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Deformations of Charged Axially Symmetric
Initial Data and the Mass–Angular
Momentum–Charge Inequality

Ye Sle Cha and Marcus A. Khuri

Abstract. We show how to reduce the general formulation of the mass–
angular momentum–charge inequality, for axisymmetric initial data of
the Einstein–Maxwell equations, to the known maximal case whenever a
geometrically motivated system of equations admits a solution. It is also
shown that the same reduction argument applies to the basic inequality
yielding a lower bound for the area of black holes in terms of mass, angu-
lar momentum, and charge. This extends previous work by the authors
(Cha and Khuri, Ann Henri Poincaré, doi:10.1007/s00023-014-0332-6,
arXiv:1401.3384, 2014), in which the role of charge was omitted. Lastly, we
improve upon the hypotheses required for the mass–angular momentum–
charge inequality in the maximal case.

1. Introduction

Let (M, g, k,E,B) be an initial data set for the Einstein–Maxwell equations.
This consists of a 3-manifold M , Riemannian metric g, symmetric 2-tensor k
representing the extrinsic curvature (second fundamental form) of the embed-
ding into spacetime, and vector fields E and B representing the electric and
magnetic fields, all of which satisfy the constraint equations

16πμEM = R + (Trgk)2 − |k|2g − 2(|E|2g + |B|2g),
8πJEM = divg(k − (Trgk)g) + 2E × B,

divgE = divgB = 0.

(1.1)
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Here, μEM and JEM are the energy and momentum densities of the matter
fields after the contributions from the electromagnetic field have been removed,
R is the scalar curvature of g, and (E × B)i = εijlE

jBl is the cross product
with ε the volume form of g. Note that, the last equation of (1.1) indicates the
absence of charged matter. The following inequality will be referred to as the
charged dominant energy condition

μEM ≥ |JEM |g. (1.2)

Suppose that M has at least two ends, with one designated end being
asymptotically flat, and the remainder being either asymptotically flat or
asymptotically cylindrical. Recall that a domain Mend ⊂ M is an asymp-
totically flat end if it is diffeomorphic to R

3\Ball, and in the coordinates given
by the asymptotic diffeomorphism the following fall-off conditions hold

gij = δij + ol(r− 1
2 ), ∂gij ∈ L2(Mend), kij = Ol−1(r−λ), λ >

5
2
, (1.3)

Ei = Ol−1(r−2), Bi = Ol−1(r−2), (1.4)

for some l ≥ 5.1 In the context of the mass–angular momentum–charge inequal-
ity, these asymptotics may be weakened, see for example [23]. The asymptotics
for cylindrical ends is most easily described in Brill coordinates, to be given
in the next section.

We say that the initial data are axially symmetric if the group of isome-
tries of the Riemannian manifold (M, g) has a subgroup isomorphic to U(1),
and that the remaining quantities defining the initial data are invariant under
the U(1) action. In particular, if η denotes the Killing field associated with
this symmetry, then

Lηg = Lηk = LηE = LηB = 0, (1.5)

where Lη denotes Lie differentiation. If M is simply connected and the data
are axially symmetric, it is shown in [7] that the analysis reduces to the study
of manifolds of the form M � R

3\ ∑N
n=1 in, where in are points in R

3 and
represent asymptotic ends (in total there are N + 1 ends). Moreover, there
exists a global (cylindrical) Brill coordinate system on M , where the points in
all lie on the z-axis. Each point represents a black hole, and has the geometry
of an asymptotically flat or cylindrical end. The fall-off conditions in the des-
ignated asymptotically flat end guarantee that the ADM mass, ADM angular
momentum, and total charges are well-defined by the following limits

m =
1

16π

∫

S∞
(gij,i − gii,j)νj , (1.6)

J =
1
8π

∫

S∞
(kij − (Trgk)gij)νiηj , (1.7)

qe =
1
4π

∫

S∞
Eiν

i, qb =
1
4π

∫

S∞
Biν

i, (1.8)

1 The notation f = ol(r
−a) asserts that limr→∞ ra+n∂nf = 0 for all n ≤ l, and f = Ol(r

−a)
asserts that ra+n|∂nf | ≤ C for all n ≤ l. The assumption l ≥ 5 is needed for the results in
[7].
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where S∞ indicates the limit as r → ∞ of integrals over coordinate spheres
Sr, with unit outer normal ν. Here, qe and qb denote the total electric and
magnetic charge, respectively, and we denote the square of the total charge
by q2 = q2e + q2b . Note that, (1.3) implies that the ADM linear momentum
vanishes.

In the presence of an electromagnetic field, angular momentum is con-
served [14,15] if

J i
EMηi = 0. (1.9)

It is also well-known that angular momentum is conserved if J iηi = 0, where
J = JEM − 2E × B is the full momentum density. However, this condition
imposes constraints on the angular momentum density of the electromagnetic
field, which suggests that it is an undesirable condition in the current setting.
Moreover, when M is simply connected, (1.9) is a necessary and sufficient
condition [15] for the existence of a charged twist potential ω:

εijl(πja + 2γja)ηlηadxi = dω (1.10)

where

πja = kja − (Trgk)gja, γja = εcbaEcε pb
j

�Ap, (1.11)

and �A is a vector potential such that B = ∇ × �A. However, note that the
topology of M does not allow for a globally defined (smooth) vector potential.
The typical construction which avoids this difficulty involves removing a ‘Dirac
string’ associated with each point in. That is, removing from M either the
portion of the z-axis below or above in, to obtain a (U(1) invariant) potential
�An

±, defined on the complement of the respective Dirac string. We then define

�A =
1

2N

N∑

n=1

( �An
+ + �An

−) on R
3\{z-axis}. (1.12)

Although �A is discontinuous on the z-axis, quantities of the form �A · η remain
well behaved since η vanishes on the z-axis. Nevertheless, the awkward defin-
ition makes working with �A somewhat cumbersome. Fortunately, there is an
alternate expression for the twist potential which avoids the use of �A [8,12],
but in general requires reference to an axisymmetric spacetime as opposed to
the initial data alone. This is justified, since in electrovacuum the existence
of an axisymmetric evolution of the initial data follows from its smoothness
[5,6]. For our purposes, however, reference to the spacetime can be avoided
since the alternate expression may be computed solely from the initial data
(see Lemma 4.1, and Appendix B).

Let In denote the interval of the z-axis between in+1 and in, where i0 =
−∞ and iN+1 = ∞. Then, a basic formula (Appendix B) yields the angular
momentum for each black hole

Jn =
1
4
(ω|In − ω|In−1), (1.13)

Author's personal copy



2884 Y. S. Cha and M. A. Khuri Ann. Henri Poincaré

and conservation of angular momentum shows that the total angular momen-
tum is given by

J =
N∑

n=1

Jn. (1.14)

The same heuristic physical argument [4,14] motivating the mass–angular
momentum inequality, leads to the conjectured mass–angular momentum–
charge inequality

m2 ≥ q2 +
√

q4 + 4J 2

2
, (1.15)

whenever there is conservation of angular momentum and charge. In the cur-
rent setting, such conservation is valid due to the assumptions of axisymmetry,
(1.9), and absence of charged matter (1.1). This heuristic derivation is based
on the standard picture of gravitational collapse [5,9]. Thus a counterexam-
ple to (1.15) would pose serious issues for this model, whereas a verification
of (1.15) would only lend it, and in particular weak cosmic censorship, more
credence. Inequality (1.15) has been established by Chruściel and Costa [8,12]
for electrovacuum initial data under the assumption of simple connectivity,
axisymmetry, and maximality (Trgk = 0). Under the same hypotheses, Schoen
and Zhou [23] relaxed the asymptotics and gave a simplified proof which pro-
duced a more detailed lower bound. Their argument also proved the expected
rigidity statement, namely, that equality occurs if and only if the initial data
arise as the t = 0 slice of the extreme Kerr–Newman spacetime.

The purpose of this paper is to generalize the results of [4] to include
charge, and so the focus here is on the general case without the maximal
hypothesis. We also weaken the electrovacuum assumption, and replace it with
the charged dominant energy condition (1.2), and (1.9). The presumption of
simple connectivity and axisymmetry will be maintained; it should be noted
that such results are false without the assumption of axial symmetry [18]. In
the main result, we exhibit a reduction argument by which the general case
is reduced to the maximal case, assuming that a canonical system of elliptic
PDEs possesses a solution. The procedure is modeled on previous reduction
arguments that have been applied to other geometric inequalities such as the
positive mass theorem and the Penrose inequality [1,2,16,19–22,24]. Moreover,
the primary equation is related to the Jang-type equations that appear in each
of these procedures. The end result yields a natural deformation of the initial
data, in which the geometry relevant to the mass–angular momentum–charge
inequality is preserved, while achieving the maximal condition.

This paper is organized as follows. In the next section, we describe the
deformation of (M, g, k) in detail, while in Sect. 3 the deformation of (E,B) will
be constructed. In Sect. 4, the reduction argument is established and the case
of equality is treated. Section 5 contains two applications of the deformation
procedure, one to the basic inequality yielding a lower bound for the area of
black holes in terms of mass, angular momentum, and charge, and another
to a weakening of the hypotheses typically assumed in the maximal case of

Author's personal copy
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the mass–angular momentum–charge inequality. Lastly, three appendices are
included to record several important but lengthy calculations.

2. Deformation of the Metric and Second Fundamental Form

Simple connectivity and axial symmetry imply [7] that M ∼= R
3\ ∑N

n=1 in, and
that there exists a global (cylindrical) Brill coordinate system (ρ, φ, z) on M ,
where the points in all lie on the z-axis, and in which the Killing field is given
by η = ∂φ. In these coordinates, the metric takes a simple form

g = e−2U+2α(dρ2 + dz2) + ρ2e−2U (dφ + Aρdρ + Azdz)2, (2.1)

where ρe−U (dφ+Aρdρ+Azdz) is the dual 1-form to |η|−1η and all coefficient
functions are independent of φ. Let M0

end denote the end associated with limit
r =

√
ρ2 + z2 → ∞. To achieve the asymptotically flat fall-off conditions (1.3),

it will be assumed that

U = ol−3(r− 1
2 ), α = ol−4(r− 1

2 ), Aρ, Az = ol−3(r− 3
2 ). (2.2)

The remaining ends associated with the points in will be denoted by Mn
end,

and are associated with the limit rn → 0, where rn is the Euclidean distance
to in. The asymptotics for asymptotically flat and cylindrical ends are given,
respectively, by

U = 2 log rn + ol−4(r
1
2
n ), α = ol−4(r

1
2
n ), Aρ, Az = ol−3(r

3
2
n ), (2.3)

U = log rn + ol−4(r
1
2
n ), α = ol−4(r

1
2
n ), Aρ, Az = ol−3(r

3
2
n ). (2.4)

Based on (1.3) and (1.4), the corresponding asymptotics for the electromag-
netic field and second fundamental form in Brill coordinates are

Ei = Ol(1), Eφ = Ol(rn), Bi = Ol(1), Bφ = Ol(rn), i = ρ, z, (2.5)

Ei = Ol(r−1
n ), Eφ = Ol(1), Bi = Ol(r−1

n ), Bφ = Ol(1), i = ρ, z, (2.6)

and

kρρ, kρz, kzz = Ol(rλ−4
n ), kρφ, kzφ = Ol(rλ−3

n ), kφφ = Ol(rλ−2
n ), (2.7)

kρρ, kρz, kzz = Ol(rλ−5
n ), kρφ, kzφ = Ol(rλ−4

n ), kφφ = Ol(rλ−3
n ). (2.8)

It will also be assumed that the charged dominant energy condition and the
following equation, which is equivalent to (1.9), are satisfied

divgk(η) + 2E × B(η) = 0. (2.9)

We seek a deformation of the initial data (M, g, k,E,B) → (M, g, k,E,B)
such that the manifolds are diffeomorphic M ∼= M , the geometry of the ends
is preserved, and

m = m, J = J , T rgk = 0, R ≥ |k|2g + 2(|E|2g + |B|2g) weakly, (2.10)

divgE = divgB = 0, JEM (η) = 0, qe = qe, qb = qb, (2.11)
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where m, J , JEM , qe, qb, and R are the mass, angular momentum, momen-
tum density minus the electromagnetic contribution, charges, and scalar cur-
vature of the new data. The inequality in (2.10) is said to hold ‘weakly’ if
it is valid when integrated against an appropriate test function. The valid-
ity of this inequality plays a central role in the proof of the mass–angular
momentum–charge inequality in the maximal case, and it is precisely the lack
of this inequality in the non-maximal case which prevents the proof from gen-
eralizing. Thus, one of the central goals of the deformation is to obtain such a
lower bound for the scalar curvature, while preserving all other aspects of the
geometry.

The deformation of the metric and second fundamental form is based
on that of [4], and only requires minor modifications. We include the relevant
details here, but refer to [4] for the necessary proofs. Using intuition from
previous work [1,2,24], it is natural to search for a deformation in the form of
a graph inside a stationary 4-manifold

M = {t = f(x)} ⊂ (M × R, g + 2Yidxidt + ϕdt2), (2.12)

where the 1-form Y = Yidxi and functions ϕ and f are defined on M and
satisfy

Lηf = Lηϕ = LηY = 0. (2.13)
Set

gij = gij + fiYj + fjYi + ϕfifj , kij =
1
2u

(∇iYj + ∇jYi), (2.14)

where fi = ∂if , ∇ is the Levi–Civita connection with respect to g, and

u2 = ϕ + |Y |2g. (2.15)

In the ‘Riemannian’ setting (2.12), g arises as the induced metric on the graph
M , and in the ‘Lorentzian’ setting

M = {t = f(x)} ⊂ (M × R, g − 2Yidxidt − ϕdt2), (2.16)

the deformed data arise as the induced metric and second fundamental form
of the t = 0 slice. Observe that

∂t = un − Y , (2.17)

where n is the unit normal to the t = 0 slice and Y is the vector field dual
to Y with respect to g. It follows that (u,−Y ) are the lapse and shift of this
stationary spacetime.

Considering the structure of the Kerr–Newman spacetime, we are led to
make the following simplifying assumption that Y has only one component

Y
i
∂i := gijYj∂i = Y φ∂φ. (2.18)

This basic hypothesis ensures that (see [4]) g is a Riemannian metric, Trgk =
0, ϕ = u2 − gφφ(Y φ)2, and if {ei}3i=1 is an orthonormal frame for g with
e3 = |η|−1η, then

k(ei, ej) = k(e3, e3) = 0, k(ei, e3) =
|η|
2u

ei(Y φ), i, j 
= 3. (2.19)

Author's personal copy



Vol. 16 (2015) Deformations of Charged Axially Symmetric Initial Data 2887

The deformed data set is then maximal, satisfying one requirement of (2.10).
Moreover, this shows that ϕ is determined by the functions u and Y φ. Hence,
the three functions (u, Y φ, f) completely determine the new metric and second
fundamental form, and will now be chosen to satisfy the remaining statements
in (2.10). In order that the techniques from the maximal case remain applica-
ble, the existence of a charged twist potential for (M, g, k,E,B) is needed.
Thus, we require

divgk(η) + 2E × B(η) = 0. (2.20)
This turns out to be a linear elliptic equation for Y φ (if u is independent of
Y φ); this follows from Appendix B in [4] and Sect. 3 below. From [4], we also
deduce that the function Y φ is uniquely determined among bounded solutions
of (2.20), if the r−3-fall-off rate is prescribed at M0

end. Hence, we will choose
the following boundary condition

Y φ = −2J
r3

+ o2(r− 7
2 ) as r → ∞. (2.21)

As in Lemma 2.2 of [4], this guarantees that J = J if g is asymptotically flat
and u → 1 as r → ∞.

Now, let us show how to choose f . As with previous deformations asso-
ciated with the positive mass theorem and Penrose inequality, f is chosen to
impart positivity properties to the scalar curvature. In this regard, it is useful
to calculate the scalar curvature for an arbitrary f .

Theorem 2.1. Let Ẽ and B̃ be arbitrary vector fields on M , such that
Ẽ × B̃(η) = E × B(η), and with the associated matter and momentum densi-
ties μ̃EM and J̃EM . Suppose that (1.5), (2.9), (2.13), (2.18), and (2.20) are
satisfied, then the scalar curvature of g is given by

R − |k|2g − 2(|E|2g + |B|2g) = 16π(μ̃EM − J̃EM (v)) + |k − π|2g + 2u−1divg(uQ)

+ (Trgπ)2 − (Trgk)2 + 2v(Trgπ − Trgk)

+ 2(|Ẽ|2g + |B̃|2g + 2Ẽ × B̃(v) − |E|2g − |B|2g)

+ 4u−1Y φ

⎛

⎝ Ẽ × B̃(η)
√

1 + u2|∇f |2g
− E × B(η)

⎞

⎠ , (2.22)

where

πij =
u∇ijf + uifj + ujfi + 1

2u (giφY φ
,j + gjφY φ

,i )
√

1 + u2|∇f |2g
(2.23)

is the second fundamental form of the graph M in the Lorentzian setting,

vi =
uf i

√
1 + u2|∇f |2g

, wi =
uf i + u−1Y

i

√
1 + u2|∇f |2g

, (2.24)

Qi = Y
j∇ijf− ugjlflkij +wj(k− π)ij +ufiw

lwj(k−π)lj

√
1+u2|∇f |2g,

(2.25)
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and fi = ∂if , f i = gijfj. Furthermore, if Y ≡ 0 then the same conclusion
holds without any of the listed hypotheses.

Proof. In Appendix A of [4] it is shown that

R − |k|2g = 16π(μ − J(v)) + |k − π|2g +
2
u

divg(uQ)

+ (Trgπ)2 − (Trgk)2 + 2v(Trgπ − Trgk)

− 2
u

⎛

⎝ divgk(Y φη)
√

1 + u2|∇f |2g
− divgk(Y φη)

⎞

⎠ , (2.26)

where μ and J are the full matter and momentum densities. Since

16πμ = 16πμ̃EM + 2(|Ẽ|2g + |B̃|2g), 8πJ = 8πJ̃EM − 2Ẽ × B̃, (2.27)

and

divgk(η) = −2E × B(η) = −2Ẽ × B̃(η), divgk(η) = −2E × B(η), (2.28)

the desired result follows. �

In the next section, the deformation of the electromagnetic field will be
described and will consist of two steps, namely (E,B) → (Ẽ, B̃) and (Ẽ, B̃) →
(E,B). Moreover, the deformation will be chosen so that the charged dominant
energy condition with respect to (Ẽ, B̃) follows from (1.2), and

|E|2g + |B|2g = |Ẽ|2g + |B̃|2g + 2Ẽ × B̃(v), (2.29)

E × B(η) =
Ẽ × B̃(η)

√
1 + u2|∇f |2g

. (2.30)

Thus, this theorem makes it clear that to obtain the inequality in (2.10) at
least weakly, f should be chosen to solve the equation

Trg(π − k) = 0. (2.31)

It follows that

R − |k|2g − 2(|E|2g + |B|2g) = 16π(μ̃EM − J̃EM (v)) + |k − π|2g + 2u−1divg(uQ),
(2.32)

which yields the desired weak inequality after multiplying by u and applying
the divergence theorem; it is assumed that appropriate asymptotic conditions
are imposed (see below) to ensure that the boundary integrals vanish in each
of the ends. Equation (2.30) is the same equation which played a central role in
[4], and is similar to previous Jang-type equations utilized in connection with
the positive mass theorem [24] and the Penrose inequality [2]. As discussed in
[4], one primary difference, however, is that solutions of (2.31) do not blow-
up, while solutions of (2.32) typically blow-up at apparent horizons or can be
prescribed to blow-up at these surfaces [17]. Lastly, to ensure that m = m, we
will impose the following asymptotics

|f | + r|∇f |g + r2|∇2f |g ≤ cr−ε in M0
end, (2.33)
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for some 0 < ε < 1. It is shown in [4] that a bounded solution exists (given u)
by prescribing the following asymptotics at the remaining ends

r−1
n |∇f |g + r−2

n |∇2f |g ≤ c in asymptotically flat Mn
end, (2.34)

|∇f |g + |∇2f |g ≤ cr
1
2
n in asymptotically cylindrical Mn

end. (2.35)

We have now shown how to choose f and Y , to produce a deformation
of the metric and second fundamental form which satisfies (2.10), assuming
that the deformation of the electromagnetic field (given in the next section)
is chosen appropriately. It will then remain to choose u, in such a way as to
facilitate a proof of the mass–angular momentum–charge inequality. This shall
be accomplished in Sect. 4.

3. Deformation of the Electric and Magnetic Fields

The deformation of the Maxwell field will be chosen to satisfy (2.11), (2.29),
and (2.30) and will consist of two steps. Motivation for the definition comes
from the case of equality in (1.15). In this case, the Lorentzian manifold (2.16)
should be the extreme Kerr–Newman spacetime, and the graph M = {t =
f(x)} should give the desired embedding of the initial data. Thus, (E,B)
must be the Maxwell field of the extreme Kerr–Newman solution induced on
the t = 0 slice. This field satisfies

E(η) = B(η) = 0. (3.1)

It turns out that condition (3.1) is also highly important for establishing (2.11),
(2.29), and (2.30). On the other hand (E,B) should arise as the induced
Maxwell field on the graph from the field strength tensor associated with
(E,B) (see below). This yields a relation in which (E,B) is expressed in terms
of (E,B). Unfortunately, however, the relation is not consistent with (3.1)
unless (E,B) satisfies a certain condition (3.5) a priori (the condition (3.5)
is of course valid in the extreme Kerr–Newman setting). This suggests that
an initial deformation (E,B) → (Ẽ, B̃) should be performed to achieve (3.5),
before expressing (E,B) in terms of (Ẽ, B̃) through the field strength relation.

We now describe the initial deformation (E,B) → (Ẽ, B̃). Let

e1 = eU−α(∂ρ − Aρ∂φ), e2 = eU−α(∂z − Az∂φ), e3 =
1√
gφφ

∂φ, (3.2)

be an orthonormal frame for (M, g). Then set

Ẽ(ei) = E(ei), B̃(ei) = B(ei) for i = 1, 2, (3.3)

Ẽ(e3) = v × B(e3), B̃(e3) = −v × E(e3), (3.4)

where v is given in (2.24). Notice that (Ẽ, B̃) agrees with (E,B) except in
the φ-component. In particular, since v(e3) = 0 the expressions v × B(e3) and
v × E(e3) are independent of E(e3) and B(e3), and hence

Ẽ(e3) = v × B̃(e3), B̃(e3) = −v × Ẽ(e3). (3.5)
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As will be shown in Lemma 3.2 below, this condition is precisely what is needed
to ensure that (3.1) is valid. But, first let us record the properties of this initial
deformation.

Lemma 3.1. If (1.4), (1.5), and (2.13) hold, then

q̃e = qe, q̃b = qb, (3.6)

divgẼ = divgE, divgB̃ = divgB, (3.7)

J̃EM (η) = JEM (η), Ẽ × B̃(η) = E × B(η), (3.8)

8π(μ̃EM − J̃EM (v)) − 8π(μEM − JEM (v))

= (E(e3) − Ẽ(e3))2 + (B(e3) − B̃(e3))2. (3.9)

Proof. Recall the expression for qe in (1.8). The normal derivative is given by
ν = |∂r|−1∂r, where ∂r = sin θ∂ρ +cos θ∂z arises from the change of cylindrical
to spherical coordinates ρ = r sin θ, z = r cos θ. In particular, ν does not have
a φ-component so that Ẽ · ν = E · ν and B̃ · ν = B · ν. It follows that q̃e = qe

and q̃b = qb.
Next, observe that (1.5) implies

divgE =
3∑

i=1

g(∇ei
E, ei)

=
3∑

i=1

ei[E(ei)] − g(E,∇ei
ei)

=
2∑

i=1

ei[E(ei)] −
3∑

i=1

2∑

j=1

g(ej ,∇ei
ei)E(ej), (3.10)

since

g(eφ,∇ei
ei) = −|η|−1g(∇ei

η, ei) = 0 (3.11)

as η is a Killing field. This shows that divgE may be computed independent of
E(e3), and the same holds for divgẼ. Identities (3.7) now follow, since (E,B)
and (Ẽ, B̃) agree except in the φ-component. This level of agreement also
yields

8π(JEM (η) − J̃EM (η)) = 2E × B(η) − 2Ẽ × B̃(η) = 0. (3.12)

Lastly, a direct computation using v(e3) = 0 produces (3.9). Namely

8π(μ̃EM − J̃EM (v)) − 8π(μEM − JEM (v))

= |E|2g + |B|2g + 2E × B(v) − |Ẽ|2g − |B̃|2g − 2Ẽ × B̃(v)

= E(e3)2 + B(e3)2 − Ẽ(e3)2 − B̃(e3)2

+ 2[v(e1)(E(e2)B(e3) − E(e3)B(e2)) + v(e2)(E(e3)B(e1) − E(e1)B(e3))]

− 2[v(e1)(Ẽ(e2)B̃(e3) − Ẽ(e3)B̃(e2)) + v(e2)(Ẽ(e3)B̃(e1) − Ẽ(e1)B̃(e3))]

= E(e3)2 + B(e3)2 − Ẽ(e3)2 − B̃(e3)2
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+ 2[E(e3)(v(e2)B(e1) − v(e1)B(e2)) + B(e3)(v(e1)E(e2) − v(e2)E(e1))]

− 2[Ẽ(e3)(v(e2)B(e1) − v(e1)B(e2)) + B̃(e3)(v(e1)E(e2) − v(e2)E(e1))]

= E(e3)2 + B(e3)2 − Ẽ(e3)2 − B̃(e3)2 − 2(E(e3)Ẽ(e3) + B(e3)Ẽ(e3))

+ 2(Ẽ(e3)2 + B̃(e3)2)

= (E(e3) − Ẽ(e3))2 + (B(e3) − B̃(e3))2. (3.13)

�

This lemma shows that the initial deformation preserves all relevant
quantities and the charged dominant energy condition. Moreover, it satisfies
the relation (3.5), which will be shown to guarantee the important property
(3.1). To see this, we must now define the second step in the deformation
(Ẽ, B̃) → (E,B).

Assuming that the functions (u, Y φ, f) are chosen to possess the appropri-
ate asymptotics, the geometry of the ends will be preserved in the deformation.
Since the deformed data are also simply connected and axially symmetric, the
results of [7] apply to yield a global Brill coordinate system (ρ, z, φ) such that

g = e−2U+2α(dρ2 + dz2) + ρ2e−2U (dφ + Aρdρ + Azdz)2. (3.14)

Let

e1 = eU−α(∂ρ − Aρ∂φ), e2 = eU−α(∂z − Az∂φ),

e3 =
1

√
gφφ

∂φ =
1√
gφφ

∂φ = e3, (3.15)

be the corresponding orthonormal frame, where gφφ = gφφ follows from (2.13),
and let

θ
1

= e−U+αdρ, θ
2

= e−U+αdz, θ
3

= ρe−U (dφ + +Aρdρ + Azdz) (3.16)

be the dual co-frame. Consider the field strength tensor

F =
1
2
F abdxa ∧ dxb (3.17)

on the spacetime (M × R, g − 2Yidxidt − ϕdt2), such that

F (ei, n) = Ei, F (ei, ej) = εijlB
l
, i, j, l = 1, 2, 3, (3.18)

with ε the volume form of g, and n = u−1(∂t +Y ) the unit normal of the t = 0
slice. Here, indices are raised and lowered with respect to g, and

E =
3∑

i=1

E
i
ei, B =

3∑

i=1

B
i
ei. (3.19)

Thus, (E,B) arise as the induced electric and magnetic field on the t = 0 slice,
and with respect to the basis {n, ei} we have
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F = (F ij) =

⎛

⎜
⎜
⎝

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎞

⎟
⎟
⎠ . (3.20)

The field strength F will be defined from the given fields (Ẽ, B̃) in the
following way. Let

N =
u∇f + n

√
1 − u2|∇f |2g

, Xi = ei + ei(f)∂t, i = 1, 2, 3, (3.21)

be the unit normal and a basis of tangent vectors for the graph (M = {t =
f(x)}, g, π) sitting inside the spacetime, where ∇i

f = gijfj . Then set

F (Xi, N) = Ẽi, F (Xi,Xj) = εijlB̃
l, i, j, l = 1, 2, 3. (3.22)

Here, indices are raised and lowered with respect to g, and

Ẽ =
3∑

i=1

Ẽiei, B̃ =
3∑

i=1

B̃iei. (3.23)

Thus, (Ẽ, B̃) arise as the induced electric and magnetic field on the graph
(M = {t = f(x)}, g, π). The Eqs. (3.18) and (3.22) yield relations between
(E,B) and (Ẽ, B̃), which we now describe.

Lemma 3.2. For i = 1, 2,

E
i
=

Ẽi

√
1 + u2|∇f |2g

−
√

1 + u2|∇f |2g(v × (B̃ + v × Ẽ))i,

B
i
=

B̃i

√
1 + u2|∇f |2g

+
√

1 + u2|∇f |2g(v × (Ẽ − v × B̃))i,

E3 =
√

1 + u2|∇f |2g(Ẽ3 − v × B̃(e3)),

B3 =
√

1 + u2|∇f |2g(B̃3 + v × Ẽ(e3)).

(3.24)

Proof. Let gij = g(ei, ej), with gij components of the inverse matrix, and recall
[4] that

gij = gij − fiYj − fjYi − ϕfifj , gij = gij − u−2Y
i
Y

j
+ wiwj , (3.25)

where

wi =
ugijfj + u−1Y

i

√
1 − u2|∇f |2g

, u2 = ϕ + |Y |2g. (3.26)
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Then, a direct calculation yields

Ẽ1 = g1iF (Xi, N)

= (δ1i + w(θ
1
)w(θ

i
))F

⎛

⎝ei + ei(f)(un − Y ),
u∇f + n

√
1 − u2|∇f |2g

⎞

⎠

=
(δ1i + w(θ

1
)w(θ

i
))

√
1 − u2|∇f |2g

× [uej(f)F
j

i + Ei − ei(f)(u2E(∇f) + uej(f)Y (e3)F
j

3 + Y (e3)E3)]

=
E

1
+ ue2(f)B3√
1 − u2|∇f |2g

− e1(f)
√

1 − u2|∇f |2g
× (u2E(∇f) + uej(f)Y (e3)F

j

3 + Y (e3)E3)

+
u2e1(f)

(1 − u2|∇f |2g)3/2
((1 − u2|∇f |2g)E(∇f) − u|∇f |2gej(f)Y (e3)F

j

3

− |∇f |2gY (e3)E3)

+
e1(f)Y (e3)

(1 − u2|∇f |2g)3/2
(uej(f)F

j

3 + E3)

=
E

1
+ ue2(f)B3√
1 − u2|∇f |2g

. (3.27)

Likewise,

Ẽ2 =
E

2 − ue1(f)B3√
1 − u2|∇f |2g

. (3.28)

A similar computation yields the remaining component of Ẽ, namely

Ẽ3 = g3iF (Xi, N)

=

(

δ3i − |Y |2gδ3i

u2
+ w(θ

3
)w(θ

i
)

)

× F

⎛

⎝ei + ei(f)(un − Y ),
u∇f + n

√
1 − u2|∇f |2g

⎞

⎠

=
(1 − u−2|Y |2g)√

1 − u2|∇f |2g
(uej(f)F

3j
+ E

3
)

+
Y (e3)

(1 − u2|∇f |2g)3/2
((1 − u2|∇f |2g)E(∇f)

− |∇f |2g(uej(f)Y (e3)F
3j

+ Y (e3)E
3
))
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+
|Y |2g

u2(1 − u2|∇f |2g)3/2
(uej(f)F

3j
+ E

3
)

=
E

3
+ u(e1(f)B2 − e2(f)B1) + Y (e3)E(∇f)

√
1 − u2|∇f |2g

. (3.29)

We will now compute each component of B̃. Recall that ε and ε are
the volume forms of g and g, respectively, which satisfy the following relation
(Lemma 2.1 of [4])

ε =
√

1 − u2|∇f |2g ε. (3.30)

Therefore,

B̃1 =
F (X2,X3)√
1 − u2|∇f |2g

=
F (e2 + e2(f)(un − Y ), e3)√

1 − u2|∇f |2g
=

B
1 − ue2(f)E3√
1 − u2|∇f |2g

, (3.31)

B̃2 =
F (X3,X1)√
1 − u2|∇f |2g

=
F (e3, e1 + e1(f)(un − Y ))

√
1 − u2|∇f |2g

=
B

2
+ ue1(f)E3√
1 − u2|∇f |2g

,

(3.32)

and

B̃3 =
F (X1,X2)√
1 − u2|∇f |2g

=
1

√
1 − u2|∇f |2g

F (e1 + e1(f)(un − Y ), e2 + e2(f)(un − Y ))

=
1

√
1 − u2|∇f |2g

(B
3

+ Y (e3)B(∇f) + u(e2(f)E1 − e1(f)E2)). (3.33)

We will now solve for (E,B) in terms of (Ẽ, B̃). To do this, the following
identities, derived from (3.27)–(3.29) and (3.31)–(3.33), will be used:

Ẽ(∇f) = Ẽ1e1(f) + Ẽ2e2(f) =
E(∇f)

√
1 − u2|∇f |2g

, (3.34)

B̃(∇f) = B̃1e1(f) + B̃2e2(f) =
B(∇f)

√
1 − u2|∇f |2g

, (3.35)

(∇f × Ẽ)(e3) = εij3f
iẼj

=
√

1 − u2|∇f |2g εij3

(
∇f + |∇f |2gY
1 − u2|∇f |2g

)i

Ẽj

=
(∇f × E)(e3) − u|∇f |2gB3

1 − u2|∇f |2g
, (3.36)
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and similarly

(∇f × B̃)(e3) = εij3f
iB̃j =

(∇f × B)(e3) + u|∇f |2gE3

1 − u2|∇f |2g
. (3.37)

Consider the third component of (Ẽ, B̃). By substituting the identities above
and utilizing e3 = e3, the definition of v (2.24), as well as

(1 + u2|∇f |2g)(1 − u2|∇f |2g) = 1 (3.38)

from Lemma 2.1 of [4], we obtain

Ẽ3 = Ẽigi3 = Ẽi(δi3 − ei(f)Y (e3))

= Ẽ3 − Ẽ(∇f)Y (e3)

=
E

3
+ u(e1(f)B2 − e2(f)B1)√

1 − u2|∇f |2g

=
E3 + u[(1 − u2|∇f |2g)∇f × B̃(e3) − u|∇f |2gE3]

√
1 − u2|∇f |2g

=
√

1 − u2|∇f |2g E3 + v × B̃(e3), (3.39)

and likewise

B̃3 =
√

1 − u2|∇f |2g B3 − v × Ẽ(e3). (3.40)

Therefore,

E3 =
√

1 + u2|∇f |2g(Ẽ3 − v × B̃(e3)), (3.41)

B3 =
√

1 + u2|∇f |2g(B̃3 + v × Ẽ(e3)). (3.42)

Next, notice that for any vector field Z on (M, g)

(v × Z)1 = εijlg
1ivjZl

= εijl(δ1i + w(θ
1
)w(θ

i
))(u∇j

f + u|∇f |2gY
j
)Zl

= ue2(f)(Z3 − Y (e3)Z(∇f))

= ue2(f)Z3, (3.43)

and similarly
(v × Z)2 = −ue1(f)Z3. (3.44)

Hence, we may solve for E
1

from (3.27) by employing (3.42) and (3.43)

E
1

= Ẽ1
√

1 − u2|∇f |2g − ue2(f)B3

=
Ẽ1

√
1 + u2|∇f |2g

−
√

1 + u2|∇f |2g ue2(f)(B̃3 + v × Ẽ(e3))
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=
E1

√
1 + u2|∇f |2g

−
√

1 + u2|∇f |2g(v × (B̃ + v × Ẽ)))1. (3.45)

Analogous considerations lead to the remaining formulas of (3.24). �

Remark 3.3. Lemmas 3.1 and 3.2 imply that

qe = q̃e = qe, qb = q̃b = qb, (3.46)

when (Y φ, f) satisfy the asymptotic conditions described in Sect. 2, and u
remains bounded. Moreover, Lemma 3.2, (3.30), (3.38), and the anti-symmetry
of cross products yield (2.30).

Together (3.5) and (3.24) show that the deformed electromagnetic field
vanishes in the η-direction (3.1). This condition is instrumental in establishing
(2.29), which is needed to impart the desired positivity property to the scalar
curvature.

Lemma 3.4. If (3.1) holds, then

|E|2g + |B|2g = |Ẽ|2g + |B̃|2g + 2Ẽ × B̃(v). (3.47)

Proof. Using Lemma 3.2 and the notation contained in its proof, we find that

|Ẽ|2g = ẼiẼjgij

= ẼiẼj(δij − ϕei(f)ej(f) − Y (ei)ej(f) − Y (ej)ei(f))

= (Ẽi)2 − ϕ(Ẽiei(f))2 − 2Ẽ3Y (e3)(Ẽiei(f))

=
1

1 − u2|∇f |2g
((E

1
+ ue2(f)B3)2 + (E

2 − ue1(f)B3)2)

+
1

1 − u2|∇f |2g
(E

3
+ u(e1(f)B2 − e2(f)B1) + Y (e3)E(∇f))2

− ϕE(∇f)2

1 − u2|∇f |2g
− 2Y (e3)E(∇f)

1 − u2|∇f |2g
× (E

3
+ u(e1(f)B2 − e2(f)B1) + Y (e3)E(∇f))

=
1

1 − u2|∇f |2g
((E

1
+ ue2(f)B3)2 + (E

2 − ue1(f)B3)2)

+
1

1 − u2|∇f |2g
(E

3
+ u(e1(f)B2 − e2(f)B1))2 − u2E(∇f)2

1 − u2|∇f |2g
.

(3.48)

Similarly,

|B̃|2g =
1

1 − u2|∇f |2g
((B

1 − ue2(f)E3)2 + (B
2

+ ue1(f)E3)2)

+
1

1 − u2|∇f |2g
(B

3
+ u(e2(f)E1 − e1(f)E2))2 − u2B(∇f)2

1 − u2|∇f |2g
. (3.49)
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Next, observe the identity

v =
u∇f

√
1 + u2|∇f |2g

=
u∇f + u|∇f |2gY√

1 − u2|∇f |2g
, (3.50)

so that

Ẽ × B̃(v)

= εijlẼ
iB̃jvl

=
√

1 − u2|∇f |2g(v1(Ẽ2B̃3 − Ẽ3B̃2) + v2(Ẽ3B̃1 − Ẽ1B̃3)

+ v3(Ẽ1B̃2 − Ẽ2B̃1))

=
√

1 − u2|∇f |2g(v3(Ẽ1B̃2 − Ẽ2B̃1) + Ẽ3(v2B̃1 − v1B̃2)

+ B̃3(v1Ẽ2 − v2Ẽ1))

=
u|∇f |2Y (e3)
1 − u2|∇f |2g

(E
1
B

2 − B
1
E

2
+ uE(∇f)E3 + uB(∇f)B3)

− (E
3

+ Y (e3)E(∇f) + u(e1(f)B2 − e2(f)B1))
1 − u2|∇f |2g

× (u(e1(f)B2 − e2(f)B1) + u2|∇f |2gE3)

− (B
3

+ Y (e3)B(∇f) + u(e2(f)E1 − e1(f)E2))
1 − u2|∇f |2g

× (u(e2(f)E1 − e1(f)E2) + u2|∇f |2gB3)

= − (E
3

+ u(e1(f)B2 − e2(f)B1))2

1 − u2|∇f |2g
− (B

3
+ u(e2(f)E1 − e1(f)E2))2

1 − u2|∇f |2g
+ E

3
(E

3
+ u(e1(f)B2 − e2(f)B1)) + B

3
(B

3
+ u(e2(f)E1 − e1(f)E2)).

(3.51)

Then combining (3.48), (3.49), and (3.51) produces

|Ẽ|2g + |B̃|2g + 2Ẽ × B̃(v)

=
1

1 − u2|∇f |2g
((E

1
+ ue2(f)B3)2 + (E

2 − ue1(f)B3)2)

+
1

1 − u2|∇f |2g
((B

1 − ue2(f)E3)2 + (B
2

+ ue1(f)E3)2)

− u2E(∇f)2

1 − u2|∇f |2g
− u2B(∇f)2

1 − u2|∇f |2g

− (E
3

+ u(e1(f)B2 − e2(f)B1))2

1 − u2|∇f |2g
− (B

3
+ u(e2(f)E1 − e1(f)E2))2

1 − u2|∇f |2g
+ 2E

3
(E

3
+ u(e1(f)B2 − e2(f)B1)) + 2B

3
(B

3
+ u(e2(f)E1 − e1(f)E2))
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=
1

1 − u2|∇f |2g
((E

1
)2 + (E

2
)2 + (B

1
)2 + (B

2
)2)

− u2

1 − u2|∇f |2g
(E(∇f)2 + B(∇f)2 + (e1(f)B2 − e2(f)B1)2

+ (e2(f)E1 − e1(f)E2)2)

+ E
3
(E

3
+ 2u(e1(f)B2 − e2(f)B1)) + B

3
(B

3
+ 2u(e2(f)E1 − e1(f)E2))

= (E
1
)2 + (E

2
)2 + (B

1
)2 + (B

2
)2

+ E
3
(E

3
+ 2u(e1(f)B2 − e2(f)B1)) + B

3
(B

3
+ 2u(e2(f)E1 − e1(f)E2)).

(3.52)

The desired conclusion now follows from the assumption E(η) = B(η) = 0. �

We have now recorded enough properties of the deformed Maxwell field
to obtain the final form of the scalar curvature identity.

Corollary 3.5. Under the hypotheses of Theorem 2.1, together with (2.31), the
scalar curvature of g is given by

R − |k|2g − 2(|E|2g + |B|2g) = 16π(μEM − JEM (v)) + |k − π|2g + 2u−1divg(uQ)

+2(E(e3) − Ẽ(e3))2 + 2(B(e3) − B̃(e3))2. (3.53)

Proof. This follows directly from (2.32), Lemmas 3.1 and 3.4, and Remark 3.3.
�

Lastly, we show that the deformed Maxwell field preserves the divergence
free condition.

Lemma 3.6. If (3.1) holds, then

divgE =
divgẼ√

1 + u2|∇f |2g
=

divgE√
1 + u2|∇f |2g

,

divgB =
divgB̃√

1 + u2|∇f |2g
=

divgB√
1 + u2|∇f |2g

.

(3.54)

Proof. Note that the equalities relating the divergences of (Ẽ, B̃) and (E,B)
were already given in Lemma 3.1. Here we will compute the divergences of
(E,B) in terms of the divergences of (Ẽ, B̃). Two different proofs will be
given. The first proof, presented below, is based on conceptual understand-
ing, whereas the second proof is given in Appendix A and is based on direct
computations. In what follows i, j, l ∈ {1, 2, 3}, a, b ∈ {0, 1, 2, 3} and repeated
indices will be summed.

Define the 4-current as follows

Jb = ∇̃aF ab, (3.55)

Author's personal copy



Vol. 16 (2015) Deformations of Charged Axially Symmetric Initial Data 2899

where ∇̃ is the Levi-Civita connection for the metric g̃ = g − Yidxidt − ϕdt2

on the spacetime M × R. The relation between the 4-current and the electric
fields is given by

divgE = J(n), divgẼ = J(N). (3.56)

Therefore,

divgE = J(n) = J(
√

1 − u2|∇f |2g N) − J(u∇f)

=
√

1 − u2|∇f |2g divgẼ − J(u∇f). (3.57)

We will show that J(u∇f) = 0 whenever E(η) = B(η) = 0, by directly
computing J i. Observe that

J(ei) = ∇̃aF ai

= ej(F ji) + F (∇̃nn, ei) + F (n, ∇̃nei) − F (∇̃ejej , ei) − F (ej , ∇̃ejei)

= ej(F ji) − g(∇ej
ej , el)F li − g(∇ej

ei, el)F jl

− g̃(∇̃ej
ej , n)F 0i − g̃(∇̃ej

ei, n)F j0 + g̃(∇̃nn, ej)F ji + g̃(∇̃nei, ej)F 0j .
(3.58)

Recall that Trgk = 0, and that (2.19) the only nonzero components of k are
k(e3, ei), i = 1, 2. Thus

g̃(∇̃ejej , n) = −Trgk = 0, (3.59)

g̃(∇̃ej
ei, n) = −k(ej , ei) = −k(e3, ei)δj3, (3.60)

g̃(∇̃nn, ej) = −g̃(∇̃nej , n)

= − 1
u

g̃(∇̃∂t+Y ej , n)

= − 1
u

(g̃(∇̃ej (un − Y ), n) − k(ej , Y ))

= u−1ej(u), (3.61)

and

g̃(∇̃nei, ej) =
1
u

g̃(∇̃∂t+Y ei, ej)

=
1
u

g̃(∇̃ei
(un − Y ), ej) +

1
u

g̃(∇̃Y ei, ej)

= k(ei, e3)δ3j − u−1|η|ei(Y φ)δ3j , (3.62)

where in the last two equations the fact that ∂t is a Killing field was utilized.
Substituting these expressions into (3.58) produces

J(ei) = ej(F ji) − g(∇ej
ej , el)F li − g(∇ej

ei, el)F jl

+u−1ej(u)F ji − u−1|η|ei(Y φ)F 03. (3.63)

Note that e3 = |η|−1η, and so g(∇ej
ej , e3) = 0 by the Killing equation.

Hence
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J(e1) = e2(F 21) − g(∇ej
ej , e2)F 21 − (g(∇e1e1, e2)F 12 + g(∇e3e1, e2)F 32

+ g(∇e2e1, e3)F 23)

+ u−1e2(u)F 21 − u−1|η|e1(Y φ)F 03

= e2(F 21) − g(∇ej
ej , e2)F 21 − g(∇e1e1, e2)F 12 + u−1e2(u)F 21

− u−1|η|e1(Y φ)F 03, (3.64)

and

J(e2) = e1(F 12) − g(∇ej
ej , e1)F 12 − g(∇e2e2, e1)

× F 21 + u−1e1(u)F 12 − u−1|η|e2(Y φ)F 03. (3.65)

Therefore, J(e1) = J(e2) = 0 since E3 = B3 = 0, and in particular

J(∇f) = e1(f)J(e1) + e2(f)J(e2) = 0. (3.66)

This gives the desired result for the divergence of the electric fields.
An analogous procedure with F replaced by ∗F , where ∗ is the Hodge

star operator with respect to the metric g̃, yields the desired result for the
divergence of the magnetic fields. �

4. The Reduction Argument and Case of Equality

We will now follow the maximal case proof of the mass–angular momentum–
charge inequality, within the setting of the deformed initial data (M, g, k,E,B).
The main difficulty is a lack of the pointwise scalar curvature inequality as
appearing in (2.10). However, a judicious choice of u will overcome this prob-
lem. Before explaining this further, it is necessary to introduce the appropriate
potentials. In electrovacuum the existence of potentials is well-known, and the
proof relies on the full Maxwell equations, see for example [12,25]. In the cur-
rent setting, the initial data are not necessarily electrovacuum, and we do not
have knowledge of the full Maxwell equations, but rather just Gauss’s Law.
Nevertheless, the desired potentials still exist under our assumptions.

Lemma 4.1. Let {θ
0
, θ

i} be the dual co-frame to {n, ei}, and assume that
E(η) = B(η) = 0. Then

d(F (η, ·)) = |η|(divgB)θ
2 ∧ θ

1
, d(∗F (η, ·)) = |η|(divgE)θ

2 ∧ θ
1
. (4.1)

In particular, if (E,B) are divergence free, then there exist potentials for the
electromagnetic field such that

dψ = F (η, ·), dχ = ∗F (η, ·). (4.2)

Moreover,

d(k(η) × η − χdψ + ψdχ) = |η|(JEM (η) − χdivgB + ψdivgE)θ
2 ∧ θ

1
, (4.3)

so that if in addition JEM (η) = 0, then there exists a charged twist potential

dω = k(η) × η − χdψ + ψdχ. (4.4)
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Proof. In the given frame, the field strength and its Hodge dual take the form

F (η, ·) = |η|(E(e3)θ
0

+ B(e2)θ
1 − B(e1)θ

2
) = |η|(B(e2)θ

1 − B(e1)θ
2
),

∗F (η, ·) = |η|(B(e3)θ
0

+ E(e2)θ
1 − E(e1)θ

2
) = |η|(E(e2)θ

1 − E(e1)θ
2
),
(4.5)

since E(η) = B(η) = 0. A basic calculation shows that

dθ
1

= e2(log e−U+α)θ
2 ∧ θ

1
, dθ

2
= e1(log e−U+α)θ

1 ∧ θ
2
, (4.6)

dθ
3

= e1(log ρe−U )θ
1 ∧ θ

3
+ e2(log ρe−U )θ

2 ∧ θ
3

+ρeU−2α(Aρ,z − Az,ρ)θ
2 ∧ θ

1
. (4.7)

Then

d(∗F (η, ·)) =
2∑

i=1

(ei(|η|E(ei)) + ei(log e−U+α)|η|E(ei))θ
2 ∧ θ

1
. (4.8)

Since |η| = ρe−U and

divgE =
2∑

i=1

ei(E(ei)) −
3∑

i=1

2∑

j=1

g(∇eiei, ej)E(ej)

=
2∑

i=1

ei(E(ei)) +
2∑

j=1

ej(log ρe−2U+α)E(ej), (4.9)

the second equation in (4.1) follows. Similar computations yield the first equa-
tion in (4.1).

Next, recall [15] that

d(k(η) × η) = |η|divgk(η)θ
2 ∧ θ

1
. (4.10)

Furthermore, since

e1(ψ) = |η|B(e2), e2(ψ) = −|η|B(e1),

e1(χ) = |η|E(e2), e2(χ) = −|η|E(e1), (4.11)

we have

d([−χe1(ψ) + ψe1(χ)]θ
1

+ [−χe2(ψ) + ψe2(χ)]θ
2
)

= e2[−χe1(ψ) + ψe1(χ)]θ
2 ∧ θ

1

+ [−χe1(ψ) + ψe1(χ)]e2(log e−U+α)θ
2 ∧ θ

1

+ e1[−χe2(ψ) + ψe2(χ)]θ
1 ∧ θ

2

+ [−χe2(ψ) + ψe2(χ)]e1(log e−U+α)θ
1 ∧ θ

2

= 2|η|2(E(e1)B(e2) − E(e2)B(e1))θ
2 ∧ θ

1

− χ

2∑

i=1

[ei(|η|B(ei)) + |η|B(ei)ei(log e−U+α)]θ
2 ∧ θ

1
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+ ψ

2∑

i=1

[ei(|η|E(ei)) + |η|E(ei)ei(log e−U+α)]θ
2 ∧ θ

1

= |η|(2E × B(η) − χdivgB + ψdivgE)θ
2 ∧ θ

1
. (4.12)

Combining (4.10) and (4.12) yields (4.3).
Lastly, the potentials exist since M is simply connected. �

Remark 4.2. In Eq. (1.10), a seemingly different equation was used to define a
charged twist potential for the given initial data (M, g, k,E,B). Although this
equation appears to be different from (4.4), when both are applied to the data
(M, g, k,E,B), they coincide and realize the same result. This will be shown
in Appendix B.

We now show how to choose the remaining unknown in the description
of the deformed initial data, namely u. Recall that in Brill coordinates, the
mass may be expressed in a simple formula ([3,13])

m =
1

32π

∫

R3
(2e−2U+2α R + ρ2e−2α(Aρ,z − Az,ρ)2 + 4|∂U |2)dx, (4.13)

where |∂U | and dx denote the Euclidean norm and volume element. Let

M(U,ω, χ, ψ)

=
1
8π

∫

R3

(

|∂U |2 +
e4U

ρ4
|∂ω + χ∂ψ − ψ∂χ|2 +

e2U

ρ2
(|∂χ|2 + |∂ψ|2)

)

dx,

(4.14)

then the mass formula may be reexpressed as

m − M(U,ω, χ, ψ) =
1

32π

∫

R3
(2e−2U+2α R + ρ2e−2α(Aρ,z − Az,ρ)2)dx

− 1
8π

∫

R3

(
e4U

ρ4
|∂ω + χ∂ψ − ψ∂χ|2 +

e2U

ρ2
(|∂χ|2 + |∂ψ|2)

)

dx. (4.15)

The goal is to show that the right-hand side is nonnegative, by using the lower
bound for scalar curvature to dominate the terms on the second line. In this
regard, we record the following observation.

Lemma 4.3. Under the assumptions of Lemma 4.1 guaranteeing the existence
of potentials

|E|2g + |B|2g =
e4U−2α

ρ2
(|∂χ|2 + |∂ψ|2), |k|2g = 2

e6U−2α

ρ4
|∂ω + χ∂ψ − ψ∂χ|2.

(4.16)

Proof. A direct computation using (4.11) produces

|E|2g + |B|2g = E(e1)2 + E(e2)2 + B(e1)2 + B(e2)2

=
e2U

ρ2
(e1(χ)2 + e2(χ)2 + e1(ψ)2 + e2(ψ)2)
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=
e4U−2α

ρ2
[(∂ρχ)2 + (∂zχ)2 + (∂ρψ)2 + (∂zψ)2]

=
e4U−2α

ρ2
(|∂χ|2 + |∂ψ|2). (4.17)

Moreover from (4.4), we have

k(η) × η = dω + χdψ − ψdχ. (4.18)

Hence,

k(e1, e3) = −|η|−2
(
e2(ω) + χe2(ψ) − ψe2(χ)

)

= −|η|−2eU−α(∂zω + χ∂zψ − ψ∂zχ) (4.19)

and

k(e2, e3) = |η|−2(e1(ω) + χe1(ψ) − ψe1(χ))

= |η|−2eU−α(∂ρω + χ∂ρψ − ψ∂ρχ). (4.20)

Now, use (2.19) to find

|k|2g = 2(k(e1, e3)2 + k(e2, e3)2). (4.21)

The desired conclusion follows by combining (4.19), (4.20), and (4.21). �

Continuing with the expression (4.15), an application of Corollary 3.5
and the charged dominant energy condition (1.2) produces

m − M(U,ω, χ, ψ) ≥ 1
32π

∫

R3
2e−2U+2α[R − |k|2g − 2(|E|2g + |B|2g)]dx

≥ 1
8π

∫

R3

e−2U+2α

u
divg(uQ)dx

≥ 1
8π

∫

M

eU

u
divg(uQ)dxg, (4.22)

where the volume element for g is given by dxg = e−3U+2αdx. This strongly
suggests that we choose

u = eU =
ρ

√
gφφ

=
ρ√
gφφ

. (4.23)

If g preserves the asymptotic geometry of g, then in light of (2.2), (2.3), (2.4)

u = 1 + ol−3(r− 1
2 ) as r → ∞ in M0

end, (4.24)

u = r2n + ol−4(r
5
2
n ) as rn → 0 in asymptotically flat Mn

end, (4.25)

u = rn + ol−4(r
3
2
n ) as rn → 0 in asymptotically cylindrical Mn

end, (4.26)

where rn is the Euclidean distance to the point in defining the end. Thus, with
the aid of the asymptotics for f (2.34), (2.35) and Y φ (2.21), as well as the
following bounds which are implied by (1.3), (2.7), (2.8)

|k|g + |k(∂φ, ·)|g + |k(∂φ, ∂φ)| ≤ c on M, (4.27)
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the asymptotic boundary integrals arising from the right-hand side of (4.22)
all vanish as long as J = J (see Appendix C in [4]). Therefore,

m ≥ M(U,ω, χ, ψ). (4.28)

Theorem 4.4. Let (M, g, k,E,B) be a smooth, simply connected, axially sym-
metric initial data set satisfying the charged dominant energy condition (1.2)
and condition (1.9), and with two ends, one designated asymptotically flat and
the other either asymptotically flat or asymptotically cylindrical. If the system
of equations (2.20), (2.31), (4.23) admits a smooth solution (u, Y φ, f) satisfy-
ing the asymptotics (2.21), (2.33)–(2.35), (4.24)–(4.26), then

m2 ≥ q2 +
√

q4 + 4J 2

2
, (4.29)

and equality holds if and only if (M, g, k,E,B) arises from an embedding into
the extreme Kerr–Newman spacetime.

Proof. The existence of a solution (u, Y φ, f) allows an application of the max-
imal case proof to the deformed initial data (M, g, k,E,B) as above, arriving
at the inequality (4.28). Previous results of [8], [12], [23] then show that

M(U,ω, χ, ψ) ≥
√

J 2

m2 + q2. (4.30)

Furthermore, according to (2.10) and (2.11) m = m, J = J , and q = q, so
that (4.28) gives

m ≥
√

J 2

m2
+ q2, (4.31)

which is equivalent to (4.29).
Consider now the case of equality in (4.29). Through the process of deriv-

ing (4.28), several nonnegative terms were omitted from the right-hand side.
These terms arise from Corollary 3.5 and (4.15). Under the current assump-
tion, they must all vanish

|μEM − JEM (v)| = |k − π|g = |Aρ,z − Az,ρ|
= |E(e3) − Ẽ(e3)| = |B(e3) − B̃(e3)| = 0. (4.32)

As a result of the charged dominant energy condition, the fact that |v|g < 1,
and the identity

μEM −JEM (v) = (μEM −|JEM |g)+(1−|v|g)|JEM |g +(|JEM |g|v|g −JEM (v)),
(4.33)

we have
μEM = |JEM |g = 0. (4.34)

It will now be shown that (M, g, k,E,B) is an electrovacuum initial data
set. Since Trgk = 0

8πJEM = divgk + 2E × B. (4.35)

Author's personal copy



Vol. 16 (2015) Deformations of Charged Axially Symmetric Initial Data 2905

From (2.20), we know that JEM (e3) = 0, and with the help of |Aρ,z−Az,ρ| = 0,
it is shown in [4] that divgk(ei) = 0, i = 1, 2. Moreover, since E(η) = B(η) = 0,
it holds that E × B(ei) = 0, i = 1, 2. Hence, |JEM |g = 0.

Consider now the energy density after the contribution from the electro-
magnetic field has been removed

16πμEM = R + (Trgk)2 − |k|2g − 2(|E|2g + |B|2g) = R − |k|2g − 2(|E|2g + |B|2g).
(4.36)

The computation (7.11) in Appendix A of [4] yields

R − |k|2g = −2(divgk)(u∇f) + 16π(μ − J(v)) + |k|2g − |π|2g
+ 2(divgk)(v) − 2(divgπ)(v) (4.37)

when Eq. (2.31) is satisfied, where μ and J are the full matter and momentum
density of the matter fields. However, |divgk|g = 0 and |k−π|g = 0 imply that

R − |k|2g = 16π(μ − J(v)) = 2(|E|2g + |B|2g) + 4E × B(v) = 2(|E|2g + |B|2g),
(4.38)

where Lemma 3.4 together with Ẽ = E and B̃ = B (which follows from the
definition of Ẽ, B̃ and 4.32) was used in the last equality. Therefore, μEM = 0,
and (M, g, k,E,B) is an electrovacuum initial data set.

Next, since the deformed initial data are electrovacuum and

m ≥
√

J 2

m2 + q2, (4.39)

the results of [23] apply to show that (M, g, k,E,B) is isometric to the data
set on the t = 0 slice (R3 − {0}, gEKN , kEKN , EEKN , BEKN ) of the extreme
Kerr–Newman spacetime EKN

4. Consider the map M → EKN
4 given by x �→

(x, f(x)). The induced metric on the graph is given by

(gEKN )ij − fi(YEKN )j − fj(YEKN )i − (u2
EKN − |YEKN |2gEKN

)fifj , (4.40)

where

(kEKN )ij =
1

2uEKN
(∇EKN

i (YEKN )j + ∇EKN
j (YEKN )i), (4.41)

and (uEKN ,−YEKN ) are the lapse and shift. If ∂φ denotes the spacelike Killing
field in this spacetime, then gij

EKN (YEKN )j∂i = Y φ
EKN∂φ, and Y φ

EKN satis-
fies Eq. (2.20) with (g,E,B) replaced by (gEKN , EEKN , BEKN ), as well as
boundary condition (2.21). Since there is a unique solution to (2.20), (2.21),
and g ∼= gEKN , we have that Y = YEKN . Moreover, a direct calculation shows
that uEKN = eUEKN = eU = u, where UEKN arises from the Brill coordi-
nate expression for gEKN . It now follows from (2.14) and (2.15) that g agrees
with the induced metric (4.40). Note also that since (4.32) implies π = k, the
second fundamental form of the embedding (M, g) ↪→ EKN

4 is given by k.
Furthermore, in light of the fact that Ẽ = E, B̃ = B, the construction of
E, B guarantees that E, B arise as the induced electric and magnetic field
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on the graph. Thus, the initial data (M, g, k,E,B) arise from the extreme
Kerr–Newman spacetime.

Lastly, if (M, g, k,E,B) arises from extreme Kerr–Newman, then by the
properties of this spacetime, equality in (4.29) holds. �

Theorem 4.4 reduces the proof of the mass–angular momentum–charge
inequality, in the general non-maximal case, to the existence of a solution
(u, Y φ, f) to the system of equations (2.20), (2.31), and (4.23). Observe that
this is in fact a coupled system, as the definition of u depends on g. In [4],
a complete analysis of the equation (2.31) was performed assuming that u
is known a priori. It was shown that a smooth solution always exists (with-
out blow-up) which possesses the desired asymptotics (2.33)–(2.35). Moreover,
(2.20) turns out to be an inhomogeneous linear elliptic equation for Y φ [4] (if u
is independent of Y φ), and it was shown that the corresponding homogeneous
equation has a unique bounded solution satisfying the asymptotic boundary
condition (2.21); the same techniques may be used to obtain the same result
for the inhomogeneous equation here.

To end this section, we record the reduction statement for multiple black
holes. We will denote the angular momentum and charges for each black hole
by Ji, (qe)i, (qb)i. Let

F(m,J1, . . . ,JN , (qe)1, . . . , (qe)N , (qb)1, . . . , (qb)N ) (4.42)

denote the numerical value of the action functional (4.14) evaluated at the
harmonic map, from R

3 − {ρ = 0} to the complex two-dimensional hyperbolic
space, which is expected to exist in analogy with the uncharged case [10].
Whether this value agrees with, or is bounded below by

√
J 2

m2
+ q2, (4.43)

where q2 = q2e + q2b and

J =
N∑

n=1

Jn, qe =
N∑

n=1

(qe)n, qb =
N∑

n=1

(qb)n, (4.44)

is an important open problem. The proof of the following theorem is similar
to that of Theorem 4.4.

Theorem 4.5. Let (M, g, k,E,B) be a smooth, simply connected, axially sym-
metric initial data set satisfying the charged dominant energy condition (1.2)
and conditions (1.9), and with N + 1 ends, one designated asymptotically flat
and the others either asymptotically flat or asymptotically cylindrical. If the
system of equations (2.20), (2.31), (4.23) admits a smooth solution (u, Y φ, f)
satisfying the asymptotics (2.21), (2.33)–(2.35), (4.24)–(4.26), then

m ≥ F(m,J1, . . . ,JN , (qe)1, . . . , (qe)N , (qb)1, . . . , (qb)N ). (4.45)
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5. Further Applications

Here, the deformation of initial data for the Einstein–Maxwell system, given
in previous sections, will be applied to two more problems. The first con-
cerns the reduction argument associated with another geometric inequality for
axisymmetric black holes, namely a lower bound for area in terms of mass,
angular momentum, and charge, and the second involves improving upon the
hypotheses required for the mass–angular momentum–charge inequality in the
maximal case.

Assume that the initial data possess only two ends denoted M±
end, such

that M+
end is asymptotically flat and M−

end is either asymptotically flat or
asymptotically cylindrical. Heuristic physical arguments [15] relying on the
cosmic censorship conjecture lead to the following upper and lower bounds

m2 − q2

2
−

√(

m2 − q2

2

)2

− q4

4
− J 2 ≤ Amin

8π

≤ m2 − q2

2
+

√(

m2 − q2

2

)2

− q4

4
− J 2, (5.1)

where Amin is the minimum area required to enclose M−
end. In [15] the lower

bound is established in the maximal case, and it is also shown that equal-
ity occurs if and only if the initial data set is isometric to the t = 0 slice
of the extreme Kerr–Newman spacetime. The proof follows directly from the
mass–angular momentum–charge inequality and the area–angular momentum–
charge inequality [11]. In the non-maximal case, the area–angular momentum–
charge inequality has been established when Amin is replaced by the area
of a stable, axisymmetric, marginally outer trapped surface [11]. Therefore,
since we have shown how to reduce the non-maximal case of the mass–angular
momentum–charge inequality to the problem of solving a coupled system of
elliptic equations, an analogous lower bound for area may also be reduced to
the same problem. That is, combining Theorem 4.4 above with the proof of a
Theorem 2.5 in [15], produces the following result.

Theorem 5.1. Let (M, g, k,E,B) be a smooth, simply connected, axially sym-
metric initial data set satisfying the charged dominant energy condition (1.2)
and conditions (1.9), and with two ends, one designated asymptotically flat
and the other either asymptotically flat or asymptotically cylindrical. If the
data possess a stable axisymmetric marginally outer trapped surface with area
A, and the system of equations (2.20), (2.31), (4.23) admits a smooth solution
(u, Y φ, f) satisfying the asymptotics (2.21), (2.33)–(2.35), (4.24)–(4.26), then

A
8π

≥ m2 − q2

2
−

√(

m2 − q2

2

)2

− q4

4
− J 2, (5.2)

and equality holds if and only if (M, g, k,E,B) arises from an embedding into
the extreme Kerr–Newman spacetime.
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Now, let us return to the mass–angular momentum–charge inequality
(1.15). In the maximal case, the results of [8], [12], [23] assume that the mat-
ter density is nonnegative μEM ≥ 0, the current density vanishes |JEM |g = 0,
and that the 4-currents for the electric and magnetic fields (sources for the
Maxwell equations) vanish; all of these conditions are satisfied in electrovac-
uum (the absence of matter fields other than the electromagnetic field). The
later assumption concerning the 4-currents is imposed to secure the existence
of potentials for the Maxwell field, and |JEM |g = 0 is used to obtain a charged
twist potential, as in Lemma 4.1. The new observation that we will make here
is that these hypotheses can be weakened to divgE = divgB = JEM (η) = 0.
This will be accomplished by deforming the electric and magnetic fields as in
Sect. 3, while keeping the original metric and second fundamental form, that
is (M, g, k,E,B) → (M, g, k,E,B). More precisely, (E,B) are given by the
definitions in Sect. 3 with f ≡ 0. In particular,

E(ei) = E(ei), B(ei) = B(ei), i = 1, 2, E(e3) = B(e3) = 0, (5.3)

and according to Lemmas 3.1, 3.2, 3.4 and 3.6

qe = qe, qb = qb, JEM (η) = JEM (η), divgE = divgE,

divgB = divgB, (5.4)

|Ẽ|2g + |B̃|2g = |E|2g + |B|2g, 8π(μ̃EM − μEM ) = E(e3)2 + B(e3)2. (5.5)

Thus, if divgE = divgB = JEM (η) = 0 then Lemma 4.1 yields potentials such
that

dχ = |η|(E(e2)θ1 − E(e1)θ2) = |η|(E(e2)θ1 − E(e1)θ2), (5.6)

dψ = |η|(B(e2)θ1 − B(e1)θ2) = |η|(B(e2)θ1 − B(e1)θ2), (5.7)

and

dω = k(η) × η − χdψ + ψdχ. (5.8)

With the aid of Lemma 4.3, the scalar curvature may be suitably bounded
from below

R = |k|2 + 2(|Ẽ|2g + |B̃|2g) + 16πμ̃EM

= |k|2 + 2(|E|2g + |B|2g) + 16πμEM + 2(E(e3)2 + B(e3)2)

≥ 2
e6U−2α

ρ4
|∂ω + χ∂ψ − ψ∂χ|2 + 2

e4U−2α

ρ2
(|∂χ|2 + |∂ψ|2)

+ 16πμEM + 2(E(e3)2 + B(e3)2). (5.9)

The inequality in the third line arises from the fact that unlike k, k may have
more than just two nontrivial components. Therefore, the methods of [8], [12]
and [23] may be used to obtain the following result.

Theorem 5.2. Let (M, g, k,E,B) be a smooth, simply connected, axially sym-
metric, maximal initial data set satisfying μEM ≥ 0 and JEM (η) = 0, and with
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two ends, one designated asymptotically flat and the other either asymptotically
flat or asymptotically cylindrical. Then

m2 ≥ q2 +
√

q4 + 4J 2

2
, (5.10)

and equality holds if and only if (M, g, k,E,B) is isometric to the t = 0 slice
of the extreme Kerr–Newman spacetime.

6. Appendix A: Alternate Proof of Lemma 3.6

Here, we will verify the relation between the divergences of (Ẽ, B̃) and (E,B)
by direct computation. The notation in the proof of Lemma 3.6 will be utilized
throughout this section.

Observe that

divgẼ = ∇iẼ
i = Xi(Ẽi) + gij g̃(∇̃Xi

Xl,Xj)Ẽl. (6.1)

Each term of (6.1) will now be computed separately. First, note that with the
help of (3.27) and (3.28),

Xi(Ẽi) = e1

⎛

⎝E
1

+ ue2(f)B3√
1 − u2|∇f |2g

⎞

⎠ + e2

⎛

⎝E
2 − ue1(f)B3√
1 − u2|∇f |2g

⎞

⎠

=
e1(E

1
+ ue2(f)B3) + e2(E

2 − ue1(f)B3)√
1 − u2|∇f |2g

+
√

1 − u2|∇f |2g Ẽiei

⎛

⎝ 1
√

1 − u2|∇f |2g

⎞

⎠ . (6.2)

Next, consider the second term on the right-hand side of (6.1) and compute

g̃(∇̃Xi
Xl,Xj)

= g̃(∇̃ei+ei(f)∂t
(el + el(f)∂t), ej + ej(f)∂t)

= g(∇ei
el, ej) + eiel(f)g̃(∂t, ej + ej(f)∂t) + el(f)g̃(∇̃ei

∂t, ej + ej(f)∂t)

+ ej(f)g̃(∇̃ei
el, ∂t) + ei(f)(g̃(∇̃∂t

el, ej + ej(f)∂t) + el(f)g̃(∇̃∂t
∂t, ej)),

(6.3)

where

g̃(∇̃ei
∂t, ej) = g̃(∇̃ei

(un − Y ), ej) = uk(ei, ej) − g(∇ei
Y , ej), (6.4)

g̃(∇̃eiel, ∂t) = g̃(∇̃eiel, un − Y ) = −uk(ei, el) − g(∇eiel, Y ), (6.5)

g̃(∇̃∂t
el, ej) = g̃(∇̃el

∂t, ej) = uk(el, ej) − g(∇el
Y , ej), (6.6)

g̃(∇̃∂t
el, ∂t) = g̃(∇̃el

∂t, ∂t) =
1
2
el(g̃tt), (6.7)
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and

g̃(∇̃∂t
∂t, ej) = −g̃(∇̃ej

∂t, ∂t) = −1
2
ej(g̃tt). (6.8)

Substituting (6.4)–(6.8) into (6.3) produces

g̃(∇̃Xi
Xl,Xj)

= g(∇eiel, ej) + eiel(f)(−Y (ej) + ej(f)g̃tt)

+ el(f)(uk(ei, ej) − g(∇ei
Y , ej) +

1
2
ej(f)ei(g̃tt))

+ ej(f)(−uk(ei, el) − g(∇eiel, Y ))

+ ei(f)
(

uk(ej , el) − g(∇el
Y , ej) +

1
2
ej(f)el(g̃tt) − 1

2
el(f)ej(g̃tt)

)

. (6.9)

The following simple identities will aid in taking the trace of (6.9), namely

utrgk = δijg(∇ei
Y , ej) = 0, uk(w,w) = g(∇wY ,w). (6.10)

We then find that

gij g̃(∇̃Xi
Xl,Xj)

=

(

δij − |Y |2gδ3iδ3j

u2
+ w(θ

i
)w(θ

j
)

)

g̃(∇̃Xi
Xl,Xj)

= g(∇ei
el, ei) − 1

u2
g(∇Y el, Y ) + g(∇wel, w)

+ g̃tt[∇f(el(f)) + w(el(f))w(f)] − g(Y ,w)w(el(f))

+
(

−g(∇∇fel, Y ) − g(∇el
Y ,∇f) +

1
2
|∇f |2gel(g̃tt)

)

+ w(f)
(

−g(∇wel, Y ) − g(∇el
Y ,w) +

1
2
w(f)el(g̃tt)

)

. (6.11)

Applying the expression

w =
u2∇f + Y

u
√

1 − u2|∇f |2g
(6.12)

yields

g̃tt[∇f(el(f)) + w(el(f))w(f)] − g(Y ,w)w(el(f))

= ∇f(el(f))

(

g̃tt +
u2|∇f |2g g̃tt

1 − u2|∇f |2g
− |Y |2g

1 − u2|∇f |2g

)

= −u2∇f(el(f))
1 − u2|∇f |2g

, (6.13)

|∇f |2gel(g̃tt) + w(f)2el(g̃tt) =
|∇f |2gel(g̃tt)

1 − u2|∇f |2g
, (6.14)
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− 1
u2

g(∇Y el, Y ) + g(∇wel, w) − g(∇∇fel, Y ) − w(f)g(∇wel, Y )

= g

⎛

⎝∇wel,
u∇f

√
1 − u2|∇f |2g

⎞

⎠ , (6.15)

and

g(∇el
Y ,∇f) + w(f)g(∇el

Y ,w) =
g(∇el

Y ,∇f)
1 − u2|∇f |2g

+
|∇f |2gg(∇el

Y , Y )

1 − u2|∇f |2g

=
g(∇Y el,∇f)
1 − u2|∇f |2g

+
|∇f |2gel(|Y |2g)
2(1 − u2|∇f |2g)

, (6.16)

where we have used Y = Y φη and g(∇f, η) = 0 in the last line of (6.16). By
substituting (6.13)–(6.16) into (6.11) we obtain

gij g̃(∇̃Xi
Xl,Xj)

= g(∇ei
el, ei) − u|∇f |2gel(u)

1 − u2|∇f |2g
− u2∇f(el(f))

1 − u2|∇f |2g
+

u2

1 − u2|∇f |2g
g(∇∇fel,∇f)

= g(∇ei
el, ei) − u|∇f |2gel(u)

1 − u2|∇f |2g
− u2

1 − u2|∇f |2g
(Hessgf)(∇f, el)

= g(∇ei
el, ei) − el

⎛

⎝ 1
√

1 − u2|∇f |2g

⎞

⎠
√

1 − u2|∇f |2g. (6.17)

In particular, when l = 3, (6.17) becomes

gij g̃(∇̃Xi
X3,Xj) = g(∇ei

e3, ei) =
1
|η|g(∇ei

η, ei) = 0. (6.18)

Now employ (6.2), (6.17), (6.18) to evaluate (6.1) as follows,

divgẼ = Xi(Ẽi) + gij g̃(∇̃Xi
X1,Xj)Ẽ1 + gij g̃(∇̃Xi

X2,Xj)Ẽ2

=
e1(E

1
+ ue2(f)B3) + e2(E

2 − ue1(f)B3)√
1 − u2|∇f |2g

+
E

1
+ ue2(f)B3√
1 − u2|∇f |2g

g(∇ei
e1, ei) +

E
2 − ue2(f)B3√
1 − u2|∇f |2g

g(∇ei
e2, ei). (6.19)

Similarly,

divgB̃ =
e1(B

1 − ue2(f)E3) + e2(B
2

+ ue1(f)E3)√
1 − u2|∇f |2g

+
B

1 − ue2(f)E3√
1 − u2|∇f |2g

g(∇eie1, ei) +
B

2
+ ue2(f)E3√
1 − u2|∇f |2g

g(∇eie2, ei). (6.20)
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Therefore, since E3 = B3 = 0, we have

divgẼ =
divgE√

1 − u2|∇f |2g
, divgB̃ =

divgB√
1 − u2|∇f |2g

. (6.21)

The desired result now follows from (3.38).

7. Appendix B: Two Versions of the Charged Twist Potential

In Lemma 4.1, under the assumption JEM (η) = 0, the existence of a charged
twist potential was obtained with the aid of the potentials (χ,ψ) for the elec-
tromagnetic field, namely

dω = k(η) × η − χdψ + ψdχ. (7.1)

Here, we will show that the charged twist potential may be constructed from
the vector potential instead. That is

dω = k(η) × η + 2[A × (η × E)] × η, (7.2)

where B = ∇ × A. Note that due to topological considerations, one must
remove a Dirac string in order to construct A, as described in Sect. 1.

We begin by deriving the relationship between ψ and A. Observe that by
(4.2),

e1(ψ) = |η|B(e2), e2(ψ) = −|η|B(e1). (7.3)

Moreover if
A = A(e1)θ

1
+ A(e2)θ

2
+ A(e3)θ

3
, (7.4)

then (4.6), (4.7) imply that

B = ∗dA

= [e2(A(e3)) + e2(log |η|)A(e3)]θ
1 − [e1(A(e3)) + e1(log |η|)A(e3)]θ

2

+ [e1(A(e2)) + e1(log e−U+α)A(e2) − e2(A(e1)) − e2(log e−U+α)A(e1)]θ
3

− |η|e2U−2α(Aρ,z − Az,ρ)A(e3)θ
3
. (7.5)

Combining this with (7.3) produces

e1(ψ) = −|η|[e1(A(e3)) + e1(log |η|)A(e3)],

e2(ψ) = −|η|[e2(A(e3)) + e2(log |η|)A(e3)]. (7.6)

Hence
ψ = −|η|A(e3) + C (7.7)

for some constant C, so that the third component of A is determined by ψ.
One more component of A may be determined from the equation B(e3) = 0
and (7.5), and the remaining component of A remains undetermined due to
gauge invariance.
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To show that the potentials defined by (7.1) and (7.2) are equivalent,
we must show that the right-hand sides of these equations differ by an exact
1-form. In fact, this conclusion arises from (4.2) and (7.7) as follows

−χdψ + ψdχ + d(χψ − 2Cχ) = 2ψdχ − 2Cdχ

= −2|η|A(e3)dχ

= −2|η|2A(e3)E(e2)θ
1

+ 2|η|2A(e3)E(e1)θ
2

= 2εijlεcbaE
c
εjpbApη

lηaθ
i

= 2[A × (η × E)] × η. (7.8)

We now record how the charged twist potential (1.10) encodes angular
momentum (1.13). Consider the polar coordinate form (r, θ, φ) of Brill coor-
dinates, where ρ = r sin θ and z = r cos θ. The metric may then be expressed
by

g = e−2U+2α(dr2 + r2dθ2) + e−2Ur2 sin2 θ(dφ + Ardr + Aθdθ)2, (7.9)

and an orthonormal basis is given by

er = eU−α(∂r − Ar∂φ), eθ =
eU−α

r
(∂θ − Aθ∂φ), eφ =

eU

r sin θ
∂φ. (7.10)

From (1.10) it follows that

eU−α

r
∂θω

= eθ(ω)

= −|η|2ε(er, eθ, eφ)[k(er, eφ) + 2ε(er, eθ, eφ)E(er)ε(er, eφ, eθ) �A(eφ)]

= −e−Ur sin θ[k(er, ∂φ) − 2E(er) �A(∂φ)], (7.11)

or rather

k(er, ∂φ) − 2E(er) �A(∂φ) = − e2U−α

r2 sin θ
∂θω. (7.12)

Hence, if there are only two ends, we may apply Lemma 2.1 in [15] to obtain

J =
1
8π

∫

S∞
(kij − (Trk)gij)νiηj − 1

4π

∫

S∞
(Eiν

i)( �Ajη
j)

= lim
r→0

1
8π

∫

∂B(r)

[k(∂φ, er) − 2E(er) �A(∂φ)]dA

= lim
r→0

1
8π

∫

∂B(1)

[k(∂φ, er) − 2E(er) �A(∂φ)]e−2U+αr2 sin θdθdφ

= − lim
r→0

1
8π

∫

∂B(1)

∂θωdθdφ

=
1
4
(ω|I+ − ω|I−). (7.13)

Observe that the expression for angular momentum here appears to differ
from that of (1.7), in that an extra contribution from the electromagnetic
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field, representing the total angular momentum of the electromagnetic field,
is present. It turns out that a particular cancelation [15] forces this term to
vanish, and hence (1.7) and (7.13) yield the same value.

8. Appendix C: Comparing Asymptotics with the
Kerr–Newman Example

In this section, the prescribed asymptotics for Y φ and (E,B) will be compared
with the corresponding quantities in the Kerr–Newman spacetime. Recall that
in Boyer–Lindquist coordinates the Kerr–Newman metric takes the form

−Δ − a2 sin2 θ

Σ
dt2 +

2a sin2 θ

Σ
(r̃2 + a2 − Δ)dtdφ

+
(r̃2 + a2)2 − Δa2 sin2 θ

Σ
sin2 θdφ2 +

Σ
Δ

dr̃2 + Σdθ2 (8.1)

where
Δ = r̃2 + a2 + q2 − 2mr̃, Σ = r̃2 + a2 cos2 θ, (8.2)

and the electromagnetic 4-potential is given by

A = −qer

Σ
(dt + a sin2 θdφ) − qb cos θ

Σ
(adt + (r2 + a2)dφ), (8.3)

The event horizon is located at the larger of the two solutions to the quadratic
equation Δ = 0, namely r̃+ = m+

√
m2 − a2 − q2, where the angular momen-

tum is given by J = ma. For r > r+ it holds that Δ > 0, so that a new radial
coordinate may be defined by

r =
1
2
(r̃ − m +

√
Δ), (8.4)

or rather

r̃ = r + m +
m2 − a2 − q2

4r
, m2 
= a2 + q2

r̃ = r + m, m2 = a2 + q2. (8.5)

Note that, the new coordinate is defined for r > 0, and a critical point for
the right-hand side of (8.5) (m2 
= a2 + q2) occurs at the horizon, so that
two isometric copies of the outer region are encoded on this interval. The
coordinates (r, θ, φ) then form a Brill coordinate system.

Observe that

Y φ = gφφYφ = − a(r̃2 + a2 − Δ)
(r̃2 + a2)2 − Δa2 sin2 θ

. (8.6)

Therefore, at spatial infinity

Y φ ∼ −2ma

r3
as r → ∞, (8.7)
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which is consistent with (2.21). Furthermore,

Y φ = O(r3), m2 
= a2 + q2, as r → 0,

Y φ = −a(2m2 − q2)
(m2 + a2)2

+ O(r), m2 = a2 + q2, as r → 0. (8.8)

Note that, the solution of (2.20) is expected to asymptotically converge to a
constant as r → 0 [4]. This is consistent with the second equation in (8.8),
but not the first. The reason for the inconsistency is that the lapse function
for the Kerr–Newman spacetime does not satisfy the required asymptotics
(4.25), whereas the lapse function for the extreme Kerr–Newman spacetime
does satisfy the desired asymptotics (4.26); the lapse function is

u2 = −g̃tt + |Y |2

=
Δ − a2 sin2 θ

Σ
+

a2 sin2 θ(r̃2 + a2 − Δ)2

Σ((r̃2 + a2)2 − Δa2 sin2 θ)

=
ΔΣ

(r̃2 + a2)2 − Δa2 sin2 θ
. (8.9)

We now compute the induced electric and magnetic field on the t = 0
slice. The field strength is given by Fij = ∂iAj − ∂jAi. Since ∂t and ∂φ are
Killing fields, it is straightforward to check that Fr̃θ = Fφt = 0, which is
equivalent to E(∂φ) = B(∂φ) = 0. Next observe that

Fr̃t = ∂r̃At =
qe

Σ

(

−1 +
2r̃2

Σ

)

+
2qbr̃a cos θ

Σ2
, (8.10)

Fθt = ∂θAt = −a sin θ

Σ

(
2qer̃a cos θ

Σ
+ qb

(

−1 +
2r̃2

Σ

))

, (8.11)

Fr̃φ = ∂r̃Aφ =
a sin2 θ

Σ

(

qe

(

−1 +
2r̃2

Σ

)

+
2qbr̃a cos θ

Σ

)

, (8.12)

Fθφ = ∂θAφ =
(r̃2 + a2) sin θ

Σ

(

−2qer̃a cos θ

Σ
+ qb

(

−1 +
2r̃2

Σ

))

. (8.13)

Since E(·) = F (·, n) = F (·, u−1(∂t + Y )) we have

Er̃ =
1
u

F r̃t +
Y φ

u
F r̃φ

=
1 + a sin2 θY φ

u

(
qe(r̃2 − a2 cos2 θ)

Σ2
+

2qbr̃a cos θ

Σ2

)

=
(r̃2 + a2) sin θ√

Δ|∂φ|

(
qe(r̃2 − a2 cos2 θ)

Σ2
+

2qbr̃a cos θ

Σ2

)

, (8.14)

and

Eθ =
1
u

F θt +
Y φ

u
F θφ

=
√

Δa sin2 θ

|∂φ|
(

−2qer̃a cos θ

Σ2
+

qb(r̃2 − a2 cos2 θ)
Σ2

)

. (8.15)
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Also since B(|∂r̃|−1∂r̃) = F (|∂θ|−1∂θ, |∂φ|−1∂φ) and B(|∂θ|−1∂θ) =
−F (|∂r̃|−1∂r̃, |∂φ|−1∂φ), applying (8.12) and (8.13) yields

Br̃ =
(r̃2 + a2) sin θ√

Δ|∂φ|

(

−2qer̃a cos θ

Σ2
+

qb(r̃2 − a2 cos2 θ)
Σ2

)

, (8.16)

Bθ = −
√

Δa sin2 θ

|∂φ|
(

qe(r̃2 − a2 cos2 θ)
Σ2

+
2qbr̃a cos θ

Σ2

)

. (8.17)

First, consider the case when m2 
= q2 + a2, in which there are two
asymptotically flat ends. In Brill coordinates

Er =
∂r̃

∂r
Er̃ =

(r̃2 + a2) sin θ√
Δ|∂φ|

(

1 − m2 − a2 − q2

4r2

)

×
(

qe(r̃2 − a2 cos2 θ)
Σ2

+
2qbr̃a cos θ

Σ2

)

, (8.18)

and similarly

Br =
(r̃2 + a2) sin θ√

Δ|∂φ|

(

1 − m2 − a2 − q2

4r2

)

×
(

−2qer̃a cos θ

Σ2
+

qb(r̃2 − a2 cos2 θ)
Σ2

)

. (8.19)

Therefore,

Er ∼ qe

r2
, Eθ ∼ qba sin θ

r2
, Br ∼ qb

r2
, Bθ ∼ −qea sin θ

r2
, as r → ∞,

(8.20)
and since r̃ = O(r−1) for small r

Er = O(1), Eθ = O(r2), Br = O(1), Bθ = O(r2), as r → 0.
(8.21)

This is consistent with (1.4) and (2.5). Now let us consider the extreme case
m2 = a2+q2, in which there is one asymptotically flat end and one asymptoti-
cally cylindrical end. Here, the radial coordinate change is merely a translation
r̃ = r + m, so that

Er = O(r−1), Eθ = O(ρ), Br = O(r−1), Bθ = O(ρ), as r → 0,
(8.22)

where ρ = r sin θ. This is consistent with (2.6).
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