds? = dz?+dy?+dz?. The following strategy was first used by Weingarten [25]. We
search for a function z(u,v), with |Vz| sufficiently small, such that ds? — dz? is flat
in a neighborhood of the origin. Suppose that such a function exists, then since any
Riemannian manifold of zero curvature is locally isometric to Euclidean space (via
the exponential map), there exists a smooth change of coordinates z(u,v), y(u,v)
such that drz? + dy? = ds? — dz2. Therefore, our problem is reduced to finding
z(u,v) such that ds? — dz? is flat in a neighborhood of the origin. A computation
shows that this is equivalent to the local solvability of the equation

(z11—Fﬁlzi)(zgg—Fézzi)—(zlg—l”ﬁzi)z = K(EG—FQ—EZS—GZ%—i-QFZlZQ), (1.2)

where z1 = 0z/0u, zo = 0z/0v, z;; are second partial derivatives of z, and F;k are
Christoffel symbols. For this problem we obtain a similar result to that of Theorem

T

Theorem 1.2. Suppose that K(0) = [VK(0)| =0, V2K (0) has at least one nega-
tive eigenvalue, and ds*> € C', 1 > 102. Then there exists a C*=1%0 local isometric
embedding into R3.

We note that Pogorelov has constructed a C%! metric with no C? isometric
embedding in R®. Other examples of metrics with low regularity not admitting
a local isometric embedding have also been proposed by Nadirashvili and Yuan
[I7]. Furthermore, an alternate method for obtaining smooth examples of local
nonsolvability, for equations with similar structure, may be found in [12].

Equations and are both two-dimensional Monge-Ampere equations.
With the goal of treating both problems simultaneously, we will study the local
solvability of the following general Monge-Ampere equation

det(zi; + a;j(u,v,2,Vz)) = K f(u,v,2,Vz), (1.3)

where a;;(u,v,p,q) and f(u,v,p,q) are smooth functions of p and ¢, f > 0, and
a;;(0,0,p,q) = 0%ai;(0,0,0,0) = 0, for any multi-index « in the variables (u,v)

satisfying |a| < 2. Clearly (1.1]) is of the form (1.3), and (1.2)) is of the form (1.3)

if I‘;k(O) = 0, which we assume without loss of generality. We will prove

Theorem 1.3. Suppose that K(0) = [VK(0)| = 0, V2K (0) has at least one neg-
ative eigenvalue, and K, a;j, f € C', 1 > 100. Then there ezists a C*=% local

solution of (|L.3)).

Remark. (1) The methods carried out below may be slightly modified to yield
the same result for the case when V2K (0) has at least one positive eigenvalue; and
therefore ultimately include the case of genuine second order vanishing, that is,
when K(0) = [VK(0)] =0 and [V2K(0)| # 0. It is conjectured that local solutions
exist whenever K vanishes to finite order and the a;; vanish to an order greater
than or equal to half that of K.

(2) Recently Han and the author [9] have shown that local solutions exist for
the isometric embedding problem, whenever K vanishes to finite order and the
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zero set K ~1(0) consists of Lipschitz curves intersecting transversely at the origin.
Unfortunately the methods of [9] breakdown when the transversality assumption
is removed. Therefore Theorem (which allows tangential intersections) and the
methods used to prove it, may be considered as a first step towards the general
conjecture.

Equation is elliptic if K > 0, hyperbolic if K < 0, and of mixed type if K
changes sign in a neighborhood of the origin. Furthermore, the order to which K
vanishes determines how (|1.3) changes type in the following way. If K(0) = 0 and
IVK(0)] # 0 [16], then a nonlinear perturbation of the Tricomi equation:

VZyy + Zow = 0.

In our case, assuming that the origin is a critical point for which the Hessian matrix
of K does not vanish, (1.3)) is a nonlinear perturbation of Gallerstedt’s equation [3]:

ivzzuu + 2y = 0.

Therefore, if sufficiently small linear perturbation terms are added to the above
two equations, then the first (second) partial v-derivative of the zy,, coefficient will
not vanish for the Tricomi (Gallerstedt) equation. It is this fact, which allows one
to obtain appropriate estimates for the linearized equation of in both cases.
This observation, Lemma [2.3] below, is the key to our approach.

From now on we only consider the case when V2K (0) has at least one negative
eigenvalue. Therefore, we can assume without loss of generality that

Kf(u,v,2,Vz) = =0+ O(|u]® + |v|* + |2|* + |Vz[?).

Let ¢ be a small parameter and set u = gtz, v = €2y, 2 = u?/2 — v*/12 + 2w.
Then substituting into (1.3)) and cancelling £ on both sides yields

*yzwzm + Wyy + Eﬁ(é‘, z,y, w, Vw, V2w) =0, (1.4)

where ﬁ(s,a@y,p, q,r) is smooth with respect to €, p, ¢, and r. Choose xg, yg > 0
and define the rectangle X = {(z,y) : |z| < zo,|y| < yo}. Let ¥ € C°(X) be a
cut-off function such that

1 if o] <2 and |y| < L,
’L/J(l‘,y) = . ‘ | 3210 ‘ 3y20

0 if [x| > =3 or |y| > =,
and cut-off the nonlinear term of (1.4) by F(e,z,y,w, Vw, VZw) = ¢F. Then
solving

O(w) = Y Was + wyy +eF(e,z,y,w, Vw, V?w) =0 in X, (1.5)

is equivalent to solving locally at the origin.

In the next sections, we shall study the linearization of about some function
w. The linearized equation is a small perturbation of Gallerstedt’s equation, which
as mentioned above admits certain estimates. These estimates are sufficient for the
existence of weak solutions, however the perturbation terms cause some difficulty
in proving higher regularity. To avoid this problem, we will regularize the equation
by appending a suitably small fourth order operator. In section §2 we shall prove
the existence of weak solutions for a boundary value problem associated to this
modified linearized equation. Regularity will be obtained in section §3. In section
84 we make the appropriate estimates in preparation for the Nash-Moser iteration
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procedure. Finally, in §5 we apply a modified version of the Nash-Moser procedure
and obtain a solution of (1.5]).

2. LINEAR EXISTENCE THEORY

In this section we will prove the existence of weak solutions for a small perturba-
tion of the linearized equation for . Fix a constant A > 0, and for all 4,7 = 1,2
let b, b, b € C™(R?) be such that:

(i) The supports of b;;, b;, and b are contained in X, and
(ii) Z |bij|clo + |bi|cl() + ‘b|clo < A.
We will study the following generalization of the linearization for ,

] %

where 1 = z, o = v and a1 = —y? + €bi1, @12 = b1, aga = 1 + €bao, a1 = by,
as = eby, a = ¢€b.

To simplify 7 we shall make a change of variables that will eliminate the
mixed second derivative term. In constructing this change of variables we will
make use of the following lemma from ordinary differential equations.

Lemma 2.1 ([1]). Let G(x,t) be a smooth real valued function in the closed rec-
tangle |v — s| < Ty, |t| < Ty. Let M = sup |G(z,t)| in this domain. Then the
initial-value problem dx/dt = G(x,t), (0) = s, has a unique smooth solution de-
fined on the interval |t| < min(Ty, Th/M).

We now construct the desired change of variables.

Lemma 2.2. For e sufficiently small, there ezists a C" diffeomorphism

§=¢&(zy), n=y,
of X onto itself, such that in the new variables (&,1n)

L= @0, + Y 0, +7,
i.j i

where 11 =&, x5 =1, @11 = —N>+ebi1, 1z = 0, Goz = 14¢bay, a1 = by, G = eby,
a = ¢eb, and b;;, b;, b satisfy:
(i) bij, bi,b € C"(X),
(ii) Eij,ﬁi, and b vanish in a neighborhood of the lines { = £, and
(ii) > [bijlesx) + bil os ) + Plos ) < A
for some fized \.

Proof. Using the chain rule we find that @12 = @12, + a22§,. Therefore, we seek a
smooth function £(z,y) such that

@128y + a2 =0 inX, {(z,0) =z &(£zo,y)= 0. (2.2)

The boundary condition &(£x,y) = tx( states that the vertical sides of 90X will
be mapped identically onto themselves under the transformation (£, 7). Moreover,
the horizontal portion of 0X will be mapped identically onto itself since n = y.
Thus, (£,7) will act as the identity map on 0X.

Since aj2 = ebyg and ags = 1 + ebag, by property (ii) if € is sufficiently small the
line y = 0 will be non-characteristic for . Then by the theory of first order
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partial differential equations, (2.2) is reduced to the following system of first order
ODE:
i:@, z(0)=s, —xo<s<xg,
a22

y=1, y(0)=0,
é: = Oa E(O) =S, f(:l:fﬂo,y) = :l:an

where z = z(t), y = y(t), £(t) = £(x(t), y(t)) and &, g, € are derivatives with respect
to .

We first show that the characteristic curves, given parametrically by (x,y) =
(x(t),t), exist globally for —yy <t < yg. We apply Lemma with T} = 2x¢ and
T> = yo to the initial-value problem & = 12, 2(0) = s. By property (ii) for the b;;

a

a b
M < sup| 2| = csup| 22| < <,
X a2 x 1

+ ebaa
so for € small, M < 2@% Thus min(Ts,Th/M) = yo, and Lemma gives the
desired global existence.

We observe that & = s is constant along each characteristic. In particular, since
%kizo,y) = 0 the characteristics passing through (£z¢,0) are the vertical lines

(£x0,t), so that &(+xg,y) = +xo is satisfied.
We now show that the map p: X — X given by

(57 t) = (37(87 t)’ y(s, t)) = ($(87 t)’ t)

is a diffeomorphism, from which we will conclude that £ = s(x,y) is a smooth
function of (x,y). To show that p is 1-1, suppose that p(s1,t1) = p(s2,t2). Then
t;1 = to and xz(s1,t1) = x(s2,ta), which implies that s; = sy by uniqueness for
the initial-value problem for ordinary differential equations. To show that p is
onto, take an arbitrary point (x1,y1) € X, then we will show that there exists
s € [—xg, zo] such that p(s,y1) = (x(s,41),y1) = (z1,y1). Since the map z(s,-) :
[—0,x0] — [—®0, o] is continuous and x(+zp, ) = Lz, the intermediate value
theorem guarantees that there is s € [—xq, 2] with x(s,y1) = z1, showing that p
is onto. Therefore, p has a well-defined inverse.

To show that p~! is smooth it is sufficient, by the inverse function theorem, to
show that the Jacobian of p does not vanish at each point of X. Since

Ty T
Dp = (0 f),

this is equivalent to showing that x; does not vanish in X. Differentiate the equation
for z with respect to s to obtain, 4 (z,) = (22)2s, ©5(0) = 1. Then by the mean
value theorem,

a
(s, 8) = 1] = | (s.8) = 25(s,0)] < yosup ()| sup|a|
X Q22 X
for all (s,t) € X. Thus by property (ii) for the b;;,

1 —eCiyosup |zs| < z4(s,t) < eCrygsup|zs| + 1
X X

for all (s,t) € X. Hence for ¢ sufficiently small, z4(s,t) > 0 in X. We have now
shown that p is a diffeomorphism. Moreover, by Lemmal[2.T]and the inverse function
theorem, we have p,p~! € C.



6 M. A. KHURI EJDE-2007/65

Lastly we calculate @11, @22, @1, G2, and show that they possess the desired prop-
erties. It will first be necessary to estimate the derivatives of £. By differentiating
(2.2) with respect to z, we obtain

<‘“2><gz>z + )y = (“”) €ar Eu(z,0)=1.

As above, let (z(t),y(t)) be the parameterization of an arbitrary characteristic,
then &, (t) = & (x(t),y(t)) satisfies & = —(522)2&s, £&:(0) = 1. By the mean value
theorem,

[§a(t) = 1] = |&:(t) = &(0)] < yo Supl( ) \SHP|§I|
By property (ii) for the b;;,
1 —eCiyosup €| < &a(t) < eChyo sup [Sal + 1.

Since this holds for any characteristic, we obtain

1
SUP|§z| S 1 cCm Cs.
It follows from (2.2)) that
sup[&y| < Cs,

where U, Cs are independent of € and b;;. In order to estimate &, differentiate
(2.2) two times with respect to x:

(a12)(£rx)r (fxr)y = - (a12 )€TT - (27;)7"7'57'; ST’E(:ra 0) =0.

Then the same procedure as above ylelds

sup |£zz| < eCayo sup [€zz| + eCsyo,
X X

implying that

£Csy0
1 —eCuyo
Furthermore, using the above estimates we can differentiate to obtain

sup |€zo| < = eCj.
X

sup ‘€$y| < €C7v sup |§yy| < ECg,
X X

for some constants C7, Cs independent of ¢ and b;;. This procedure may be con-
tinued to yield
|0%¢| < eC,
for any multi-index « satisfying 2 < |a| < 10.
We now show that @11, @22, @1, G2 satisfy properties (i), (ii), (iii) and have the
desired form. Calculation shows that,

11 = ann& + 2a126,&, + azzfi, a1 = a11ze + 201282y + a228yy + a1 + azéy.

Furthermore, according to the above estimates and the fact that the b;; vanish in
a neighborhood of 0.X, we may write

& =1+ex,

where x € C"~1(X) vanishes in a neighborhood of the lines = = +zq. It follows
that

ayp = *772 + 5611, ap b
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where b1 and by satisfy properties (i), (ii), (iii). Moreover since @z = ass and
Ty = ag, properties (i), (ii), (iii) hold for these coefficients as well. O

For the remainder of this section and section §3, (£,n) will be the coordinates of
the plane. For simplicity of notation we put = = ¢, y = n, and a;; = @5, a; = Gy,
(1:6, bij:bija blib“ b=o0a.

To obtain a well-posed boundary value problem, we will study a regularization
of L in the infinite strip Q = {(x,y) : |z| < x0}. More precisely define the operator

Ly = =005y, + L,

where 6 > 0 is a small constant that will tend to zero in the Nash-Moser iteration
procedure. Furthermore, we will need to modify some of the coefficients of L away
from X as follows. First cut b;;, b;, and b off near the lines y = %y, so that by
property (ii) of Lemma these functions vanish in a neighborhood of 90X, and
the coeflicients a;;, a;, and a are now defined on all of 2. Choose values y1, 32, and
ys such that yo < y1 < y2 < ys, and let § > 0 be a small constant that depends on
y2 —y1 and y3 — y2. Then redefine the coefficient a in the domain 2 — X so that:
(i) a € C"2(Q),
(ii)) a =1 1if |y| > y1,
(iii) a > 0 for [y| > yo,
(iv) 0ya > 0if y > yo, and Oya < 0 if y < —yo.
Redefine a11 in Q — X and near 0f) so that:
(1) a1 € CT_Q(Q),
—y° if yo < |yl < w1,
(B ity >
(ili) Oyai1 < 0if y > yo, and dyai1 > 0 if y < —ypo,
(iv) supgq Oyyair <9,
(v) ai1]on < =0, 0%a11loq =0, a < 7 — 2, and supg, |0%a1;| <eA'; 1< B <8,
Lastly, redefine as in 2 — X so that:
(i) az € C"72(Q),
0 if yo < [y < w2,
(i) az = § =0y +d(225) ify > ys,
—0y — O(1) if y < —ys,
(ili) ag <0ify > yp, and az > 0 if y < —ypo,
(iv) SUpjy >y, [Oyaz] < 6.

(ii) ayl] =

Denote the operator L with coefficients modified as above by L', and define
Ly = —00y4y, + L.

Note that since we are studying a local problem, as stated in the introduction, we
may modify the coefficients of the linearization away from a fixed neighborhood of
the origin. This will become clear in the final section, where a modified version of
the Nash-Moser iteration scheme is used.

Consider the following boundary value problems

Lou=f inQ, ul|po=0; (2.3)
Lou=f inQ, wugloq=0,
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and the corresponding adjoint problems
Lov=yg inQ, vlpo=0; (2.5)
Liv=g inQ, wvgleq=0, (2.6)

where L} is the formal adjoint of Ly. The main result of this section is to obtain
weak solutions for all four problems.
We will make extensive use of the following function spaces. For m,n € Z>q let

Cmm (@) ={u: Q= R:0500ue CQ), a <m, B <n},

Cmn) Q) ={uc C(m’")(ﬁ) s ulpo = 0, u has bounded support},

CN‘;m’") Q) ={uc C(m’”)(ﬁ) : Ugz|loo = 0, u has bounded support}.
Define the norm

1/2
lllonmy = (32 10205 ull3e))

a<m,f<n
and let ﬁ(m’”)(Q) and Iflimn)(Q) be the respective closures of C(mm) () and
™™ (@) in the norm || - | (m,n)- Furthermore, let H™(£2) denote the Sobolev
space of square integrable derivatives up to and including order m, with norm

|| - lm. Denote the L?(€) inner product and norm by (-,-) and || - || respectively,
and define the negative norm

|(u, )]
wll(=m,—n) = _sup ANk A
veitomm () 1Vl mn)

Let H(—™=)(Q) be the closure of L() in the norm ||-|| (=m,—n), then H(m=n)((Q)
is the dual space of H(™™) (). The dual space of HS™™ () is defined similarly.
Let f € L?(Q2). A function u € L?(f) is said to be a weak solution of (2.3)

(respectively (2.4)) if
(u, Ljv) = (f,v), for all v e C=(Q) (for all v e C(Q)).

We shall employ the energy integral method, developed by K. O. Friedrichs and
others, to prove the existence of weak solutions for (2.3) and (2.4]). The first step
is to establish an a priori estimate.

Lemma 2.3 (Basic Estimate). Ife, 0, and § are sufficiently small, then there exist
constants C1,Cy > 0 independent of €, 0, §, and functions A, B,C,D,E € C*(Q)
where E > 0 and E = O(|y|) as |y| — oo, such that:

(Au + Bug + Cuy + Duy,, Lou)
> Culllull® + | Buy |* + 01|z |* + [ty I + gy I + 0lltayy 1)),

for all u € C=(Q) with bounded support such that u,(—x,y) = 0, and either
u(zo,y) =0 or ugy(zo,y) = 0. Furthermore,

lall + Ny [l + VOlua | + ltay || + gy || + VOlluayyl)) < Call Loul,

for all w € C*(Q) and for all u € C(Q).
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Proof. We first define the functions A, B,C and D. Let pu be a positive constant
such that 41+ a1 > 1 throughout €2, and let v € C°([—z, o)) be such that

1 if —xp <<z,
V(z) = : ?
0 if z = x,
with y(z) > 0 except at = xg, and 7' < 0. Define
1
A= io”'yC — ali, B = —(9’)/,

C— poyary  if |y| < yo,

—2uy  if [yl = yo,

and note that A, B,C, D € C*(9Q). B
We now prove the first estimate. Let u € C°°(Q) satisfy the given hypotheses.

Let (n1,n2) denote the unit outward normal to 9€2. Then integrate by parts to
obtain:

D=9

)

(Au 4+ Bug + Cuy + Duyy, Lou)
= //Q Iluiyy + Iguzy + 213Uy Ugy + I4uiy + 215Uy Uz
+ 2gugyuy + I7ui + 2Iguguy + Iguz + Liou?

+ /8Q Jluiy + JoUgy Uy + Jgui + J4u?2! + J5u2;

where
1 1
J1 = ianl’ Jg = (‘)Bynl, Jg = iBaunl,

2J4 = —QAxnl — chynl =+ (Dan)xnl — Dalnl,

2J5 = —(Aan)xnl + Aa1n1 + chl + HAmyynl,
and the remaining Iy, ..., ;g will be given below as each term is estimated. First
note that Jolgg = Jiloo = 0. Furthermore J; = --- = J5 = 0 on the portion of
the boundary x = ¢, since y(xg) = 0. Whereas on the other half of the boundary
x = —xg, we have u,(—zg,y) = 0 and J5 = %Banl > 0. It follows that the entire

boundary integral is nonnegative.
We now proceed to estimate the integral over §2, beginning with Iy, I5, and I,
which are given by
1
I =60D, I5= —ié)By,
2110 = (Aall);cac + (Aa22)yy - (Aal)x - (AGJZ)ZJ

+2Aa — (C(L)y - (Ba)m - aAmcyy + (Da)yy‘

Since B is a function of x alone, Is = 0, and by definition of D, I, = #2. It will
now be shown that I;g > M; in 2, for some constant M; > 0 independent of € and
f. In order to accomplish this we shall treat the regions |y| < yo, yo < |y| < y1,
1 < |yl < yo, and |y| > yo separately. Moreover throughout this proof M;,
i = 1,2,..., will always denote positive constants independent of € and 6. A
computation yields,

1 1
IlO = 7@223yya11 —aila — icaya — i(AaQ)y + 0(5 + 0)
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In the region |y| < yo we have a, dya, as, Oyas = O(€), aze = 14+0(e), and Jyya11 =
—2 4 O(e), so that here I1g > Ms. If yo < |y| < w1, the conditions placed on a
guarantee that

1
—aj1a — iCaya > 0;

furthermore ass, a1, and as have the same properties in this region as in the
previous. Hence, I1g > M3 when yo < |y| < y1. If y1 < |y| < yo then

—a228yya11 = 0(5), —ai11a Z y%, g = aya = 0,

showing that I1g > M, in this region. Lastly, when |y| > yo we have I1g > M5
since

+ 1
Oyyar1 = Oya =0, —ana= 2 B y2)23 *§(A02)y = 0(6).

The desired conclusion now follows by combining the above estimates.
Next we show that

/ / Toti2, + 2Lty gy + Tiu2, > Mob(|[tgy | + 1tz ).
Q

where

1 1 1 1
Iy = *§9Dm + Dags, I3 = *§9Cac7 I, = *59011 - 598% —0A+ Day,.

This will follow if Iy > M0, I, > Mg, and I>14 — Ig > 0. A calculation shows
that

12 = 0&22 = 0(1 + O(E)), Ig = 0(60),
1
I, = 20(a11 — §Cy) + O(eb) = 20(pn + a1 + O(¢)).

Therefore since 1 was chosen so that u+aq1; > 1in £2, the desired conclusion follows
if € is sufficiently small.
We now show that

// Irug + 2Usuguy + Touy > Mo (0] uz || + [| By [|?),
Q

where
2]7 = 7214(111 — (Ball)gg + 2Ba1 —+ (Call)y + GBmyy -+ GAyy — (Dall)yy,
215 = —(Bagg)y + Bas — (Cau)z +Cay + QAmy + (Dau)xy — (Dal)y,
219 = —2140,22 - (Ca22)y + 200/2 + chzy + QAQJZD
— (Dai1)ze — (Dag)y, + (Day), — 2Da.

Again this will follow if Iy > Miof, Ig > M1 E?, and Iy — 182 > 0. A calculation
shows that

1 1
Iy = af; + 500ya11 +0(=0yya11 + ywan + O(e)),

1 1 1 1
Ig = 756’1&11 — iCazaH + 500,1 + §B(12 + 0(9),
Iy = (CLH - C'y)azz + Casy + 0(6 + 9)
=2u+a1+0(E)1+0(e)) + Caz + O(e + 0).
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Then Iy > Mj; E? immediately follows since Cay = O(e) if |y| < yo, Cag > 0 if
ly| > yo, Caz = O(|y|?) as |y| — oo, and 2 + a1; > 1. To show that I; > M0,
we consider the regions |y| < yo and |y| > yo separately. If |y| < yo then

Cayall = M(aya11)2 >0, *ayyan =2+ 0(5)3 VeQ11 = *0(5)7

so that here I; > 20 + O(ef)). Furthermore, when |y| > yo we have I; > yd& + O(6)
since

ai; >y, Cdyan > 0.
Finally, I;1g — I3 > 0 follows from the next calculation. If |y| < yo then

Ily — 12 > (a2, + g(ayauf 1204 0(0))(1 + O(e + 0))
— 0()ah ~ O @yan)? — 06+ 67),
whereas if |y| > yo then
Inly — I > (yo + O(0))(1+ O(3y*)) — O(6%y?).
Lastly we deal with the term 2/su,u,. Consider the quadratic form:
Mﬁﬂuiy + 2lsUgzyty + MgEzuz,
where I = —%Bagg. Since
(M20)(M3E?) — Ig > M110 — M126%(1 + O(e))
for some M1, Mo, we obtain
Mgbu, + 2lguzyuy + MoE*ul > Mis(0ul, + E*ul).

This completes the proof of the first estimate.

To obtain the second estimate we need only observe that the above arguments
hold if B = 0 and u € C®(Q) or u € C2°(Q). Then an application of Cauchy’s
inequality (ab < Aa? + ;5b% X > 0) yields the desired result. The reason for
including B in the first estimate will soon become clear. (I

Having established the basic estimate, our goal shall now be to establish dual
inequalities of the form:

o] < Cil|Ljovll(—1, 9y for all v € C®(Q),
lv]| < CalLyv||(—1,—2) forallve Ce ().

The existence of weak solutions to problems (2.3]) and (2.4) will then easily follow
from these two dual estimates, respectively. In order to establish the dual estimates,
we will need the following lemma. Let P denote the differential operator

P = D0 + B0, + CO, + A,

where A, B,C, and D are defined in Lemma Note that P is parabolic in 2,
away from the portion of the boundary, x = xy. This is the reason for including B
in the first estimate of Lemma

Lemma 2.4. For every v € C>=(Q) there exists a unique solution u € C*(€) N
H(Q) c C=(Q)NC*Q) of

Pu=v in Q7 U(*(ﬂo’y) = ux(fx(]ay) = 0, u(x(hy) =0.
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Furthermore, for every v € C°(Q) there exists a unique solution u € C*(€2) N
HY(Q) Cc C=(Q)NC%Q) of

Pu=v inQ, uz(fx(),y) =0, Uz(x(by) =0.
Proof. Let 7 > 0 be a small parameter, and define the subdomains
Qr ={(z,y): —xz0 <x <0 — T}

Then P is parabolic in £, for each 7. We now consider the case when v € C>(9).
The parabolicity of P guarantees the existence (see [I3]) of a unique solution to the
Cauchy problem
Pu=v inQ, u(—z9,y)=0,
such that v € H*(Q,) for every 7. Furthermore, u, (—xzo,y) = 0 since
Bu$|(

We shall now show that u € H*(£2). This will be accomplished by estimating the
H*(Q,) norm of u in terms of the H*(2) norm of v, independent of 7. To facilitate
the estimates, we first construct an appropriate approximating sequence {uk JSal
for u. Define functions v, € C*°(R) by

1 if [y <k,
= 2.7
Vi (y) {0 it [y] > 3k, (2.7)

—zoyy) = Pu|(,x0’y) = ’U(—.’L‘o, y) =0.

such that 0 < v, < 1, sup|v;| < %, and |Vk|c4(§) < M for some constant M
independent of k. Let uF = vju, then

(i) u* € C>=(Q,) for all T,

(ii) u* has bounded support and u*(—zg,y) = uf(—z0,y) = 0,
(iil) |lu — uF|ls.q, — 0 as k — oo,
(iv) [|Cuy — Culilla, — 0 as k — oo,
where C' was defined in Lemma All of the above properties are evident except
for (iv), and (iv) follows from the following calculation. Let

Qﬂ('kl’kz) = {(mvy) € QT : kl < |y‘ < kQ}v

then

ICuy — Cuyllg, < 101y — i) |[* + |Cvgul?

2 2 /N2 2
< //ngw) C uy+//Q(Tk,3k)(CVk) U
1

2 2 2 2 2

</ / o O / / o G )

where p was defined in the proof of Lemma By solving for C'u, in the equation
Pu = v, we have

Cu, = v — Duy, — Bu, — Au € L*(Q,).

// C2u§—>0 as k — oo.

Qs_k,,oc)

// 36p%u? — 0 ask — oo
QUk-38)

Therefore

Furthermore
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since u € L?(Q;). This proves (iv).

We now proceed to estimate the H*(£2,) norm of u. Let ¢ = ((y) € C*(R) be
such that ¢ < 0, C(y) = —|y|~/2 if |y| > y1, ('(y) > 0if y > 0, and ¢'(y) < 0 if
y < 0. Then set k = 2sup |a11], and integrate by parts to obtain

//QT(Hu’;y + Cuk)Pub = //Q WD)(uk,)? + [~DC + m(%Bz _ %cy Ay
F 3Ry + 5(DOyy — 5(BOx — 3(CO), +CAIWH
+ /am [—%/ﬁBnl](u’;)2 + [%Bgnl](uk)Q.

k

The boundary integral is nonnegative since u®(—zg,y) = Uy,

—KBN1(2o—7,y)» BCN1|(2g—r,) > 0. Also kD > 0,

(_x07y) = 07 and

1 1
D¢+ w(5Bs = 5Cy = A) 2 62+ an + O(e +0)) 2 %,

and
1 1 1 1
inAyy + g(DC)yy - 5(301’ - i(CC)y + CA

1 1 1 1
= _i’iayyall - 50¢ —Cair + g(DOyy - §(Bc)r +O(e)

2
k—Ca;; + O(e+0) if |y] <,
> Syl Y2 [+ a1y + O(0)] + O(k6) if g1 < Jy| < o,
|y|_1/2[%ﬂ + a1 + O(6)] if [y| > yo.

Therefore if €, 6, and § are sufficiently small, we may apply the Schwarz inequality
followed by Cauchy’s inequality to obtain

IV =¢u®lla, +lluylle, + llug,lo, < MillPu*|lq.,

for some constant M; independent of 7. The properties of u* guarantee that by
letting £ — oo, we obtain

IV =Culla. +lluylla, + luyylla. < MillPulla, = Millvllo, < Mijo].

We now estimate 8;"35% fora=1,...,4, and 8 = 0,1,2. Differentiate Pu = v
with respect to x:

D(ug)yy + B(ug)z + C(ug)y + (A + By)uy = vy — Cruy — Agu. (2.8)

Since u,(—x0,y) = 0 and A,, C, vanish outside a compact set, we can apply the
same procedure as above to obtain

||\/_7Cuw||97 + uaylle, + tayyllo, < Millve — Couy — Agulla,
< Ma([[vall, + lluyllo, + lulle.)
< Ms([[vl] + [[ve)-
Differentiating with respect to x produces

D(ugy)yy + B(Ugz)s + C(Ugz)y + (A + 2By )ugg
= VUgp — 02 (Cruy + Agu) — Cptizy — (Ay + Byg)ug == v1.
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Again we apply the same method. However since u,.(—2o,y) = B’lvx|(_x0,y) from
(2.8), we now have
IRV _CUIIHQT + ||uzryHQT + ||uzryy||97 < M1||U1||QT + My
< Ms([[vll + [[ve |l + [[vaall) + Ma,

where My = 5| B|~'(f,__, vZ,4v2)!/? which is independent of 7. We can estimate

lvV/—C%ullq., a = 3,4, and HB;‘By'GuHQT, a=3,4, 8 =1,2, in a similar manner.
To estimate 1,,,, differentiate Pu = v with respect to y:
D(uy)yy + Bluy)z + Cluy)y + (A + Cyuy = vy — Ayu. (2.9)

Since uy(—z0,y) = 0, Cy < 0, and A, vanishes outside a compact set, the same
method as above yields

IV —=Cuylla, + luyyllo, + lugyylla, < Miflvy — Ayulla,
< Ms([[oll + llvyl])-
Furthermore, |[tuzyyyllo, and ||uyyyyllo, can be estimated by differentiating (2.9)

with respect to x and y, respectively.
The combination of all the above estimates produces,

4
DoIVCulle, + Y 10505 ulla, < Myllolla + M,
a=0

a+pB<4, #0

where M7 and Mg are independent of 7. Then letting 7 — 0 we find that 8;"65 u €
L?(Q), a+ 3 <4, 3+#0, and that /—(0%u € L*(Q), a = 0,...,4. It follows that
u € HY(K) for every compact K C €, so that u € C?(Q).

We now show that 9%u € L?*(Q), a = 0,...,4. Let o1, 00 € C*°(R) be given by

(2) = —B+0 if —xo <z < =0, () = —y if ly| < yo,
a =0 0 <2<z 2W =0 ity > T,

such that po(y) < 0if y > 0 and p2(y) > 0 if y < 0, where T' > 0 is large enough so
that —1 < ¢}, < e. Then define B=B+p,and C =C+po —eplybin = —2uy + 02,
and set

P =Bo, +Co, + A.

If w € C2°(), then integrating by parts yields
. 1— 1— 1—
(w, P w) = // [—§Bz - §Cy + AJw? +/ [—§Bn1]w2.
Q oQ

The boundary integral is nonnegative since B(—x¢,y) = 6 and B(zo,y) = 0. Fur-
thermore

1— 1
_§Bg; — §Cy +A = _9/2 —ai1 + O(5+ 9) 2 MQ,
for some constant Mg > 0. Thus
Jw]| < Miol| P w|. (2.10)

Since v — Duyy + 01Uz + (02 — udybi1)uy € L*(Q), (2-10) implies (see the proof of
Theorem below) the existence of a weak solution @ € L*(Q) of

Pu =v— Duyy + 01us + (02 — epdybi1)uy, u(—z0,y) = 0.
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We shall now show that « = @. Since P is a first order differential operator, we
may apply Peyser’s extension [21] of Friedrichs’ result [2] on the identity of weak
and strong solutions to obtain a sequence {u*}° , such that @* € C*°(Q) has
bounded support, satisfies u*(—xg,y) = 0, and

@ — @*|| 4+ |Pa" — (v — Duyy + 01tz + (02 — p0yb11)uy)|| — 0 as k — oo.

Set vF = u — @*. Using the fact that |y|~"** — |y|="*(u — 1) € L*(Q) and
recalling the definition of P, we have

[(—y| = 40%, Pok)| < |l|y| = 40" || Po*|
< Mui|jv — Duyy + 01us + (02 — epdybir)uy — ?ﬂkH — 0.

Then the following calculation shows that ||u — @*||2(x) — 0 for every compact
K CQ:

- _ _ | L _
(ol 4 Py = Jim ([ Gl B+ G0, — AL

t—oo

P BN
[ gl e = Gl B0
aQ(O,t) 2 2

_ il 1

> lim // Iyl ™4+ ann — = + O(e + 0))](v")?
t—oo Q(0,t) 4 2

> Muol|ly|~"/30|%.

Therefore, u = @ in L?().

Differentiating the equation Pu = v with respect to 9%, a = 1,...,4, and
applying the above procedure shows that 9%u € L*(Q), a = 1,...,4. We now have
that u € H*(Q).

To complete the case when v € C*°(0), we must show that u(zg,y) = 0. Since
B(xg,y) = 0, from the equation Pu = v we find that

(Duyy + Cuy + Au)|(z,,,) = v(T0,y) = 0.

Furthermore since u € H*(2), u — 0 as |y| — co. Therefore by applying the
maximum principle to the above equation, we have u(zg,y) = 0.

We now consider the case when v € C°(Q). Let h(y) € H*®(R) be the unique
solution of the ODE:

D(fm()a y)h” + C(*Cﬂo’ y)hl + A(fan y)h = U(7x07 y)

Then as before, the parabolicity of P guarantees the existence of a unique solution
to the Cauchy problem

Pu=v in Qa U(_Jfo,y) = h’<y)7
such that v € H*(Q,) for every 7. Furthermore, u,(—xz¢,y) = 0 since
Bug|(—gy,y) = v(—20,y) — (Duyy + Cuy + Au)|(_z,,,) = 0.

Moreover, the same methods used above can be used here to show that u € H*(Q).
Lastly to show that wu,(zo,y) = 0, differentiate Pu = v with respect to = and use
that B(zo,y) = 0 to obtain

(D(uz)yy + C(uz)y +(A+ Bz)ur)‘(xo,y) = v (20,Yy) — (Cxuy + Amu)|(xo,y) =0.

Since u, — 0 as |y| — oo, by the maximum principle u, (xg,y) = 0. O
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With Lemma [2.4] we are now in a position to establish the dual inequalities.
Proposition 2.5. There exist constants My, My such that:
[o]] < My||Ljol|(—1, 2y for all v € C®(Q),
[o]| < Ma||Lio||(_1,_y for all v e C(Q).
Proof. We first consider the case when v € C®(Q). Let u € C°°(Q) N H*(2) be
the unique solution of
Pu=v inQ, wu(—z9,y)=u(—zo,y) =0, wu(zg,y)=0,
given by Lemma 2.4, We now show that
(Au + Bug + Cuy + Duy,, Lou)
> Cylllull? + 1By 12 + 0|2 + 12 + ity 12 + Oty 2],

where A, B,C, D, E, and C; were given in Lemma Let v, be given by (2.7))
and define the sequence {uk}go:l, where u* = vu. Then as in the proof of Lemma
2.4 we have:

(i) uF € C>=(Q) N H*(Q),
(ii) u* has bounded support and u¥(—xg,y) = 0, u*(xq,y) = 0,
(iil) |lu — u¥|l4 — 0 as k — oo,
(iv) ||Buy — Bufll — 0 as k — oc.
Let {ux}?°, a C> approximation of {u*}$° | such that:
(1) ux € C(Q),
(ii) ug has bounded support and (ug).(—zo,y) =0, ug(zo,y) =0,
(iii) [Ju? — uglla — 0 as k — oo,
(iv) [[Buf — E(ug)y| — 0 as k — oo.

Then applying Lemma [2.3] we have
(Au + Bug + Cuy + Duy,, Lou)
= leH;O(A’LLk + B(uk)x + C(Uk)y + D(uk)yy, Lguk)
> Tim Cuff|ue ] + 1B (ur)y | + 0(]| ()

1)y 1”4 1 (ur)yy 12 + Ol (wr) gy [1*)]
= Crlllull® + 11 Buy * + 0(l|ua |1 + lluay 1> + luyyl1? + 0l tizyy )]
By the above estimate and definition of the negative norms, it follows that
[ Lovll(—1,—2)llull1,2) = (Lgv, u)
= (U7L0u)
= (Au + Bug + Cuy + Duyy, Lou)
> Cofl[ull® + (| Buy |1* + 0(|ual® + [[tayl® + [[uyyl®
+ 0y 1))
Furthermore using Cauchy’s inequality and the equation Pu = v, we obtain
ILgoll(—1,-2) = Clllull + | Buy | + VO(|ltall + l[tay |l + gyl + VOltiayy )]
> Mol
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for some constants C7, My > 0. Moreover, similar arguments may be used to treat
the case when v € C°(Q). O

The existence of weak solutions to problems (2.3) and (2.4]) immediately follows
from Proposition [2.5] by a standard functional analytic argument. We include the
proof here for convenience.

Theorem 2.6. For each f € L2(Q) there exists a weak solution u € H1L2 (),
(1 2) of (2.3] , 2.4)) respectively.
Proof. We shall first treat problem (2.3). Let W = L;(é‘”(ﬁ)) and define the
linear functional F': W — R by
F(Lgv) = (f,v).
Using Proposition the following calculation will show that F' is bounded as a
linear functional on the subspace W of H(=1:=2)(Q),

[F(Lg)| = [(f,0)] < I fllllvll < Mul[ I Lgoll(-1,-2)-

Use the Hahn-Banach theorem to extend F from W to the whole space H(~1~2) ().
It follows from the Riesz representation theorem that there exists u € H12) ()
such that
F(w) = (u,w) for all w e H=H72(Q).
Thus, restricting w to W we have
(u, Lyv) = F(Liv) = (f,v) for all v € C>(Q).

The case of problem (2.4) may be treated in a similar manner. O

We now prove the existence of weak solutions for the adjoint problems (2.5 and
(2.6). The existence of solutions for these problems will be needed in the next

section, where they will aid in proving higher regularity for solutions of ([2.3)).
The formal adjoint of Ly is given by

= —Hﬁmyy + anam + agzayy + (2895(111 — al)ﬁx
+ (28 a29 — a2)8 + (5ma11 + 3yya22 — 5‘ma1 - 8ya2 + (1).
All the coefficients of L;, denoted a;, a7, a”, have the same properties as the coef-

ficients of Ly, except a3 = 20,a22 — as. This difference will not allow us to directly
apply the above procedure to obtain weak solutions for (2.5)) and (2.6). However if

y az(@,t) o

h(z,y) = 2 )5 ey d

then by setting v = hw, the equation Ljv = g becomes f;w = g/h, where

Ly = —000yy — 29%’aw - 29%@%

;;Ly)am — 40 yawy + (a3 — QT)ayy

+ (a3 + 2a3 22h —26 y)ay+(“1+2a117 .

* hwac * h *h‘ * hIE
+(a117+a22%+alﬁ+a2fy+a _HTW)~

+ (a3, — 0
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The special choice of h guarantees that the coefficient of 9, in Ly is 3as+O(c +0),
so that all the coefficients of f; have the same properties as the coefficients of Ly,
where Low = f/h is the equation obtained from Lyu = f by setting u = hw.
Therefore if g € L?(£2), the problems

Lyw=g/h inQ, wlog=0,
Lyw=g/h inQ, wloq =0,

have weak solutions of the form w = v/h, where v € H12(Q), PNISQ)(Q) respec-
tively. We then obtain the following result.

Corollary 2.7. For each g € L?(Q) there exists a weak solution v € fl(m)(Q),
Ha(cl’z)(ﬂ) of (2.5), (2.6 respectively.

3. LINEAR REGULARITY

The purpose of this section is to establish the regularity in X, of weak solutions
to problem for a particular choice of the right-hand side, f. This shall be
accomplished by establishing the uniqueness of weak solutions to problems (2.3
and in L2(), and then applying a boot-strap argument.

To obtain the uniqueness of weak solutions, we will utilize the notion of a strong
solution, in particular, for first order systems. The definition of a strong solution
will be given below. We first introduce the notation and terminology that will be
used for first order systems. Consider a boundary value problem

SU =AUy + AUy + AsU=F inQ, Ulpg €N, (3.1)

where Ay, Ay, Az are n X n matrices, U and F are n-vectors, and N is a linear sub-
space of the space of n-vector valued functions restricted to 9Q2. The corresponding
adjoint problem is given by

S*V = —-A1V, —AJV, + (A3 — 0, A7 —0,A5)V =G inQ, V]pn € N¥,

where A} denotes the transpose of A;, and N* is the orthogonal complement of
AN, where A is the matrix defined on 9Q by A1n; + Aang, and (n1, ng) is the unit
outward normal to 0f2.

Let F' € L?(€2). The notion of a weak solution to problem is similar to the
definition given in section §2 for single equations. That is, U € L?() is said to be
a weak solution of whenever

(S*V.U) = (V. F),
for every V € C*(Q) with bounded support and such that V|sq € N*. We now
give the definition of a strong solution.
Definition 3.1. U € L?(Q) is a strong solution of (3.1) if there exists a sequence
{UL}32,, such that Uy € C*(Q) with bounded support, Ug|aq € N, and
Uk = Ul =0, |[SUx—F[ —0, ask— oo
Clearly a strong solution is a weak solution. Moreover, using techniques devel-

oped by Friedrichs [2] and Lax/Phillips [14], Peyser [21] has obtained the following
converse statement.

Theorem 3.2 (Identity of Weak and Strong Solutions). Let the following condi-
tions on the operator S and the boundary space N be satisfied:
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(i) The matriz A\ is of constant rank in a neighborhood of the boundary,
(ii) N is of constant dimension at each point of the boundary,
(ili) N contains the nullspace of /.

Then a weak solution U € L*(Q) of (3.1) is also a strong solution.

Note that for our particular domain A = Ajn, so that condition (i) is equivalent
to A; having constant rank in a neighborhood of 9.

With the aim of applying Theorem we shall transform problems 7 ,
, and into the setting of first order systems. Let f,g € L?(Q) be the

right-hand sides of (2.3]), (2.4) and (2.5)), (2.6]) respectively, and define Ay, gl, Ao,
AQ, Ag, A37 F, and G by

-6 0 a1 0 0 0 0 O as9 0
B 0 0 0 01 B 00 0 0 O
Ay=A=10 0 0 0 0], Ay=A,=]0 0 0 0 11,
0 0 0 00 00 0 1 0
0 1 0 00 00 0 0 O
0 0 a1 a2 a 0 0 af af a*
0 0o -1 0 0 B 0 0o -1 0 O
As=1] 0 0 0 -1 0], A3=10 0 0o -1 0],
0o -1 0 0 0 o -1 0 0 O
-1 0 0 0 0 -1 0 0 0 O
f g
0 0
F=|0|, G=10
0 0
0 0
Define boundary spaces
N1 = {(u1,...,us)|aq : uslog = 0},

Ny = {(u1,...,us)|aq : (—0u1 + a11us)|an = 0}.

Furthermore define boundary value problems

SeU = AyU, + AsU, + AsU = F  inQ, Ulag € Ny, (3.2)
SeU=F inQ, Ulygg € No, (3.3)
SoV = AV, + AV, + A3V =G inQ, Vl]pg € Ny, (3.4)
SV =G inQ, Vl]sg€ No. (3.5)

We now show that the weak solutions of (2.3), (2.4), (2.5), and (2.6) given by
Theorem [2.6] and Corollary [2.7] are also weak solutions of (3.2), (3.3), (3.4), and
(3.5) respectively.

Lemma 3.3. Let u € H2(Q), flg(gl’Q)(Q) be a weak solution of (2.3), ([2-4) re-
spectively, then U = (Ugyy, Uyy, Uz, Uy, u) € L*(Q) is a weak solution of (3.2)),
respectively. Similarly if v € ﬁ(1*2)(§2), I?;,(Ul’Q)(Q) is a weak solution of , (2.6)
respectively, then V. = (Vgpyy, Vyy, Vs, 0y, v) € L3(Q) is a weak solution of (B.4),

(3-5) respectively.
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Proof. Let u € H12(Q) be a weak solution of problem (2.3). We will show that

[ osiv=[[ PV (3.6)

for all V € C*°(Q) with bounded support such that V]sq € N, where
Ny ={(v1,...,v5)l60 : viloaa = vs]an = 0}.
A calculation shows that
//Q U*SgV = //Q(Guwy — 411Uz ) 0zV1 — G221y Oyv1 — (u0V2 + Uy V2)
+ [(a1 — Oza11)ug + (a2 — Oyaz)u, + aulvy

— (u0yv3 + uyv3) — (UyOyva + Uyyva) — (UyyOpVs + UpyyVs).

(3.7)

Since Vl]sg € N and u € HE2(Q) is a weak solution of (2.3)), we can integrate
by parts to obtain

//QU*S;V://QuLgvl://valz//QF*V,

showing that U is a weak solution of (3.2)).
Let u € Hg(vl’z)(Q) be a weak solution of (2.4). We now show that (3.6 holds for

all V € C* () with bounded support such that V|sq € Nj, where
Ny ={(v1,...,v5)|aq : v2loq = vs|aq = 0}.

From (3.7) it follows that

// U*SQV // Huxyy auuz)a v — agguyﬁ V1 (38)

— 02611)Uy + (a2 — Oyaaz)uy + aujvy

To integrate by parts we construct an approximating sequence {vf}2° | for v1, such
that vf € C2°(Q) and

||v]f — v+ ||('9Iv{C —v1|| =0 ask— .

Take a sequence {v,}32, € C°°(Q) with the property that [vx — 8,v1] — 0 as
k — oo, and define
o= [ ottt o(-an.g),
o

Then since

x

(v}f —v)? = ( 5't(U]f(t, y) —v1 (t,y))dt>2

< 2$0/ (00} (t,y) — Opvr (t,y))2dt,
.

we have

/ / (o — 01)? < da3 / / (Ba0k — Byur)? = 42 / / (0 — Byon)? — 0,
Q Q Q
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so that v} satisfies the desired properties. Recalling that a1|pq = 0,a11|oq = 0 by
(ii) of Lemma and using the fact that u is a weak solution of ., we can
integrate by parts in ) to obtain

// U*SpV = lim // uLjol = hm // for —/ for = / F*V,
Q k—oo JJa Q

showing that U is a weak solution of . Similar arguments show that if v €
H®2)(Q), H;LQ)(Q) is a weak solution of ., |-i respectively, then V =
(Vayy, Vyys Va, Uy, V) € L?() is a weak solution of (3.4 - respectively. ([l

Now that the weak solutions of the previous section have been translated into
the setting of first order systems, Theorem is applicable. As a result, we obtain

Proposition 3.4. The weak solutions of problems (2.3)) and (2.4)), given by Theo-
rem are unique in L?(£2).

Proof. Let u € I;T(LQ)(Q) be a weak solution of problem (2.3)) with f = 0, then
(Lyw,u) =0 for all w € C=(Q). (3.9)

We will show that v = 0 in L?(€).

Let v € H12 () be the weak solution of (2.5) with g = u. Then by Lemma
V' = (Ugyy, Vyy, Vs, Uy, v) is a weak solution of (3.4). We now show that the condi-
tions of Theorem are satisfied for problem (3.4). Condition (ii) is immediately
satisfied, and since af; < —6 in a neighborhood of 952, condition (i) is satisfied with

A =+4, having the constant rank of 3. Furthermore the nullspace of A is given
by

{(v1,.. ., vs)loq | (=0v1 + a11vs)|oa = v2loq = vs|aq = 0},
which is contained in N; so that condition (iii) is satisfied. Therefore we can
apply Theorem to obtain an approximating sequence {V;}7°, for V, such that
Vi € C°°(£2) with bounded support, Vi|sqn € N1, and

Ve = V|| =0, [SVe—G||—0 ask— oco. (3.10)
From ([3.10) it follows that
1ok = vayyll = 0, [lvF = vyy | = 0, o = vall =0,
li = vyl =0, flog = v] =0,

(=00, v4 + a},0203 + a3,0,vi + ajvi + asvi + a*v}) — ul — 0.

(u,u) = lim // [—00,v; + a}10,0; + a3,0,vE + ajvi + ajvi + a*vi]u
Q

k—o0

lim / / (B0} — afy0d)us — alovbuy + (0 — Opafy )}

k—o0

-0 a22)vk +a vk]

/ (Ovzyy — @110z ) U — a3o0yuy + [(a] — Ozalq)vs

— Oya5,)vy + a*vlu.
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Let {v,}22, € C*®(Q) be an approximating sequence for v in H12)(€). Then
integrating by parts and using (3.9)), we obtain

Similar arguments hold for problem ([2.4) O

Having established the uniqueness of weak solutions, we are now ready to apply a
boot-strap procedure to obtain higher regularity for problem ([2.3)) in the z-direction.

Theorem 3.5. Let u and f be as in problem (2.3). Let s <r —4 and f € H*(Q)
be such that 0% flaq =0 for a < s—1. If e = £(s) is sufficiently small, then for all
a <s, 0% € HM2(Q) when o is even, and 9%u € H;LZ)(Q) when « is odd.

Proof. The case s = 0 is given by Theorem Consider the case s = 1. Let
w = u, and formally differentiate the equation Lgu = f with respect to x:
Liw = —0wagyy + 011Waq + @20Wyy + (a1 + 0za11) Wy + a2wy + (a + Opar)w
= fo — UyyO0za22 — UyOpaz — u0za = fi.

Observe that since d,a11,9,a1 = O(g) and both vanish outside X, the operator L,
has the same existence and uniqueness properties as Ly. Furthermore, by restricting
Lgu = f to the boundary of Q and using u|sq = a1|sa = 0, we obtain the following
ODE

(*auxzyy + alluam)‘aﬂ = 0, (311)
for which the only solution in L?(9) is uze|oq = 0. Therefore, in the regular case
w = u, satisfies problem (2.4)) with Ly and f replaced by L; and f;.

Let u € H12)(Q) be the weak solution of problem (2.3). We now show that
u; € L2(2) is a weak solution of (2.4]) with Lg and f replaced by Ly and f; € L*(Q);
we denote this problem by (2.4),. Let v € C2°(Q), then

(s, LTv)

= —(u, (L1v)e) = —(u, L™ (vz)) + (u, L™(v2) — (L1v)a)

= _(fa U:c) + (u, _'Uyyaaca22 + Uy[a:an - 28@;/@22} + v[—@ma - 8xyya22 + awya2])

= (.fﬂca ’U) + (_Uyyaxa22 - Uya:ca2 - Ua;cavv) = (.fla ’U).

Therefore u, is a weak solution of (2.4),, and by the uniqueness result Proposition
u, must coincide with the solution in Hél’Q)(Q) given by Theorem Hence
up € HMP(Q).

We now consider the case s = 2. Let w = uy, and formally differentiate the
equation Liu, = f; with respect to x:

Low := —0Wzgyy + G11Wea + G22Wyy
+ (a1 + 20za11)wg + aswy + (a + 20za1 + Opgair)w
= 8a:f1 - uzyyaza22 - uxyazaQ - uz(aza + 8195@1) = f2~
Again since 0,a11, Ozza11, 0,01 = O(g) and all three vanish outside X, the operator

Lo has the same existence and uniqueness properties as Ly, provided that e is
sufficiently small. Also, when v is regular uz;|go = 0 from (3.11). Thus in the

regular case w = u,, satisfies (2.3) with Ly and f replaced by Ly and fo € L?(Q);
we denote this problem by ([2.3))2.
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Let u € H12(Q) be the weak solution of (2.3), then we know that u, €
H§1’2)(Q). We now show that u,, € L?(£2) is a weak solution of (2.3),. Note
that Lou = f in L?(Q2) and let v € C*°(Q), then a calculation produces

(Uga, L;”) = (Umyyv —022) + (Uga, (011V)22) + (uyyv (a22v)ww) + (uy, (a2v)za)
+ (U, [(@1 + 202a11)0]0s) + (u, [(@ + 20501 + O22011)0]2a)
= (Lou, Vzz) + (fo — fazsv) = (fyv22) + (f2 = faz,v) = (f2,0).
By the uniqueness of weak solutions for problem (2.3, %, must coincide with the
solution in H®2(Q). Thus uz, € HI2 ().

To obtain the regularity of higher order derivatives, we observe that the above
procedure applied to Lou = f holds for Lou,, = f2, since for a > 1

Ogai|aq = Ogaxnloa = 0y ailaq = 05 alaq = 0,
so that falog = 0. Therefore u,y, € ﬁél’z)(Q) and Uppes € ﬁ(l’Q)(Q). Further-

more, we can continue this process until f and the coefficients of Ly run out of
derivatives, as long as ¢ is chosen sufficiently small depending on the size of s. [

We now prove regularity in the y-direction for the weak solution of problem ({2.3]).
The following standard lemma concerning difference quotients will be needed.

Lemma 3.6. Let w € L*(Q) have bounded support, and define

wh = = (w(e,y + )~ w(z,y))

If |[w"|| < M where M is independent of h, then w € HOD(T) for any compact
T C Q. Purthermore, if w € HOVD(Q) then ||w"|| < M|w,]|.

Theorem 3.7. Let the hypotheses of Theorem hold, then u € H*(X).

Proof. From Theorem we know that 9%u € H(*2)(Q) for 0 < a < 5. Therefore
the following equality holds in L?(€2),

Luyy = —0uggyy + a2otyy = [ — 11Uz — G1Uy — G2Uy — ot == f. (3.12)

Since |az| = O(|y|) as |y| — oo, we do not necessarily know that f € HOD(Q);
however, we do have f € H(®1(T) for any compact I' C Q. Fix a constant k > g
and set w = vguy,, where vy is given by (2.7). Then

Lu" = (e /)" = vi(y + h)uyy (2, y + h)ab,. (3.13)

Since v € H12)(Q), by multiplying (3.13) on both sides by w" and integrating by
parts we obtain

w4+ [lwg ] < Mu(ll(wef)" ]| + 1),
for some M; independent of h. By Lemma (3.6
[w" || + lwz ]l < Ma([[vifll 0,1y + 1),

independent of h. Therefore wy, w,, € L*(X), which implies that dju, 8,05u €
L?(X). Furthermore by differentiating Lyu = f with respect to x, a =1,...,5—3
times, the same procedure yields 93 05u € L*(X).



24 M. A. KHURI EJDE-2007/65

Proceeding by induction on I, assume that 8;‘85u cL})(X),a<s—p3,08<I,
and 3 <[ < s. Differentiate ([3.12)) with respect to y, I — 2 times:
1-3
Lolu =072 f = 0}(0ya220, % " uy). (3.14)
i=0
Note that this equation holds in L?(€2), and that the right-hand side is in H((T")
for any compact I' C €. Applying the method above yields 9} u, 9,0 € L?(X).
Moreover differentiating (3.14)) with respect to x, a =1,...,s — (I + 1) times, and
applying the same procedure, yields 9284 u € L?(X). The desired conclusion now
follows by induction. O

4. THE MOSER ESTIMATE

Having established the existence of regular solutions to a small perturbation of
the linearized equation for , we intend to apply a Nash-Moser type iteration
procedure in the following section, to obtain a smooth solution of in a subdo-
main of X which contains the origin. In the current section, we shall make prepa-
rations for the Nash-Moser procedure by establishing a certain a priori estimate.
This estimate, referred to as the Moser estimate, will establish the dependence of
the solution u of , on the coefficients of Ly as well as on the right-hand side,
f. The Moser estimate that we seek has the form

ull s (x) < Cs(lfllzrs(x) + Astso 1 f | 22()), (4.1)
where
Asiso = Z l@ijll fro+so (x) + @il go+so (xy + llall gs+so (x)
for some sg > 0, and C is a constant independent of € and 6.

Estimate will first be established in the coordinates (£, 7), which we have
been denoting by (z,y) for convenience, and later converted into the original coor-
dinates (z,y) of the introduction. We will need the following preliminary lemmas.
The first is a modification of Lemma [2:3] and the second contains standard conse-
quences of the interpolation inequalities for Sobolev spaces.

Lemma 4.1. Let w € H22(Q) (or ﬁ;2,2)(9)) be such that yw € L?(2), and let
p1 = €0p1, p2 = €pa, ps = ep3, where p; € CX(X), i = 1,2,3. Then for e and 6
sufficiently small, there exists a constant M independent of € and 0, such that

[wll + [lwy [} < M[prawzyy + pows + psw + Lowl.

Proof. Assume temporarily that w € C°°(Q) (or C2°(Q)). The properties of py and
p3 guarantee that Lemma holds for the operator p20, + ps + Lg. Therefore
(Aw + Cwy + Dwyy, powg + psw + Low) > (4.2)
Culllw]? + lwy | + 0(]|wa > + IIwaayH2 + [lwyy 1))

where A, C, D, and C were given in Lemma [2.3] Furthermore integrating by parts
yields

(Aw + Cwy + Dwywplwwy)
1 1
// =5 (Dp1)a]wyy + [=Cpilwaywyy + [5(Cp1)ay + 5(Ap1)x]w§ (4.3)

+ [(Apy)Jww, + [%(Apl)ryy]wz
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All the boundary integrals vanish since p; € C°(X). Moreover the properties of
p1 guarantee that by choosing € and 6 sufficiently small, we obtain the following by

adding (L.2) and (L.3),
(Aw + Cwy + Dwyy, p1weyy + powy + psw + Low)
> Chf[[w]? + [[wy* + 0(llwae||* + lway1* + lwyy )]

Then an application of Cauchy’s inequality, and the use of an approximating se-
quence {wg}72,, as was constructed in Proposition removes the assumption

that w € C*°(Q) (or C2°(Q)) and completes the proof. O

Lemma 4.2 ([24]). Let u,v € H(X).
(i) If 0 <i<j<s, then there exists a constant M, ;s such that

lallzs ey < Magallul iy el i

(ii) If « and B are multi-indices such that |a| + |B] = s, then there exists a
constant Mg such that

10“ud® 0| L2 (x) < Mis(lul oo (x) vl (x) + lull s (x) [0 Lo (x))-

(iii) Let T C RY be compact and contain the origin, and let G € C*°(T). If
u € H"(X.T) and ||ullg2(x) < C for some fired C, then there exists a
constant My such that

1G o ullgs(x) < VOUX)[G(O)] + M lull zro+2(x)-

Estimate (4.1)) will be established by induction on s, and we begin by estimating
the x-derivatives. Let || - [|s,x denote || - [+ (x), and | - | denote | - g (x)-

Proposition 4.3. Let u and f be as in Theorem [3.5 If ¢ = &(s) is sufficiently
small then

107ull + 107wy | < Cs(IFNls + lulls—1.x + Ass2ll fll2.x)
for s <r —6, where Cs is independent of € and 0, and
Auva = Y laisllosay + laillora,x + lalloszx.

Proof. We proceed by induction on s. The case s = 0 follows from Lemma [2.3]
Differentiate Lou = f s-times with respect to x and put w = 97w, then

— OWagyy + A11Way + a20Wyy + (a1 + $0za11)Wy + aswy + asw

s—1 o1
= 00f = 2 (00 uyy) = L 040,020, )
= i=0 (4.4)
s—1 . .
o Zazm(axasflfiaiilizu) = fs
i=0

where as = a + s0, a1 + ‘3(872_1)(9%@11. A calculation shows that

s—1

Z 95 (0ra2205 " "y

i=0

_ s(s—1 _ S/ - o
= 50,0220 Ly, + %agma; Uy + D (;) I 09005 1 Ty,

i=2 j=2
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Note that the term 95 'u,, contains too many derivatives. However since asy =
1+ O(e), we can solve for 957 1u,, in (4.4) with s replaced by s — 1 to obtain a
more manageable expression:

1
-1 -1 -1
05 Uy = — Owzyy — a11wy — (a1 + $0za11)w — a0y Uy — as—105 U+ fs—1).
22

Substituting back into (4.4)), we have

$00,a 511050
meyy + (s0za1; — M)wz
@22 a92
sOza
+ (as —a — 2 (a1 — 80,a11))w + Low
az2
s(s—1) S
R e L 5 ol (TS
i=2 j=2
s—1 s—1
— > 00050205 uy) = Y 0L (Opas—1—i05 )
i=0 i=0
s@agg s—1 s—1 ~
+ 7[@89; Uy + as_18m u — fs—l] = fs-
a2
If ¢ = e(s) and 6 are sufficiently small, we can apply Lemma to obtain
107ull + 107 uy || < M| fs]- (4.5)

We now estimate each term of f,. Using Lemma (ii), Lemma (iii), and
the fact that d,a29 vanishes outside of X, produces

s—1 1 . s—1 1 .
Z . 14 ’L . 1
1250 (5) o2 amor =N S () 7 i g x

i=2j=2 =2 j=2
< Ml(‘82a22|oo”u”s—l,X + ||a§a22||5_17x‘u|oo)
< Mi(|ulls—1,x + llazz|ls+2,x [tlso)-
A calculation shows that
5—1 s=1 i .
Zaais(axcmai_l_iuy) = Sazazai_luy + Z Z (5) 8g+1a28;_1_juy.
=0 i=1j—=1

Then using the same procedure as above, we have

s—1
I 0202205 " uy )| < Mo |05 uy || + My ([lulls—1,x + llaz]lss2,x [uloo)-
=0

Furthermore the following estimates are obtained in the same way:

s—1 s—2
; 1 s0za ; s_9_
1 0 (Oaaa1—i053 " )| + | ;222226$(a$a3_2_iaw 2=ig)|
=0 1=0

< M([Julls—1.x + (lallsr2,x + llarflsre,x + llanillst2,x)|ulo)

and

50,022 = o
||;Tf D 0L(020205 7y )| < Ma([[uflsm1.x + llazlssz.x |ulso)-
1=0



EJDE-2007/65 LOCAL SOLVABILITY 27

Also since
s—2 s—2 1 i
> 00202205 ) = (s — 1)00a2205 2uyy + > D (]) O 4900372 Iy,
i=0 =1 j=1

and Jyage = O(e), we find that

50,022 <2 L
1= D 00 (Baaa0 ™ My )|
422 5

< s Ms|0; 2 uyyllo,x + Mz ([Julls—1,x + llazellst2,x |uloc),

where Mj5 is independent of € and s. Summing the above estimates produces
£l < Mo(I1Flls + lulls—r,x + 1057 uy [l + €105 uyyllo.x + Asszluloc).  (4.6)
Therefore if we estimate |05 2uy,|lo,x appropriately and show that
|ufoo < Mz|[fll2,x,

the proof will be complete by induction.
We now estimate ||03™?uy,|lo,x. Differentiate the equation

Luyy := —0ugzyy + G22Uyy = [ — G11Uzz — G1Ux — A2Uy — QU 1= §

with respect to z (s — 2)-times, then
_ s—3
L3 Puyy = 052G — > 040002205 " yy) 1= Gaa.
i=0

Multiply the above equation by aj*QUyy and integrate by parts in X to obtain,

1052 uyyllo,x < Ms|gs—2lo,x-

We now estimate ||gs—2|lo,x. Using the same methods as above, we have

s—3
10572 (a1t +aguy+au)+ Y 04 (0xa2005 > gy )llo.x < Mo([[ufls—1,x +Asyalti]o)-
i=0
Furthermore
=2 s—2
92 (a11Uay) = a110°u + Zl ( . ) 01011052 gy
i
thus

1077 (a11uz0) o.x < Mio([|03ul
It follows that
10; ™y llo.x < Muz([03ullo.x + llulls—1.x + Asralulo)- (4.7)
The coefficient of |05~ 2uyylo,x in ([(£.6]) is es?Me. If € = £(s) is chosen sufficiently
small so that es2M MgM;; < L, we can then bring es?M MgMj, ||03ullo,x from
(4.7) to the left-hand side of (4.5)), so that by induction on s
105 ull + 197uyl < ME(I1£]ls + llulls—1,x + Assa(ttloo + 1 fll2.x))-

We now estimate |u|o, to complete the proof. The above methods can be used
to show that

0.x + [[ufls—1,x + Asaluloo)-

llull2,x < Mial|fll2,x-
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Then by the Sobolev lemma,
luloo < Muslull2,x < Mis]|f]

2,X -

We now estimate the remaining derivatives.
Proposition 4.4. Let u, f, s, and € be as in Proposition[{.3 Then
1050 ullo,x < Cs(llfllsx + llulls—1.x + Ass2llfll2,x)
for a+ 8 < s, where Cs is independent of € and 0.

Proof. The cases 3 = 0, 1,2 follow from (4.7) and Proposition We proceed by
induction on (. Assume that the desired estimate holds for 0 < a < s — 3, and
0< B <k-—1, for some k < s.
Differentiate the equation
Zuyy = —OQUgayy + a22Uyy = [ — 11Uz — Q1UL — G2Uy — QU =G

with respect to 8385*2 where 0 < a < s — k, then

a—1 k—3
LOSOfu = 0005725 — Y OF 2000002208 " Tuyy) — > 05(9ya208 T 0%y,
1=0 =0

= ga,k—2-
Multiply the above equation by agaju, and integrate by parts in X to obtain
108 OFullo.x < M||Gak—2l0,x-
We now estimate ||gq,k—2/l0,x. Using Lemma (ii), we have
1058y 2 (a11tzz) [lo,x

< M, (]|02082uljo,x + > [0802a1100POE 2 Ty, |
p<a,q<k—2, (p,q)#(0,0)

0,x)

< My(|85+20 2 ullo,x + lantlos oy lulls—1,x + llaxnlls,x|uloo)

< M (105205 ullo,x + ulls—1.x + Asta | fll2.x)-

Furthermore if v < s — k then 097205 2ullo,x < [Julls—1,x, and if & = s — k the
induction assumption implies that

1052052 ullo.x < Ma(|lfls.x + lulls—1.x + Asallf

|2,x)-
Thus
102052 (a11uza)llo.x < Ma(||flls.x + [[ufls—1.x + Asrall fll2.x)-

Moreover, the methods of Proposition may be used to estimate the remaining
terms of ||gu,k—2llo,x by

My(|lulls—1,x + Astall f

The desired conclusion now follows by combining the above estimates. (I

|2,x)-

From Proposition [4.4] we obtain the following Moser estimate by induction on s.
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Theorem 4.5. Let u and f be as in Theorem . If e = e(s) is sufficiently small
then

ulls.x < Cs(Iflls.x + Asrall fll2.x)
for s <r —6, where Cs is independent of € and 6.

The estimate of Theorem is in terms of the variables (£,n) of Lemma
which we have been denoting by (x,y) for convenience. We now swap notation
and denote the original variables of by (z,y), and the change of variables by
(&,n). Furthermore, let || - ||s and || - ||, denote the H*(X) norm with respect to
the variables (z,y) and (&, n) respectively. Similarly for A; and A’,. We now obtain
the analogue of Theorem with respect to the variables (z,y). We will need the
following lemma.

Lemma 4.6. If ¢ = £(s) is sufficiently small then

[€x]ls < Cs(llarzls+a + llagz|ls+5)

for s <r —17, where Cs is independent of € and 6.

Proof. We prove the estimate by induction on s. The case s = 0 follows from the
estimate

0 < M <|&| < My,

obtained in the proof of Lemma [2:2] Now assume that the estimate holds for s —1.
We first estimate the z-derivatives. Differentiate the equation

<‘“2><sz>z +(Ea)y = (“”) & (4.8)

with respect to x s-times to obtain

a22

(E2)(036.)s + (0362, = —O5((22)¢ Zal 2) 957e,) =
=0

Then estimating 93¢, along the characteristics of (4.8]) as in the proof of Lemma

we have

‘8;§$|CO(Y) S M3|hs‘CO(Y)

Recalling that a12 = O(g), and using the analogue of Lemma (ii) for C*(X)-
norms in the same way that the Sobolev version was used in Proposition pro-
duces

ars
|hslcoy < €(s + 1) Ma| 036  coxp) +]\/-"4(|( ):rr|cﬂ(X)|fz

a12
1 e

Cs— I(X)

co-13) €l oo x))-
Therefore if € is small enough to guarantee that e(s + 1)M3My < 2 , we can bring

e(s + 1) M3M4|07€|co(x) to the left-hand side:

@12

‘8 §I|C0(X < M5(‘§w|c —1 +| |C5+1(X)) (49)

We now estimate the remaining derivatives. Assume that

a2

Ccs—1(X) +|
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forall0 <a<s—08,0< [ <s—1. The case 8 =0 is given by (4.9). Differentiate
(4.8) with respect to 8;‘*185 to obtain

olopte,

s—1
= 0I5 )] = 0T ((T0)ae] = 0] D L2200 16e).

az2 a22 P
Using assumption (4.10) on the first term on the right-hand side, and applying
Lemma (ii) to the remaining terms, we find
a— ai2
‘637 165+1§x|cﬂ(f) < M7(|§x|cs—1(f) + ‘Tm|cs+1(f))~
Thus by induction on 3 estimate (4.10]) holds for all 0 < a <s—3,0< 3 <s. By

induction on s, (4.10]) implies that

a2
sy < Mg|—| ~st1 5 -

|€w Cs(X) = 8|a22 |C +1(X)

Then the Sobolev lemma gives
ai2
”fz”s < M9|| HS—O—B-
a22

Moreover, by Lemma [4.2] (ii) and (iii) we have

a12 1 1
[=—lls+3 < Mio(|ar2]ocll = [ls+3 + [[a12]ls+3|— o)
a22 a22 a22
< Mii(llazz|[s+5 + llai2]ls+3)-
([l
Theorem 4.7. Let u and f be as in Theorem[3.5 If ¢ = (s) is sufficiently small
then
[ulls < Cs(Iflls + Astallfll2)

for s <r —13, where Cy is independent of € and 6.

Proof. Let o be a multi-index with |o| < s. A calculation shows that

107 yull < Mi)| Y G0 ull,

[v|<s

where G, are polynomials in the variables xgl =&, 82’17]@, and 8?;79077, such that
> |l < s —1n| for each term of G,. Then using Lemma (ii) and (iii), we find
that

167 yull < Ma(J[ull + (lzellsrz + lzallsro)lloo)-
Similarly

102 ull < Ma(llulls + (I€2lls+2 + 1€y lls+2)ttloo)- (4.11)
Then by Theorem [£.5] and the Sobolev lemma, we have

107 yull < Ma(IFIIs + Alyoll £ll2) + Milllwellsrs + lznllso)lfl2- (4.12)
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We now estimate the terms on the right-hand side of ([4.12]). Use Lemma
(ii), (iii), and (4.11]) to obtain

1

lzellire = 1= llire < Msll&allira
£
x

< M6(||£x||s+4 + (ngHs-i-G + Hngé-&-G)‘fka)

< Mr(|allsro + 1 22E0lls1o)
a2
< Ms(Jla12]|s+9 + ||azz||s+11)-
Similarly
[0 = ||%HQ+2 < My([Jarz|[s+7 + [lazz]ls+o9)-
Furthermore
£ < Mio(Iflls + (€2 lls2 + €y lls+2) [ floo)
< Mua([[flls + ([larzl[s+5 + [la2z([s+7) 1 f][2)
and hence
£z < Miz([larzllz + [lazzllo) | fll2 < Mus]| f]|2-
Also
laijllsse < Mua(llaijllste + (1€xllsva + 116y lls+a)laijloo)
< Mis(llaij|ls+2 + llatzlls+7 + [lazz[ls+9),
so that

AN 5 < MigAgio.
Therefore by using the above estimates and summing over all |o| < s, (4.12)) pro-
duces

lulls < Muz(lflls + Asanll fll2)-

5. THE NASH-MOSER PROCEDURE

In this section we will modify the Nash-Moser iteration procedure to obtain a
solution of
P(w) =0 in X, (5.1)
where X, C X is a sufficiently small neighborhood of the origin that will be defined
below. In order to accommodate the requirement (Theorem that 0% flaq = 0,
a < s—1, we will cut off the right-hand side of the modified linearized equation

Leu:fa

near 0X at each iteration, and then estimate the error in a smaller domain at the
next step. Furthermore the constant 6 will be chosen sufficiently small at each
iteration, to guarantee that the procedure converges.

Let > 5. Define a sequence of domains {X,,}°2 ; by

n—1
Xi=X, Xo=(1-> p )X,
i=1

where AX = {A\z : z € X}. Then X, = (1 — ﬁ)X In addition, let % <T <2

and define p,, = /f“no, where ng > 0 will be chosen sufficiently large.
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We now construct smoothing operators on L?(X,,). Fix ) e C’°°(R2) such that
¥ = 1 in some neighborhood of the origin. Let (@) = [fpo ¥()e* % dn be
the inverse Fourier transform of 1Z Then v is a Schwartz functlon and satisfies
[Jge ¥(x)dz =1, and [ [, ¢ (2)da = 0 for any multi-index a # 0. If g € L*(R?)
and v > 1 we define the smoothing operators S, : L*(R?) — H>(R?) by

(849)(x) =+ / P0G = v)gw)dy.
Then we have the following result (see [22]).

Lemma 5.1. Let a,b € Z>o and g € H*(R?), then

(1) 1559l me @2y < Capllgllmee), b < a,
(i) 11559l e ey < Capy® gl gy, a < b,
(iii) llg — %9l a2y < Capr® Mgl a2y, b < a.

To complete the construction, we also need the following extension theorem.

Theorem 5.2 ([23]). Let D be a bounded convex domain in R? with Lipschitz
smooth boundary. Then there exists a linear operator Tp : L*(D) — L*(R?) such
that:

(i) Tn(9)lp = g,
(ii) Tp : HY(D) — H*(R?) continuously for each a € Z>q.

To obtain smoothing operators on X,,, S, : L?(X,) — H>®(X,), we set S,g =
(8], Tx,9)|x,. Furthermore, it is clear that the corresponding results of Lemma
hold for each S,,.

We now set up the iteration procedure. A sequence of functions {w,}>2; will
be shown to converge to a solution of , and shall be defined inductively as
follows. Set w; = 0 and suppose that w;, j < n, are already defined in X;, then
set w41 = wy + Spuy in X141, where u, is defined in X,, and will be specified
below. Set f, = —®(w,) in X,, and let ¢, be a C°° cut-off function

1 ifzxe X4,
9n(@) = {o ifreX —+1Xn,
such that
|¢n < MGN
Let
L(w Za” (wn)0sj +Zal (wp)0; + a(wy,)

4]

denote the linearization of ®(w) evaluated at w,,, and let {6,,}22; be a sequence of
positive numbers tending towards zero that will be specified later. Then define u,,
in X,, by un, = v,|x,,, where v, is the solution of

L@ (wn)vn = (bnfn in X,

given by Theorem [2.6] Since p > 5 we have X C Xoo. Therefore, it follows from
the definition of ®(w) in . that the coeﬂi(nents of Lg (wy,) are well-defined in
all of X, even though wy, is only defined in X,.
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For simplicity we denote the Sobolev norms || -|| g+ (x.,) by ||+ ||, and the C*(X,,)
norms by | -|7. Let s, € Z>g be fixed such that ®(0) € H*+(X), and define

16
T—1
The convergence of the sequence {w,}52; to a solution of (5.1]) will follow from
the following four statements. Each will be proven by induction on j, for some

constants Cq, Cs, and C3 independent of j and dependent on p and s.. We shall

require that s < s, — 18 — 2§ — 26_—77 and s, > 22+ 26 + %.

(1) gl s < 1T IR s
- “H(s—s.+18+25
(L) flug-alli™ < Capr,“ 502
i “(s—s.+18+25
(L) [l < Copj 7 AN s
(IV;) Nlw;llis < Cs
To start the induction process observe that Iy, II;, and IV, are trivial, and that
III; holds if we set Co = p;. Now assume that I;,...,IV; hold for 1 < j < n. The
next four propositions will prove the induction step. Note that the coefficients of
L(w;) satisfy the conditions placed on (2.1)) with r = s, — 2. Therefore the results
of the previous sections apply to Ly, (w;), 1 < j < n, as long as (s.) and 6; are
sufficiently small and s < s, — 15.

o=n(n+1)r-(titno) 5

1
S.—15

Proposition 5.3. If s < s, — 15 and p(s.) is sufficiently large, then

5
[wnllss < padfl I fills, 15
Proof. We have
lwnt1llsiis < llwnllssas + 1 Sntnlls.

Furthermore by Theorem and Lemma (iii),
1Snunlly15 < My |l
< Mag? ([6n full§ + llwn| 515l én full3)-
Using Lemma [4.2] (i), we obtain
1@ fulld < Ms(IfallS + [1dnllS1fnl5)

< My([[fnlls + [l0nll§ 1 f2l12)
< Mo [| fullS-

Moreover by the definition of f,, and Lemma (iii)
[fnlls < Mo ([ /][5, 15 + llwnllS4a), (5.2)
so that

[@nfulls < Mz (|| fo
Similarly using IV,

[ Gn fulls < Mzp®™ (|| f1

so—15 + llwnl[{4a)-

v.o15 + llwallg) < Msp®".

‘We now have

[Snun 15 < Mo 8 1™ (|| fr i*—15 + [[wall5415)-
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Therefore
w55 < 2Mopn® ™ (1| 15

< it (1l

where the last inequality holds if y is chosen so large that 2Mgpu~! < 1. Tt follows
that

som15 Tt llwnlliis)

su—15 T llwnllsi1s),

lwn i1 ll5Hs < H#IG 20 Mol f1 15

Sx—159
1=1

where
Mg =1+ p;'° +Huz <o,

if p is large. Hence
(n+1)+%(7_n+1+n0 77_1+n0) ||f1

4
lwnsallstis < 20" st < A,

where o = n(n + 1)7=("*1470) and § = L6 a

—15»

Proposition 5.4. If s < s, — 20 — 20 and no(s«) is sufficiently large then

lun 3 < Cpafy (oo 18E20 £y

S.—159
where Cy depends on p and S,.
Proof. By Theorem [4.7]
l|n Z*—15 < My (|| pnfn ?*—15 + [Jwn, ?* Gnfnllz),

where M; depends only on s,. By Lemma [£.2] (ii), (5.2), and I,
¢ fulls, —15 < Ma([| falls. —15 + [@nlls. — 1511 f2ll3)
< Mg(l +,U,(S* 15)n)Mz(s*726)+6||f1

< M uzs*oJﬂSHfl”s*—lE)a

Sx—15

where M3 depends only on s,. Similarly III,, yields

1
[Gnfully < MsCoplo ™ (0mset20)y |11 o

Therefore for some constant Mg depending on p and s, we have
_ -1
[}, —15 < Mo (>0 4 pug (o= 710V H0y 20T GO B2 |0
< 2Mepin* O full}. 150
since s, > 20 + 2. Furthermore Lemma [2.3| and III,, produce
lunllg < Mzl fnllo < M7C2Mn_ st gy
Then applying Lemma (i), we find
[unl[§ < Ms(llunlln)l_-**—“(llun §.—15)T T
(18— 5. 428) (1 =215+ (252 0+8) (s=215)

(5.3)

S«—15°

< Mg,un ||f1 :

5.—15

< Mypl,

if o is sufficiently small. Note that ¢ may be made arbitrarily small by choosing ng
sufficiently large. We then set Cy = My to obtain the desired result. (I
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Proposition 5.5. Ifs < s, —18 =20 — T, s, > 22426 + 2*~ no(s.) and p(s.)
are sufficiently large, and €(s,) is sufficiently small, then

sl < Copr 7N AL g
Proof. Expanding ®(wy,+1) in a Taylor series yields
Jne1 = fn — L(wn)Sntn + Qn = fr — 0n(Sntin)pnee — Lo, (wn)Sptin + Qn,
where (£,7) are the change of variables given in section §2 by
ar2(wy)e + aze(wy)§y =0 in X, &(z,0) ==, {(fz0,y)==%z0, 1=y,

and where @, is the quadratic error term given by

1
Qn = / (t — 1)02®(wy, + tSpuy,)dt
0
Since Lg, (wy)un = fr, in X, 41 we have

fn+1 = Lé‘n (wn)(un - Snun) - en(snun)nnff + Qn, (54)

in X,,+1. Each term of (5.4) shall be estimated separately. First note that 6,, may
be chosen sufficiently small to guarantee that

H(s—s. +18+25)||f

Hen(snun)nnééugﬂ < C2Nn+1 sy—15°

We now estimate Lg, (wy,)(u, — Spuy,). By Lemma and IV,

| Lo, (wn) (un — Snun)”?le

< || Lo, (wn)(un — Spun)|ls

< Mi([[un — Snunllgye + [wnllsyalun — Snunlg) + O(6r)

< Ma([lun = Snunlldys + lwall$yallun = Snunll3) + O(0n)

< M (™ T un 12— 4 T lwn |2 allun 12, - 15) + O(6,).
Furthermore by ,

515 S M4M23 U+6||fl|‘;*—15-

If 0,, and o are sufficiently small and p is sufficiently large, it follows that

I Zo,, (wn) (un — Snun)|ls* < Mw N e D | VA1

llunlls

s— S*+18+25) ||f

Cgun+1

S.—15"°
We now estimate Q,,. Apply Lemma (ii) to obtain
1Qnlls™ < 1Qull}

/ 0Py, + St )0 (Sntin) O (St ||t
O Jal,lBllpl<2

< / Z Mg (|0° @ (wy, JrtSnun)|61H80‘(Snun)3ﬁ(5nun)||g
0

leel;18],]p1<2

+ 107 ®(wy, + S 1n)||70% (Snttn) 0P (Snun ) |5 dt.
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Then the Sobolev lemma and the interpolation inequality [[u?||z2 < C||u||3;:, show
that

1Qn S/ > Mr(|0°®(wn + tSnun) |3 (|| Snunleis)?

lp]<2
+ [10°® (wy, + Sy un)[I35 (1| Snun || 5)?)dt
Furthermore by Lemma (iii), I,, IV,,, and Proposition
1Qnlls™ < Ms[(wallg + s llun |3 (i llun ) + (lwnllers + s llun |8 (lunll$)?)
< (M| f1 i )1+ u2+f1( s*+22+25))Mg+27*1(5—5*+18+26)

— T (s—s. T (—s.
+ (NZ(S 11)+6 _’_,u4+ ( +18+2§))'u721 ( +22+25)]||f1”;*

< (Mol f1 ;*715),“71
since s < s, — 18 — 2§ — %T and s, > 22+ 26 + ﬁ. If £(s.) is sufficiently small
to guarantee that M| f1]|2 _i5 < 3Co, then

—15
S*+18+25||f1

s —15

1 “(s—s. £}
(@l < 3 Copr i VAN, s

By combining the estimates for each term of we obtain the desired result. [J
Proposition 5.6. If ng(ss) is sufficiently large then

lwnallF5 < Cs,
where C5 depends on p and ..

Proof. Let a = 14 + 7_1(18 + 26 — s,) and note that since s, > 22 + 20 + 2 T,

T > %, we have a < 0. If ng is sufficiently large, we may apply Proposition
obtain

w157 < Z |Siuiliy < ZMMHWHO < Zm f1ll5. -1 =

O

To obtain the largest value for s and smallest lower bound for s, which satisfy
the conditions of Propositions we choose 7 = 1.6 so that s, > 100
and s < s, —96. We now establish two corollaries which will complete the proof of
Theorem [L.3]

Corollary 5.7. w, — w in H¥>*%%(X).
Proof. If s < s, — 96 then by 11,

6
[Jw; — wj||°°<§j||uk||’fsclzuk Home 1820 g1

5.—15°
k=j k=j
Hence {w,} is Cauchy in H*(X) for all s < s, — 96, since 18 4+ 20 < 96. O
Corollary 5.8. ®(w,) — 0 in H*"%(X).
Proof. If s < s, — 96 then by III,,
19w )2 < (1l < Copy, 7= 111 _ 5 — 0.
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Since s, > 100, it follows that w, — w in C?(X ). Therefore ®(w,) — ®(w),

showing that w is a solution of (5.1)). Furthermore if [ is as in Theorem then

we

e

(10]

(11]

(12]

(13]

have w € C'=98 [ > 100. This completes the proof of Theorem [1.3
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