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Abstract
Bray and Khuri (2011 Asian J. Math. 15 557–610; 2010 Discrete Continuous
Dyn. Syst. A 27 741766) outlined an approach to prove the Penrose inequality
for general initial data sets of the Einstein equations. In this paper we extend
this approach so that it may be applied to a charged version of the Penrose
inequality. Moreover, assuming that the initial data are time-symmetric, we
prove the rigidity statement in the case of equality for the charged Penrose
inequality, a result which seems to be absent from the literature. A new quasi-
local mass, tailored to charged initial data sets is also introduced, and used in
the proof.

PACS numbers: 04.70.−s, 04.20.Dw

1. Introduction

Despite its tremendous success, the question of whether General Relativity provides a
consistent (classical) physical theory remains open3. Physical consistency, here, should be
understood as the statement that a large class of initial states, ‘generic’ in some sense, do not
evolve into unphysical spacetimes. Given that the singularity theorems [11] ensure that the
time evolution of physically reasonable initial data sets can be geodesically incomplete, one
expects that such singularities cannot be observed from the asymptotic region if the theory is
capable of making sound predictions. This idea is usually referred to as the (weak) cosmic
censorship conjecture, and it can be stated as follows [6, 9].

The maximal Cauchy development of generic asymptotically flat initial data for the
Einstein equations, with physically reasonable sources, possesses a complete I +.

The solution of this conjecture turns out to be a very difficult problem, as it requires
understanding the full time development of the spacetime. Hence it is pragmatic to investigate

1 Present address: Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA
2 The second author is partially supported by NSF grant DMS-1007156 and a Sloan Research Fellowship.
3 See [8] for an overview which includes the experimental confirmations of the theory; an account of recent advances
in its mathematical aspects can be found in [7].
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a more simple and related issue, which can be addressed entirely from the point of view of a
Cauchy surface. More precisely, one seeks to establish properties of initial data that ought to
be satisfied if the conjecture is true. In this regard, heuristic arguments of Penrose [18] suggest
that, for physically reasonable initial data sets, the validity of weak cosmic censorship implies
the following inequality

EADM �
√

A
16π

, (1.1)

where EADM is the ADM energy [1] and A is the minimal area required to enclose the apparent
horizon. This inequality is known as the Penrose inequality, and it is usually accompanied
by a rigidity statement, very much like the rigidity statement of the positive mass theorem
[19, 20, 22], saying that if equality happens then the initial data embed into the Schwarzschild
spacetime. The Penrose inequality, along with the rigidity statement, has been established in
the time-symmetric case by Huisken and Ilmanen [12] for one black hole, and independently
by Bray [3] for multiple black holes.

Inequality (1.1) admits several generalizations, such as the inclusion of charge and
the inclusion of angular momentum. As these generalizations describe natural and relevant
physical scenarios, the validity of the Penrose inequality in such cases is also an important
test for the cosmic censorship conjecture. See [17] for an account of the current status of this
topic.

This work is concerned with an initial data set (M, g, k, E ) for a single electrically
charged black hole, in which case the Penrose inequality reads

EADM �
√

A
16π

+
√

π

A e2, (1.2)

where e = limr→∞ 1
4π

∫
Sr

Eiνi is the total electric charge, with Sr coordinate spheres in the
asymptotic end having unit outer normal ν. Under appropriate energy conditions, inequality
(1.2) has been proven by Jang for time-symmetric initial data under the assumption that a
smooth solution to the inverse mean curvature flow (IMCF) exists [15]. However, in light of
Huisken and Ilmanen’s work [12], the hypothesis of a smooth IMCF can be discarded. A proof
of this inequality in the non-time-symmetric, spherically symmetric case has also be given
in [10]. To the best of our knowledge, the rigidity statement in the case of equality does not
appear in the literature and does not follow directly from Jang’s original argument. In this
paper, we show that under the assumption of a solution to the coupled Jang-IMCF system of
equations [4, 5], (1.2) is valid in the non-time-symmetric case. We also establish the rigidity
statement both when k = 0 and k �= 0, and in the former case without the assumption of a
solution to the Jang-IMCF system. Related results for the positive mass theorem with charge
are proven in [16].

Theorem 1.1. Let (M, g, k, E ) be a three-dimensional, asymptotically flat initial data set for
the Einstein–Maxwell system with a connected outermost apparent horizon boundary ∂M,
where E is the electric field. Assume that the charge density is zero div E = 0, that the
magnetic field vanishes, and that the non-electromagnetic matter fields satisfy the dominant
energy condition. If the coupled Jang-IMCF system of equations admits a solution with a weak
IMCF (in the sense of [12]) such that the boundary of the Jang surface is minimal, then (1.2)
holds and if equality is attained the initial data arise from the Reissner–Nordstrom spacetime.
Furthermore, if k = 0, the same conclusions hold without the assumption concerning solutions
to the Jang-IMCF system.

The hypothesis of connectedness of ∂M is necessary, as inequality (1.2) is known to be
false when multiple black holes are present [21]. Similarly, the inequality need not be true if
electromagnetic sources are allowed outside the black hole [10].
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Theorem 1.1 is established in section 4, with the rigidity statement shown in section 5. Its
proof makes use of a new quasi-local mass which generalizes the Hawking mass for charged
initial data. This mass is introduced in section 3, where it is motivated from elementary
principles. In section 2 we recall, along with some important definitions, how to construct a
generalized Jang surface from the ideas in [4, 5].

2. Charged Jang deformation

Let (M, g, k, E ) be a three-dimensional initial data set, consisting of a Riemannian metric g, a
symmetric 2-tensor k and a vector field E representing the electric field. It is assumed that the
manifold has a single component boundary consisting of an apparent horizon and that there
are no other apparent horizons present. Moreover the data are taken to be asymptotically flat
with one end, in that outside a compact set the manifold is diffeomorphic to the complement
of a ball in R

3, and in the coordinates given by this asymptotic diffeomorphism the following
fall-off conditions hold:

|∂m(gi j − δi j)| = O(|x|−m−1), |∂mki j| = O(|x|−m−2),

|∂mEi| = O(|x|−m−2), m = 0, 1, 2, as |x| → ∞.

With a vanishing magnetic field, the matter and current densities for the non-electromagnetic
matter fields are given by4

2μ = R + (Trk)2 − |k|2g − 2|E|2g,
J = div(k − (Trk)g),

where R denotes the scalar curvature of g. The following inequality will be referred to as the
dominant energy condition

μ � |J|g. (2.1)

In the time-symmetric case when k = 0, this condition states that

R � 2|E|2g, (2.2)

and is heavily relied upon in the proof of the charged Penrose inequality. In fact the main
difficulty in extending the proof to the non-time-symmetric case, is the lack of this inequality
under the dominant energy condition assumption. For this reason we seek a deformation of
the initial data to a new set (�, g, E ), where � is diffeomorphic to M, and the metric g and
vector field E are related to g and E in a precise way described below. The purpose of the
deformation is to obtain new initial data which satisfy (2.2) in a weak sense, while preserving
all other quantities appearing in the charged Penrose inequality, such as the charge density,
total charge, ADM energy and boundary area.

Consider the warped product 4-manifold (M×R, g+φ2 dt2), where φ is a non-negative
function to be chosen appropriately. Let � = {t = f (x)} be the graph of a function f inside
this warped product setting, then the induced metric on � is given by g = g+φ2 d f 2. In [4, 5]
it is shown that in order to obtain the most desirable positivity property for the scalar curvature
of the graph, the function f should satisfy(

gi j − φ2 f i f j

1 + φ2|∇ f |2g

)⎛⎝φ∇i j f + φi f j + φ j fi√
1 + φ2|∇ f |2g

− ki j

⎞⎠ = 0, (2.3)

4 We use conventions where the right-hand side of the Einstein equations does not have 8π , and we set GN = c = 1.
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where ∇ denotes covariant differentiation with respect to the metric g, fi = ∂i f and f i = gi j f j.
Equation (2.3) is referred to as the generalized Jang equation, and when it is satisfied � will
be called the Jang surface. This equation is quasi-linear elliptic, and degenerates when either
φ = 0 or f blows up. The existence, regularity and blow-up behavior for the generalized Jang
equation is studied at length in [13]. The scalar curvature of the Jang surface [4, 5] is given by

R = 2(μ − J(w)) + 2|E|2g + |h − k|2g + 2|q|2g − 2φ−1div(φq). (2.4)

Here div is the divergence operator with respect to g, h is the second fundamental form of the
graph t = f (x) in the Lorentzian 4-manifold (M × R, g − φ2 dt2) and w and q are 1-forms
given by

hi j = φ∇i j f + φi f j + φ j fi√
1 + φ2|∇ f |2g

, wi = φ fi√
1 + φ2|∇ f |2

, qi = φ f j√
1 + φ2|∇ f |2

(hi j − ki j).

If the dominant energy condition is satisfied, then all terms appearing on the right-hand
side of (2.4) are non-negative, except possibly the last term. However, the last term has a
special structure, and in many applications it is clear that a specific choice of φ will allow
one to ‘integrate away’ this divergence term, so that in effect the scalar curvature is weakly
non-negative (that is, non-negative when integrated against certain functions). For the charged
Penrose inequality, a stronger condition than simple non-negativity is required, more precisely
we seek an inequality (holding in the weak sense) of the following form:

R � 2|E|2g, (2.5)

where E is an auxiliary electric field defined on the Jang surface. This auxiliary electric field
is required to satisfy three properties, namely

|E|g � |E|g, div E = 0, e = e, (2.6)

where e is the total charge defined with respect to E. In particular, if the first inequality of
(2.6) is satisfied, then the dominant energy condition (2.1) and the scalar curvature formula
(2.4) imply that (2.5) holds weakly. It turns out that there is a very natural choice for this
auxiliary electric field, namely E is the induced electric field on the Jang surface � arising
from the field strength F of the electromagnetic field on (M×R, g+φ2 dt2). More precisely
Ei = F(N, Xi), where N and Xi are, respectively, the unit normal and canonical tangent vectors
to �

N = φ−1∂t − φ f i∂i√
1 + φ2|∇ f |2g

, Xi = ∂i + fi∂t

and F = 1
2 Fab dxa ∧ dxb is given by F0i = φEi and Fi j = 0 for i = 1, 2, 3, with xi, i = 1, 2, 3

coordinates on M and x0 = t. In matrix form

F =

⎛⎜⎜⎝
0 φE1 φE2 φE3

−φE1 0 0 0
−φE2 0 0 0
−φE3 0 0 0

⎞⎟⎟⎠ .

In the appendix it is shown that

Ei = Ei + φ2 fi f jE j√
1 + φ2|∇ f |2g

, (2.7)

and that all the desired properties of (2.6) hold.
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Definition 2.1. When f solves (2.3) and E is given by (2.7), the triple (�, g, E ) is referred to
as charged Jang initial data.

In order to apply these constructions to the charged Penrose inequality, we need not only
the (weak version of) inequality (2.5), but also three other properties of the charged Jang initial
data. Let S0 ⊂ M denote the outermost minimal area enclosure of ∂M (according to [2, 12],
S0 exists, is unique and is C1,1), and let S0 be the vertical lift of S0 to �. Then the desired three
properties are

EADM = EADM, |S0|g = |S0|g =: A, HS0 = 0, (2.8)

where EADM is the ADM energy of the Jang metric g, and |S0|g and HS0 are the area and mean
curvature of the surface S0, respectively. The first of these equalities is achieved by imposing
zero Dirichlet boundary conditions for f at spatial infinity. More precisely, if

φ(x) = 1 + C

|x| + O

(
1

|x|2
)

as |x| → ∞ (2.9)

for some constant C, then according to [13]

|∇m f |(x) = O(|x|− 1
2 −m) as |x| → ∞, m = 0, 1, 2, (2.10)

which is enough to ensure that the two ADM energies agree. The second equality of (2.8) may
be obtained by imposing zero Dirichlet boundary conditions for the warping factor φ|∂M = 0
at the surface S0. Note that this conclusion should hold whether f blows up or does not blow
up at S0, since when blow-up occurs the Jang surface asymptotically approaches a cylinder
over the blow-up region. It is well known that the Jang surface can only blow up on the portion
of S0 which coincides with the apparent horizon boundary. Lastly, the third equality of (2.8)
is considered to be an appropriate boundary condition for the solutions of the generalized
Jang equation (2.3). Typically, on the portion of S0 which coincides with the apparent horizon
boundary, this boundary condition forces the solution f to blow up as just described; however,
this is not always the case.

The question now arises as to how one should choose the warping factor φ. Let {Sτ }∞τ=0
be an IMCF inside the Jang surface (�, ḡ), starting from the minimal surface S0. We claim
that S0 is outerminimizing in �. To see this, consider a surface S ⊂ � which encloses S0,
and let S ⊂ M be its vertical projection. Then, since g � g as positive definite matrices and
S0 is a minimal area enclosure of ∂M

|S|g � |S|g � |S0|g = |S0|g,
where (2.8) has also been used. This shows that it is appropriate to start the IMCF from S0.
We then set

φ =
√

|Sτ |g
16π

Hτ , (2.11)

where |Sτ |g is the area of Sτ and Hτ is its mean curvature. This coincides with one of the
choices for φ in [4, 5], where it is pertinent to the study of the Penrose inequality for general
initial data. With this definition of φ, the generalized Jang equation (2.3) is coupled in a
nontrivial way to the IMCF equations. In this paper we will assume that a solution, with
appropriate regularity, exists for this coupled Jang-IMCF system of equations such that (2.8),
(2.9) and (2.10) are valid. The appropriate regularity should be akin to the weak solution of
IMCF appearing in the work of Huisken and Ilmanen [12], and which is sufficient for the
arguments of section 4 to go through. We point out that a smooth solution to this system of
equations exists in the case of spherical symmetry [5], and a further discussion of this system
appears in [4].

5
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3. Charged Hawking mass

Let us start introducing a new quasi-local mass tailored to initial data for the Einstein–Maxwell
system, and which will play an important role in establishing theorem 1.1. The idea to derive
this mass is as follows. Consider a spherically symmetric line element

γ = ds2 + r2(s) dσ 2 = 1

r2
,s

dr2 + r2 dσ 2, (3.1)

where r,s = dr
ds and dσ 2 is the round metric on S

2, and recall the metric on the t = 0 slice of
the Reissner–Nordstrom spacetime

gRN =
(

1 − 2M

r
+ e2

r2

)−1

dr2 + r2 dσ 2. (3.2)

By attempting to transform (3.1) into the form (3.2), we find that

γ = 1

r2
,s

dr2 + r2 dσ 2 =
(

1 − 2M(s)

r
+ e2

r2

)−1

dr2 + r2 dσ 2,

where

M(s) = 1

2
r

(
1 + e2

r2
− r2

,s

)
.

Since the mean curvature and area of coordinate spheres in the metric γ are given by

H = 2r,s

r
, |∂Br| = 4πr2 =

∫
∂Br

r2 dσ, (3.3)

we obtain

M(r) =
√

|∂Br|
16π

(
1 + 4π e2

|∂Br| − 1

16π

∫
∂Br

H2

)
.

This motivates the following definition.

Definition 3.1. Given initial data (M, g, E ) for the Einstein–Maxwell equations and a closed
2-surface S ⊂ M, the charged Hawking mass is defined to be

MCH (S ) =
√

|S|
16π

(
1 + 4π e2

|S| − 1

16π

∫
S

H2

)
,

where H is the mean curvature of S and e = 1
4π

∫
S Eiνi, with ν the unit normal pointing

toward spatial infinity. If S bounds a volume, then e is the total charge contained within S.

Note that MCH reduces to the ordinary Hawking mass when e = 0. It should also be
pointed out that this definition agrees in spherical symmetry with the mass introduced in [10],
although the derivation here is different.

4. Proof of theorem 1.1

In this section we will establish inequality (1.2) under the assumptions of theorem 1.1. For
the time being, let us assume that there is a smooth IMCF {Sτ }∞τ=0, inside a Jang surface �

satisfying properties (2.8). Standard properties of the IMCF [12] imply that

d

dt
MCH(Sτ ) = −1

2

√
π

|Sτ |g e2 +
√

|Sτ |g
16π

(
1

2
− 1

4
χ(Sτ )

)
+ 1

16π

√
|Sτ |g
16π

∫
Sτ

(
2
|∇Sτ

H|2
H

2 + |A|2 − 1

2
H

2 + R

)
, (4.1)

6
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where A and H are, respectively, the second fundamental form and mean curvature of Sτ , and
χ is the Euler characteristic. Since

|A|2 − 1
2 H

2 = 1
2 (λ1 − λ2)

2,

where λi, i = 1, 2, are the principal curvatures of Sτ , this term is non-negative. The same
holds for the second term on the right-hand side of (4.1) as χ(Sτ ) � 2 [12]. Therefore, (4.1)
combined with (2.4) gives

d

dt
MCH(Sτ ) � −1

2

√
π

|Sτ |g e2 + 1

16π

√
|Sτ |g
16π

∫
Sτ

(
2|E|2g − 2

φ
div(φq)

)
,

where the dominant energy condition (2.1) and the fact that |w|g � 1 have been used. From
(2.6) and Holder’s inequality it follows that∫

Sτ

|E|2g �
∫
Sτ

|E|2g �
∫
Sτ

〈
E, νg〉2 �

( ∫
Sτ

〈E, νg〉
)2

|Sτ |g , (4.2)

where νg in the unit outer normal to Sτ . Applying the divergence theorem on the region  ⊂ �

between Sτ and spatial infinity, and using (2.8), produces∫
Sτ

〈E, νg〉 = −
∫



div E + 4πe = 4πe.

Hence

d

dt
MCH(Sτ ) � − 1

16π

√
|Sτ |g
16π

∫
Sτ

2

φ
div(φq). (4.3)

The next step will be to integrate the above inequality between zero and infinity. Observe
that since

MCH(Sτ ) =
√

π

|Sτ |g e2 + MH(Sτ ),

where MH denotes the unaltered Hawking mass, and |Sτ |g grows exponentially in τ , we have
that

lim
τ→∞ MCH(Sτ ) = EADM = EADM.

On the other hand, since (by (2.8)) S0 is a minimal surface and |S0|g = A,

MCH(S0) =
√

A
16π

(
1 + 4π e2

A

)
.

Therefore integrating (4.3) yields

EADM −
√

A
16π

(
1 + 4π e2

A

)
� − 2

(16π)
3
2

∫
�

√|Sτ |g H

φ
div(φq),

after applying the co-area formula. According to the definition (2.11) of φ

1√
16π

∫
�

√|Sτ |g H

φ
div(φq) =

∫
�

div(φq) =
∫
S∞

φ〈q, νg〉 −
∫
S0

φ〈q, νg〉.

Well-known behavior of solutions to the (generalized) Jang equation [13, 20] show that
q(x) → 0 as |x| → ∞, and that q remains bounded on S0 even if the Jang surface blows up
over part or all of this surface. Moreover φ → 1 as |x| → ∞ and φ = 0 on S0, since HS0 = 0
by (2.8). Hence both boundary integrals vanish, and this yields the inequality (1.2).

7
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Remark 4.1. In this section it was assumed that the IMCF is smooth inside the Jang surface �.
However it is only expected that a weak solution of the Jang-IMCF system of equations will
exist in general. If such a solution produces a weak IMCF in the sense of Huisken and Ilmanen
[12], then it is easily verified that the arguments presented here will carry over to this setting.
In particular, MCH is monotonic across jumps in the weak IMCF, so that inequality (1.2) is
established rigorously for time-symmetric initial data when k = 0, as it is not necessary to
solve the generalized Jang equation in this case.

5. Case of equality

In this section we will show that if equality holds in (1.2), then the given initial data (M, g, k, E )

arise from the exterior region of the Reissner–Nordstrom spacetime having metric

−φ2
RN dt2 + gRN for r � M +

√
M2 − e2, M � e,

where

φRN =
√

1 − 2M

r
+ e2

r2
, gRN =

(
1 − 2M

r
+ e2

r2

)−1

dr2 + r2 dσ 2.

As mentioned in the introduction, it seems that this result does not appear in the literature, and
furthermore it does not follow from Jang’s original arguments [14] even in the time-symmetric
case.

Suppose that equality holds in (1.2), then all inequalities appearing in section 4 must be
equalities and the following quantities must vanish

|∇Sτ
H| = |A| − 1

2 H
2 = μ − J(w) = |h − k|g = |q|g ≡ 0. (5.1)

In fact

μ = |J|g ≡ 0, (5.2)

as can be seen from the identity

μ − J(w) = (μ − |J|g) + |J|g(1 − |w|g) + (|J|g|w|g − J(w))

combined with the dominant energy condition (2.1) and the inequality |w|g < 1, which is
valid wherever the solution f to the generalized Jang equation does not blow up, that is, away
from ∂M. Moreover, (5.2) and (5.1) imply that on each surface Sτ

H = const, |A| = const, λ1 = λ2 = const. (5.3)

5.1. Time-symmetric case

In this subsection, we restrict attention to the case when k = 0. Here the solution of the
generalized Jang equation is f = 0, and the IMCF, which is guaranteed to be smooth [12],
starts at the outermost minimal surface boundary S0 = ∂M. We will show that the initial
data (M, g, E ) are equivalent to that of the exterior region of the t = 0 slice of the Reissner–
Nordstrom spacetime.

When k = 0, (5.2) implies that

R = 2|E|2g.
Furthermore equality in (4.2) yields

〈E, νg〉 = const and E = a(τ )νg on Sτ , (5.4)

8
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for some smooth function a(τ ). It follows that the scalar curvature R is constant on Sτ . Next
observe that under IMCF ∂τ = H−1νg, so that taking a trace of the Riccati equation produces

∂τ H = −�Sτ
H−1 − (Ric(ν, ν) + |A|2)H−1

where Ric(ν, ν) is the Ricci curvature in the direction νg. It then follows from (5.3) that
Ric(ν, ν) = const on Sτ . Thus in light of two traces of the Gauss equation

Ric(ν, ν) − 1
2 R = −K + 1

2 H2 − 1
2 |A|2,

the Gauss curvature satisfies K = const on Sτ . It follows that Sτ is isometric to a round sphere,
having induced metric r2(τ ) dσ 2 for some smooth function r(τ ). By the Gauss lemma

g = H−2 dτ 2 + g|Sτ
= 4H−2

r2
dr2 + r2 dσ 2, (5.5)

where we have also used the fact that dτ = 2r−1 dr, which follows from 4πr2(τ ) = |Sτ |g =
|S0|g eτ . Since d

dτ
MCH � 0, we must have d

dτ
MCH = 0 so that MCH(τ ) = M is constant for all

τ . We may then solve for H in terms of M to find

H2 = 4

r2

(
1 − 2M

r
+ e2

r2

)
.

Combining this with (5.5) shows that g agrees with the metric gRN on the t = 0 slice of the
Reissner–Nordstrom spacetime.

In order to complete the proof, we must show that the given electric field E agrees with
the electric field arising from a point charge at the origin with respect to the metric gRN:

ERN = e

r2

√
1 − 2M

r
+ e2

r2
∂r.

To see that this is in fact the case, apply (5.4) to find

4πe =
∫

Sr

〈E, νg〉 = a(r)
∫

Sr

r2 dσ = 4πr2a(r).

It follows that E = e
r2 νg. Since

νg =
√

1 − 2M

r
+ e2

r2
∂r,

the desired result follows.

5.2. Non-time-symmetric case

Suppose now that k does not vanish. We may apply the arguments from the previous section
to the charged Jang initial data (�, g, E ) to obtain

g = gRN, E = ERN.

Furthermore, since g is spherically symmetric we can use (3.3) to calculate

H = 2

r

√
1 − 2M

r
+ e2

r2
,

from which it follows that

φ =
√

|Sτ |g
16π

H = 1

2
rH =

√
1 − 2M

r
+ e2

r2
,

and hence φ = φRN. Since g = g − φ2 d f 2, we find that the map I : x �→ (x, f (x)) yields
an isometric embedding of (M, g) into the Reissner–Nordstrom spacetime. Note that this
implies that S0 (defined in section 2) is an apparent horizon, however by assumption the

9
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only apparent horizon in M is the boundary, and so S0 = ∂M. That is, the boundary of M
is outerminimizing in the case of equality. Next recall that since |h − k|g = 0, a calculation
[4, 5] shows that the second fundamental form of the embedding I agrees with the initial data k.

It remains to show that E agrees with the induced electric field on the surface I(M)

sitting inside the Reissner–Nordstrom spacetime. Consider the field strength tensor for the
electromagnetic field in the Reissner–Nordstrom spacetime

FRN =

⎛⎜⎜⎝
0 φRN(ERN)1 φRN(ERN)2 φRN(ERN)3

−φRN(ERN)1 0 0 0
−φRN(ERN)2 0 0 0
−φRN(ERN)3 0 0 0

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0

e

r2
0 0

− e

r2
0 0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎟⎠ .

The induced electric field on the surface I(M) is given by

Êi = FRN(N̂, Xi),

where

N̂ = φ−1
RN∂t + φRNgil

RN fl∂i√
1 − φ2

RN|∇ f |2gRN

is the unit normal to I(M), and Xi = ∂i + fi∂t , i = 1, 2, 3 are tangent vectors. It is shown in
appendix B that

Ei = Êi, (5.6)

finishing the proof.

Appendices. Properties of E and E

The induced electric field on a spacelike slice � of a spacetime (N , η) is given by F(N, ·),
where F is the field strength of the electromagnetic field and N is the unit normal to �.
Although the physical situation occurs when η has Lorentzian signature, the same procedure
can be applied in the Riemannian setting and is utilized in this paper. The point of interest
here is of course when � is the Jang surface. Both cases of an ambient spacetime having
Riemannian and Lorentzian signature are analyzed; the former is treated in appendix A, while
the later is treated in appendix B. In particular we prove (2.6), (2.7) and (5.6).

Appendix A. Riemannian case

Throughout this section � = {t = f (x)} will be a graph inside the warped product 4-manifold
(M× R, g+ φ2 dt2). Although we will use the same notation as in the body of the paper, the
function f will not be required to satisfy the generalized Jang equation (2.3). More precisely,
the validity of the results presented here is independent of any equation that f satisfies.

Let F = 1
2 Fab dxa ∧ dxb be the field strength given by F0i = φEi and Fi j = 0 for

i, j = 1, 2, 3, with xi coordinates on M. In matrix form

F =

⎛⎜⎜⎝
0 φE1 φE2 φE3

−φE1 0 0 0
−φE2 0 0 0
−φE3 0 0 0

⎞⎟⎟⎠ .

In order to check that this is the correct expression for F in (M×R, g+φ2 dt2), note that the
unit normal to the t = 0 slice is φ−1∂t , so that the electric field induced on M by F(φ−1∂t, ·) is

10
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exactly E. Next observe that each tangent space of � is spanned by Xi = ∂i + fi∂t , i = 1, 2, 3,
and its unit normal is given by

N = φ−1∂t − φ f i∂i√
1 + φ2|∇ f |2g

.

Therefore the electric field induced on � becomes

Ei = F(N, Xi) = F

⎛⎝ φ−1∂t − φ f l∂l√
1 + φ2|∇ f |2g

, ∂i + fi∂t

⎞⎠ = Ei + φ2 fi f lEl√
1 + φ2|∇ f |2g

, (A.1)

which establishes (2.7).

Lemma A.1.

|E|g � |E|g

Proof. By direct calculation

|E|2g = gi jF(N, Xi)F(N, Xj)

= gi j(1 + φ2|∇ f |2g)−1(Ei + φ2 fi f lEl )(Ej + φ2 f j f kEk)

= gi jEiE j

1 + φ2|∇ f |2g
+ 2

φ2gi j fiE j f kEk

(1 + φ2|∇ f |2g)2
+ φ4gi j fi f j( f kEk)

2

(1 + φ2|∇ f |2g)2
.

Observe that since

gi j = gi j − φ2 f i f j

1 + φ2|∇ f |2g
, (A.2)

we have

gi jEiE j

1 + φ2|∇ f |2g
+ 2

φ2gi j fiE j f kEk

(1 + φ2|∇ f |2g)2
+ φ4gi j fi f j( f kEk)

2

(1 + φ2|∇ f |2g)2
= |E|2g

1 + φ2|∇ f |2g
+ φ2( f iEi)

2

1 + φ2|∇ f |2g
.

Hence

|E|2g − |E|2g = φ2(|∇ f |2g|E|2g − ( f iEi)
2)

� φ2(|∇ f |2g|E|2g − |∇ f |2g|E|2g)
= − φ2|∇ f |2g(|E|2g − |E|2g),

from which the desired inequality follows.
�

Lemma A.2.

div E =
√

1 + φ2|∇ f |2gdiv E (A.3)

Proof. We will present two different proofs of this equality, one emphasizing conceptual
aspects and another one based on direct computation, as we believe that both approaches may
be useful in further generalizations of theorem 1.1.

First proof. Consider the 4-current Jb = ∇̂aFab, where ∇̂ is the Levi–Civita connection
associated with the 4-metric ĝ = g + φ2 dt2. The Christoffel symbols of this metric are given
by

�̂0
00 = �̂0

i j = �̂
j
i0 = 0, 1 � i, j � 3,

�̂0
i0 = ∂i(log φ), �̂i

00 = −φφi,

11
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and �̂l
i j agree with the Christoffel symbols �l

i j of g when 1 � i, j, l � 3. In what follows,
indices a, b, c will run from 0 to 3, while indices i, j, l will run from 1 to 3. We then have

Ji = J (∂i) = ∇̂aFai = 0. (A.4)

To see this, observe that

∇̂0F0i = ĝ 0b∇̂bF0i

= ĝ 0b(∂bF0i − �̂c
b0Fci − �̂c

biF0c)

= −φ−2(�̂c
00Fci + �

j
0iF0 j) = 0

and

∇̂ jFji = ĝ jb∇̂bFji

= gjl(∂lFji − �̂c
l jFci − �̂c

liFjc)

= −gjl (�̂0
l jF0i + �0

liFj0) = 0,

where we have used the fact that Fab does not depend on t and Fi j = 0 for 1 � i, j � 3. Since
divE represents the charge density on M,

divE = −J (φ−1∂t ).

Now rewrite the unit normal to M in terms of the unit normal to � by

φ−1∂t =
√

1 + φ2|∇ f |2gN + φ f i∂i.

In light of (A.4), it follows that

div E = −J (φ−1∂t ) = −
√

1 + φ2|∇ f |2gJ (N) − J (φ f i∂i) = −
√

1 + φ2|∇ f |2gJ (N).

On the other hand div E represents the charge density on �, so that

div E = −J (N), (A.5)

and equality (A.3) follows.
Note that (A.5) can also be verified explicitly. Take Fermi coordinates on �, and observe

that

J (N) = Nb∇̂aFab = −∇̂aNbFab + ∇̂a(FaN ).

Since ∇̂aNb is symmetric and Fab is anti-symmetric in a and b, the first term on the right-hand
side vanishes. Consider now the remaining term on the right-hand side. Since �̂a

NN = 0, it
follows that

∇̂N (FNN ) = ĝ Na∇̂a(FNN ) = ĝ Na(N(FNN ) − �̂c
aNFcN ) = 0.

Also

∇̂ j(FjN ) = ĝ jl∇̂l(FjN ) = ĝ jl(∂lFjN − �̂i
l jFiN ) = −gjl (∂lE j − �

i
l jEi) = −div E,

where �
i
l j are Christoffel symbols for the metric g induced on �.

Second proof. We now verify (A.3) by direct computation. According to [4, 5], the relationship
between the Christoffel symbols of g and g is given by

�
m
i j = �m

i j − φφm fi f j + φpi j f m√
1 + φ2|∇ f |2g

,

where

pi j = φ∇i j f + φi f j + φ j fi + φ2φl fl fi f j√
1 + φ2|∇ f |2g

(A.6)

12
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is the second fundamental form of � inside (M × R, g + φ2 dt2). Let ∇ denote covariant
differentiation with respect to g, then

∇ jEi = ∂ j

⎛⎝ Ei + φ2 f lEl fi√
1 + φ2|∇ f |2g

⎞⎠ − �
m
i j

Em + φ2 f lEl fm√
1 + φ2|∇ f |2g

= 1√
1 + φ2|∇ f |2g

∂ jEi + ∂ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠ Ei + ∂ j

⎛⎝ φ2 f lEl fi√
1 + φ2|∇ f |2g

⎞⎠
− �m

i j

Em + φ2 f lEl fm√
1 + φ2|∇ f |2g

+
⎛⎝φφm fi f j − f m pi jφ√

1 + φ2|∇ f |2g

⎞⎠ ⎛⎝Em + φ2 f lEl fm√
1 + φ2|∇ f |2g

⎞⎠ .

The terms involving ∂ jEi and �m
i jEm, as well as ∂ j

(
φ2 f l El fi√
1+φ2|∇ f |2g

)
and �m

i j

(
φ2 f l El fm√
1+φ2|∇ f |2g

)
combine

to form covariant derivatives, so that

∇ jEi = 1√
1 + φ2|∇ f |2g

∇ jEi + ∇ j

⎛⎝ φ2 f lEl fi√
1 + φ2|∇ f |2g

⎞⎠ + ∂ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠ Ei

+
⎛⎝φφm fi f j − f m pi jφ√

1 + φ2|∇ f |2g

⎞⎠ ⎛⎝Em + φ2 f lEl fm√
1 + φ2|∇ f |2g

⎞⎠ .

Set p = gi j pi j, take a trace with gi j and use (A.2) to find

div E = 1√
1 + φ2|∇ f |2g

∇ iEi + ∇ i

⎛⎝ φ2 f lEl fi√
1 + φ2|∇ f |2g

⎞⎠ + gi j∂ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠ Ei

+
⎛⎝φ|∇ f |2gφm − pφ f m√

1 + φ2|∇ f |2g

⎞⎠ ⎛⎝Em + φ2 f lEl fm√
1 + φ2|∇ f |2g

⎞⎠ − φ2 f i f j

(1 + φ2|∇ f |2g)
3
2

∇ jEi

− φ2 f i f j

1 + φ2|∇ f |2g
∇ j

⎛⎝ φ2 f lEl fi√
1 + φ2|∇ f |2g

⎞⎠ − φ2 f i f j

1 + φ2|∇ f |2g
∂ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠ Ei

− φ2 f i f j

1 + φ2|∇ f |2g

⎛⎝φ fi f jφ
m − φpi j f m√

1 + φ2|∇ f |2g

⎞⎠ ⎛⎝Em + φ2 f lEl fm√
1 + φ2|∇ f |2g

⎞⎠ . (A.7)

Next expand (A.7)

div E = 1√
1 + φ2|∇ f |2g

div E + ∇ i

⎛⎝ φ2 f lEl√
1 + φ2|∇ f |2g

⎞⎠ fi + φ2 f lEl√
1 + φ2|∇ f |2g

∇ i fi

+ gi j∂ j

⎛⎝ 1√
1+φ2|∇ f |2g

⎞⎠ Ei+
φ|∇ f |2gφmEm√

1 + φ2|∇ f |2g
+ φ3|∇ f |2g f lElφ

m fm√
1 + φ2|∇ f |2g

− pφ f mEm

1 + φ2|∇ f |2g

− pφ3 f lEl|∇ f |2g
1 + φ2|∇ f |2g

− φ2 f i f j∇ jEi

(1 + φ2|∇ f |2g)
3
2

− φ2 f i f j

1 + φ2|∇ f |2g
∇ j

⎛⎝ φ2 f lEl√
1 + φ2|∇ f |2g

⎞⎠ fi
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− φ4 f i f j f lEl

(1+φ2|∇ f |2g)
3
2

∇ j fi− φ2 f i f j

1 + φ2|∇ f |2g
∂ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠ Ei − φ3 f i f jφmEm fi f j

(1 + φ2|∇ f |2g)
3
2

− φ5 f i f j f lElφ
m fm fi f j

(1 + φ2|∇ f |2g)
3
2

+ φ3 f i f j pi j f mEm

(1 + φ2|∇ f |2g)2
+ φ5 f i f j pi j f mEm|∇ f |2g

(1 + φ2|∇ f |2g)2
. (A.8)

With the help of (A.6), the third, seventh and eighth terms on the right-hand side combine to
yield

φ2 f lEl√
1 + φ2|∇ f |2g

∇ i fi − pφ f mEm

1 + φ2|∇ f |2g
− pφ3 f lEl |∇ f |2g

1 + φ2|∇ f |2g
= φ2 f lEl√

1 + φ2|∇ f |2g
∇ i fi − pφ f mEm

= φ2 f lEl√
1 + φ2|∇ f |2g

∇ i fi − φ f mEmgi j

⎛⎝φ∇i j f + φi f j + φ j fi + φ2φl fl fi f j√
1 + φ2|∇ f |2g

⎞⎠
= φ2 f lEl√

1 + φ2|∇ f |2g
∇ i fi − φ f mEm√

1 + φ2|∇ f |2g
(
φ∇ i fi + 2φi fi + φ2φl fl|∇ f |2g

)
= − 2φ f lElφ

m fm√
1 + φ2|∇ f |2g

− φ3 f lElφ
m fm|∇ f |2g√

1 + φ2|∇ f |2g
. (A.9)

Write the second term on the right-hand side of (A.8) as

∇ i

⎛⎝ φ2 f lEl√
1 + φ2|∇ f |2g

⎞⎠ fi = 2φ f lElφ
i fi√

1 + φ2|∇ f |2g
+ φ2∇ i

⎛⎝ f lEl√
1 + φ2|∇ f |2g

⎞⎠ fi. (A.10)

Insert (A.9) and (A.10) into (A.8). The first term on the right-hand side of (A.9) cancels with
the first term on the right-hand side of (A.10), and the second term on the right-hand side of
(A.9) cancels with the sixth term on the right-hand side of (A.8). Therefore,

div E = 1√
1 + φ2|∇ f |2g

div E + φ2∇ i

⎛⎝ f lEl√
1 + φ2|∇ f |2g

⎞⎠ fi + gi j∂ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠ Ei

+ φ|∇ f |2gφmEm√
1 + φ2|∇ f |2g

− φ2 f i f j∇ jEi

(1 + φ2|∇ f |2g)
3
2

− φ2 f i f j

1 + φ2|∇ f |2g
∇ j

⎛⎝ φ2 f lEl√
1 + φ2|∇ f |2g

⎞⎠ fi

− φ4 f i f j f lEl

(1+φ2|∇ f |2g)
3
2

∇ j fi− φ2 f i f j

1+φ2|∇ f |2g
∂ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠ Ei − φ3 f i f jφmEm fi f j

(1 + φ2|∇ f |2g)
3
2

− φ5 f i f j f lElφ
m fm fi f j

(1 + φ2|∇ f |2g)
3
2

+ φ3 f i f j pi j f mEm

(1 + φ2|∇ f |2g)2
+ φ5 f i f j pi j f mEm|∇ f |2g

(1 + φ2|∇ f |2g)2
. (A.11)

Note that the last two terms combine into

φ3 f i f j pi j f mEm

(1 + φ2|∇ f |2g)2
+ φ5 f i f j pi j f mEm|∇ f |2g

(1 + φ2|∇ f |2g)2
= φ3 f i f j pi j f mEm

1 + φ2|∇ f |2g
.

Moreover, the third and fourth terms on the right-hand side of (A.11) become

−1

2

φ2gi jEi∂ j|∇ f |2g
(1 + φ2|∇ f |2g)

3
2

+ φ3|∇ f |4gφmEm

(1 + φ2|∇ f |2g)
3
2

.
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Upon using this expression in (A.11), we find that the last term cancels with the ninth term on
the right-hand side of (A.11). Hence

div E = 1√
1 + φ2|∇ f |2g

div E + φ2 fi∇ i

⎛⎝ f lEl√
1 + φ2|∇ f |2g

⎞⎠ − 1

2

φ2gi jEi∂ j|∇ f |2g
(1 + φ2|∇ f |2g)

3
2

− φ2 f i f j∇ jEi

(1 + φ2|∇ f |2g)
3
2

− φ2|∇ f |2g
1 + φ2|∇ f |2g

fi∇ i

⎛⎝ φ2 f lEl√
1 + φ2|∇ f |2g

⎞⎠ − φ4 f i f j f lEl

(1 + φ2|∇ f |2g)
3
2

∇ j fi

− φ2 f i f j

1 + φ2|∇ f |2g
∂ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠ Ei − φ5|∇ f |4g f lElφ
m fm

(1 + φ2|∇ f |2g)
3
2

+ φ3 f i f j pi j f mEm

1 + φ2|∇ f |2g
.

(A.12)

Now use (A.6) to compute the last term in (A.12)

φ3 f i f j pi j f mEm

1 + φ2|∇ f |2g
= φ4 f lEl f i f j∇i j f

(1 + φ2|∇ f |2g)
3
2

+ 2φ3 f lEl|∇ f |2gφm fm

(1 + φ2|∇ f |2g)
3
2

+ φ5 f lEl |∇ f |4gφm fm

(1 + φ2|∇ f |2g)
3
2

, (A.13)

and observe that the first term on the right-hand side of (A.13) cancels the sixth term on the
right-hand side of (A.12), while the last term in (A.13) cancels the next to last term in (A.12).
Therefore,

div E = 1√
1 + φ2|∇ f |2g

div E + φ2 fi∇ i

⎛⎝ f lEl√
1 + φ2|∇ f |2g

⎞⎠ − 1

2

φ2gi jEi∂ j|∇ f |2g
(1 + φ2|∇ f |2g)

3
2

− φ2 f i f j∇ jEi

(1 + φ2|∇ f |2g)
3
2

− φ2|∇ f |2g
1 + φ2|∇ f |2g

fi∇ i

⎛⎝ φ2 f lEl√
1 + φ2|∇ f |2g

⎞⎠
− φ2 f i f j

1 + φ2|∇ f |2g
∂ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠ Ei + 2φ3 f lElφ
m fm|∇ f |2g

(1 + φ2|∇ f |2g)
3
2

. (A.14)

Next, consider the second, fourth and fifth terms on the right-hand side of (A.14). They
give

φ2 fi∇ i

⎛⎝ f lEl√
1 + φ2|∇ f |2g

⎞⎠ − φ2 f i f j∇ jEi

(1 + φ2|∇ f |2g)
3
2

− φ2|∇ f |2g
1 + φ2|∇ f |2g

fi∇ i

⎛⎝ φ2 f lEl√
1 + φ2|∇ f |2g

⎞⎠
= φ2 f l fi∇ iEl√

1 + φ2|∇ f |2g
+ φ2 fi∇ i

⎛⎝ f l√
1 + φ2|∇ f |2g

⎞⎠ El − φ2 f i f j∇ jEi

(1 + φ2|∇ f |2g)
3
2

− φ2|∇ f |2g
1 + φ2|∇ f |2g

φ2 f l√
1 + φ2|∇ f |2g

(∇ iEl ) fi

− φ2|∇ f |2g
1 + φ2|∇ f |2g

∇ i

⎛⎝ φ2 f l√
1 + φ2|∇ f |2g

⎞⎠ El fi. (A.15)

The first, third and fourth terms on the right-hand side cancel
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φ2 f l fi∇ iEl√
1 + φ2|∇ f |2g

− φ2 f i f j∇ jEi

(1 + φ2|∇ f |2g)
3
2

− φ2|∇ f |2g
1 + φ2|∇ f |2g

φ2 f l√
1 + φ2|∇ f |2g

(∇ iEl ) fi

= φ2 f l fi∇ iEl√
1 + φ2|∇ f |2g

(
1 − 1

1 + φ2|∇ f |2g
− φ2|∇ f |2g

1 + φ2|∇ f |2g

)
= 0, (A.16)

whereas the second and fifth terms of (A.15) become

φ2 fi∇ i

⎛⎝ f l√
1 + φ2|∇ f |2g

⎞⎠ El − φ2|∇ f |2g
1 + φ2|∇ f |2g

∇ i

⎛⎝ φ2 f l√
1 + φ2|∇ f |2g

⎞⎠ El fi

= φ2 fi∇ i

⎛⎝ f l√
1 + φ2|∇ f |2g

⎞⎠ El − φ4|∇ f |2g
1 + φ2|∇ f |2g

fi∇ i

⎛⎝ f l√
1 + φ2|∇ f |2g

⎞⎠ El

− φ2|∇ f |2g f lEl fi∇ iφ2

(1 + φ2|∇ f |2g)
√

1 + φ2|∇ f |2g

= φ2

1 + φ2|∇ f |2g
fi∇ i

⎛⎝ f l√
1 + φ2|∇ f |2g

⎞⎠ El − 2φ3 f lElφ
i fi|∇ f |2g

(1 + φ2|∇ f |2g)
3
2

. (A.17)

Plugging (A.15), (A.16) and (A.17) into (A.14) produces

div E = 1√
1 + φ2|∇ f |2g

div E + φ2

1 + φ2|∇ f |2g
fi∇ i

⎛⎝ f l√
1 + φ2|∇ f |2g

⎞⎠ El − 1

2

φ2gi jEi∂ j|∇ f |2g
(1 + φ2|∇ f |2g)

3
2

− φ2 f i f j

1 + φ2|∇ f |2g
∂ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠ Ei,

after canceling the last term in (A.17) with the last term in (A.14).
Lastly, expand the derivative in the second term on the right to find

div E = 1√
1+φ2|∇ f |2g

div E+ φ2 fi

1+φ2|∇ f |2g

⎛⎝ f l∇ i

⎛⎝ 1√
1+φ2|∇ f |2g

⎞⎠ + 1√
1+φ2|∇ f |2g

∇ i f l

⎞⎠ El

− 1

2

φ2Ei∇ i(|∇ f |2g)
(1 + φ2|∇ f |2g)

3
2

− φ2 f lEl

1 + φ2|∇ f |2g
f j∇ j

⎛⎝ 1√
1 + φ2|∇ f |2g

⎞⎠
= 1√

1 + φ2|∇ f |2g
div E + φ2El fi∇ i f l

(1 + φ2|∇ f |2g)
3
2

− 1

2

φ2Ei∇ i|∇ f |2g
(1 + φ2|∇ f |2g)

3
2

.

The last two terms cancel, yielding the desired result. �

Lemma A.3. If φ remains bounded and f (x) → 0 as |x| → ∞, then e = e.

Proof. This follows directly from the definition of total charge and the formula (A.1). �

16



Class. Quantum Grav. 29 (2012) 245019 M M Disconzi and M A Khuri

Appendix B. Lorentzian case

In this section we will establish (5.6). As in the previous section, the validity of the results in
this appendix is independent of any equation that f may satisfy.

Consider the Lorentzian static spacetime (� × R, g − φ2 dt2) with electromagnetic field
strength

F =

⎛⎜⎜⎝
0 φE1 φE2 φE3

−φE1 0 0 0
−φE2 0 0 0
−φE3 0 0 0

⎞⎟⎟⎠ .

As usual g = g + φ2df 2 and E is the electric field on � given by (A.1). We will regard
M = {t = f (x)} as a graph inside this spacetime, since the induced metric on the graph is
g. Note that in section 5.2 this surface was denoted by I(M). Denote by Ê the electric field
induced on M, as explained at the beginning of the appendix.

Lemma B.1. If E is the electric field found in the definition of E, then

E = Ê.

Proof. The unit normal to M is given by

N = φ−1∂t + φ f l̄∂l√
1 − φ2|∇ f |2g

,

where a barred index indicates that it is raised with respect to the g metric, that is f l̄ = gl j f j.
Compute

Êi = F(N, Xi) = F

⎛⎝ φ−1∂t + φ f l̄∂l√
1 − φ2|∇ f |2g

, ∂i + fi∂t

⎞⎠
= 1√

1 − φ2|∇ f |2g
(φ−1F(∂t, ∂i) + φ−1 fiF(∂t, ∂t ) + φ f l̄F(∂l, ∂i) + φ f l̄ fiF(∂l, ∂t )),

and use F(∂t, ∂i) = φEi, F(∂t, ∂t ) = F(∂l, ∂i) = 0 and F(∂l, ∂t ) = −φEi to show that

Êi = 1√
1 − φ2|∇ f |2g

(Ei − φ2 fi f l̄El ). (B.1)

The goal is to express everything in terms of unbarred quantities. Observe that

f l̄El = gl j flE j

=
(

gl j − φ2 f l f j

1 + φ2|∇ f |2g

)
fl

⎛⎝Ej + φ2 f j f kEk√
1 + φ2|∇ f |2g

⎞⎠
= 1√

1 + φ2|∇ f |2g
f lEl . (B.2)

Now input (B.2) and (A.1) into (B.1) to find

Êi = 1√
1 − φ2|∇ f |2g

⎛⎝ Ei + φ2 fi f lEl√
1 + φ2|∇ f |g2 − φ2 fi

1√
1 + φ2|∇ f |2g

f lEl

⎞⎠
= Ei√

(1 − φ2|∇ f |2g)(1 + φ2|∇ f |2g)
.
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Lastly, note that

(1 − φ2|∇ f |2g)(1 + φ2|∇ f |2g) =
(

1 − φ2

(
gi j − φ2 f i f j

1 + φ2|∇ f |2g

)
fi f j

) (
1 + φ2|∇ f |2g

)
=

(
1 − φ2|∇ f |2g

1 + φ2|∇ f |2g

)
(1 + φ2|∇ f |2g)

= 1. �
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