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ON THE LOCAL SOLVABILITY OF DARBOUX’S EQUATION
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Abstract. We reduce the question of local nonsolvability of the Darboux
equation, and hence of the isometric embedding problem for surfaces, to the
local nonsolvability of a simple linear equation whose type is explicitly deter-
mined by the Gaussian curvature.

Let (M2, g) be a two-dimensional Riemannian manifold. A well-known problem
is to ask, when can one realize this locally as a small piece of a surface in R

3?
That is, if the metric g = gijdxidxj is given in the neighborhood of a point, say
(x1, x2) = 0, when do there exist functions zα(x1, x2), α = 1, 2, 3, defined in a
possibly smaller domain such that g = dz2

1 + dz2
2 + dz2

3? This equation may be
written in local coordinates as the following determined system

3
∑

α=1

∂zα

∂xi

∂zα

∂xj
= gij .

Due to its severe degeneracy, in the sense that every direction happens to be a
characteristic direction, little information has been obtained by studying this system
directly. However a more successful approach has been to reduce this system to the
following single equation of Monge-Ampère type, known as the Darboux equation:

det∇ijz = K|g|(1 − |∇gz|
2) (1)

where ∇ij are second covariant derivatives, K is the Gaussian curvature, ∇g is the
gradient with respect to g, and |g| = det g. In fact, the local isometric embedding
problem is equivalent to the local solvability of this equation (see the appendix).

Let us first recall the known results. Since equation (1) is elliptic if K > 0,
hyperbolic if K < 0, and of mixed type if K changes sign, the manner in which K

vanishes will play the primary role in the hypotheses of any result. The classical
results state that a solution always exists in the case that g is analytic or K(0) 6= 0;
these results may be found in [4]. C.-S. Lin provides an affirmative answer in
[10] and [11] when g is sufficiently smooth and satisfies K ≥ 0, or K(0) = 0 and
∇K(0) 6= 0. When K ≤ 0 and ∇K possesses a certain nondegeneracy, Han, Hong,
and Lin [5] show that a smooth solution always exists if g is smooth. Lastly if
the Gaussian curvature vanishes to finite order and the zero set K−1(0) consists of
Lipschitz curves intersecting tranvsversely, then Han and the author [6] have proven
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the existence of smooth solutions if g is smooth. Related results may be found in
[1], [2], [3], [7], [8].

A negative result has been obtained by Pogorelov [13] (see also [12]), who found
a C2,1 metric with no local C2 isometric embedding in R

3. More recently, the
author [9] has constructed C∞ examples of degenerate hyperbolic and mixed type
Monge-Ampère equations of the form

det(∂ijz + aij(p, z,∇z)) = k(p, z,∇z) (2)

which do not admit a local solution, where p = (x1, x2) and ∂ij denote second
partial derivatives. A fundamental part of the strategy in [9] is to reduce the local
nonsolvability of (2), to the local nonsolvability of a quasilinear equation whose type
is explicitly determined by the function k. It is the purpose of this article to show
that the Darboux equation possesses a similar property for a large class of Gaussian
curvatures.

We begin by partially constructing the Gaussian curvature. Here we will denote
the coordinates x1 and x2 by x and y respectively. Define sequences of disjoint open
squares {Xn}∞n=1 and {Xn

1 }
∞
n=1 whose sides are aligned with the x and y-axes, and

such that Xn, and Xn
1 are centered at qn = ( 1

n , 0), Xn ⊂ Xn
1 , and Xn, Xn

1 have

widths 1
2n(n+1) ,

1
n(n+1) , respectively. Set K ≡ 0 in R

2 −
⋃∞

n=1 Xn
1 . Define

X = {(x, y) | |x| < 1, |y| < 1}

and let φ ∈ C∞(X) be such that φ vanishes to infinite order on ∂X , and either
φ(q) > 0 or φ(q) < 0 for all q ∈ X (here X denotes the closure of X). We now
define K in Xn by

K(q) = γnφ(4n(n + 1)(q − qn)), q ∈ X
n
,

where {γn}
∞
n=1 is a sequence of positive numbers that are to be chosen with the

property that limn→∞ γn = 0 in order to insure that K ∈ C∞(R2). A description
of how K should be prescribed in the remaining region

⋃∞

n=1(X
n
1 − Xn) shall be

given below.

Theorem 1. Suppose that K adheres to the description given above, and that a
local C5 solution z of the Darboux equation exists in a domain containing the origin.
Then in a neighborhood of a point on ∂Xn for some n sufficiently large, there exists
a C2 function u constructed from z which after an appropriate change of coordinates
satisfies the equation

∂ttu + K∂ssu = Kf, (3)

where f ∈ C0 also depends on z and is strictly positive.

This theorem suggests a strategy for constructing smooth counterexamples to
the local solvability of the Darboux equation, or equivalently the local isometric
embedding problem. Namely, complete the construction of a smooth Gaussian
curvature function in the region

⋃∞

n=1(X
n
1 − Xn), in such a way that the linear

equation (3) can have no local solution. Whether this is possible is still an open
question, however as pointed out above, a similar strategy was successfully employed
for the related Monge-Ampère equation (2). Note that in order for this strategy to
be utilized for the Darboux equation, it must be shown that given a smooth function
K there always exists a locally defined smooth metric g having Gaussian curvature
K. This may be accomplished in the following way. Let Ω be a neighborhood of
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the origin, and let G ∈ C∞(Ω) be the unique solution of the equation

∂xxG + KG = 0, G(0, y) = 1, ∂xG(0, y) = 0.

By choosing Ω sufficiently small we have that G > 0. Then

g = dx2 + G2dy2

is a smooth Riemannian metric and has Gaussian curvature K in the domain Ω.
The first step in verifying Theorem 1, will be to show that certain second co-

variant derivatives of any solution of (1) cannot vanish on ∂Xn for n sufficiently
large. Suppose that a local solution z ∈ C2 of (1) exists, so that upon rewriting the
equation we have

bij∇ijz = 2K(1 − |∇gz|
2), (4)

where the Einstein summation convention concerning raised and lowered indices has
been used (this convention will also be utilized in what follows) and

(bij) = |g|−1

(

∇22z −∇12z

−∇12z ∇11z

)

.

Then integrating by parts yields
∫

Xn

bij∇ijzdωg = −

∫

Xn

∇jz∇ib
ijdωg +

∫

∂Xn

bijni∇jzdσg, (5)

where dωg and dσg are the elements of area and length with respect to g, and (n1, n2)
is the unit outer normal to ∂Xn also with respect to g. In order to calculate the
interior term on the right-hand side we note that bij is a contravariant 2-tensor, so
that

∇ib
ij = ∂ib

ij + Γi
ilb

lj + Γj
ilb

il

where Γl
ij are Christoffel symbols. Therefore

∇ib
i1 =|g|−1(∂1∇22z − ∂2∇12z) + |g|−2(−∂1|g|∇22z + ∂2|g|∇12z)

+ |g|−3/2(∂1|g|
1/2∇22z − ∂2|g|

1/2∇12z) + Γ1
ilb

il

=|g|−1(∂1∇22z − ∂2∇12z + |g|Γ1
ijb

ij) − Γi
ijb

j1,

after making use of the identity

Γi
ij = |g|−1/2∂j |g|

1/2.

Moreover direct computation shows that

∂1∇22z − ∂2∇12z + |g|Γ1
ijb

ij

= − Γj
j2∂12z + Γj

j1∂22z

+ (∂2Γ
i
12 − ∂1Γ

i
22 − Γ1

11Γ
i
22 + 2Γ1

12Γ
i
12 − Γ1

22Γ
i
11)∂iz

=|g|(Γj
j2b

12 + Γj
j1b

11)

+ (∂2Γ
i
12 − ∂1Γ

i
22 − Γ1

11Γ
i
22 + 2Γ1

12Γ
i
12 − Γ1

22Γ
i
11 − Γj

j2Γ
i
12 + Γj

j1Γ
i
22)∂iz,

and we observe that the coefficient of ∂iz is in fact a curvature term. More precisely,
if it is denoted by χi then

χi = ∂2Γ
i
12 − ∂1Γ

i
22 + Γj

12Γ
i
j2 − Γj

22Γ
i
j1 = −Ri

212 = −gi1|g|K

where Ri
jkl is the Riemann tensor. We now have

∂1∇22z − ∂2∇12z + |g|Γ1
ijb

ij = |g|(Γj
j2b

12 + Γj
j1b

22 − gi1K∂iz)
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so that

∇ib
i1 = −Kz1. (6)

Similarly

∇ib
i2 = −Kz2. (7)

With the help of (4), (6), and (7) it follows that (5) becomes
∫

Xn

K(2 − 3|∇gz|
2)dωg

=

∫

∂Xn

|g|−1/2[(∇1z∇22z −∇2z∇12z)n1 + (∇2z∇11z −∇1z∇12z)n2]dσ,

(8)

where (n1, n2) is the Euclidean unit outer normal to ∂Xn and dσ is the Euclidean
element of length.

The integral equality (8) will now be used to show that certain second covariant
derivatives of any solution of the Darboux equation cannot vanish on ∂Xn for n

sufficiently large. Let −vn, +vn represent the left and right vertical portions of ∂Xn,
respectively, and let +hn, −hn represent the top and bottom horizontal portions of
∂Xn, respectively.

Lemma 2. Suppose that K satisfies the hypotheses of Theorem 1. Then it is
not possible for a C2 solution z of (1) to satisfy the following property for any n

sufficiently large:

∇22z|±vn
= 0, ∇11z|±hn

= 0. (9)

Proof. We proceed by contradiction and assume that property (9) holds. Then since
K|∂Xn = 0, the Darboux equation implies that ∇12z|∂Xn = 0. Therefore the right-
hand side of (8) vanishes. However this yields a contradiction, as the left-hand side
is nonzero for large n. To see this last fact observe that according to the appendix,
any solution of the Darboux equation yields an isometric embedding F = (z1, z2, z)
of the metric g. So that by performing an appropriate rigid body motion of this
embedding, to obtain F = AF where A is an orthogonal matrix, we can ensure that
the new third component z of F satisfies |∇z|(0, 0) = 0. Furthermore the appendix
also shows that z must satisfy the Darboux equation, and so we have 2−3|∇gz|

2 > 1
inside Xn if n is chosen sufficiently large. Therefore since K never vanishes on Xn,
integral equality (8) yields a contradiction.

In light of Lemma 2, there must exist a point p ∈ ∂Xn at which one of the given
second covariant derivatives is nonzero. As arguments similar to those presented
below may be applied if p ∈ −vn or p ∈ ±hn, we assume without loss of generality
that p ∈ +vn so that ∇22z(p) 6= 0. It follows that after a change of coordinates
near p, a solution u of equation (3) may be constructed. The following lemma will
complete the proof of Theorem 1.

Lemma 3. Suppose that there exists a C5 solution z of the Darboux equation satisfy-
ing ∇22z(p) 6= 0. Then there exists a C3 local change of coordinates near p = (p1, p2)
given by

t = x − p1, s = s(x, y),

and a C2 solution u of the equation

∂ttu + K∂ssu = Kf,

where f ∈ C0 and is strictly positive if n is sufficiently large.



ON THE LOCAL SOLVABILITY OF DARBOUX’S EQUATION 455

Proof. The desired coordinates (t, s) will be chosen to eliminate the mixed second
covariant derivative appearing in (4). Since bij is a contravariant 2-tensor, under a
coordinate change xi = xi(x1, x2) it transforms by

b
ij

= blm ∂xi

∂xl

∂xj

∂xm
.

Therefore by setting t = x1 = x − p1, we seek s = x2 such that

b
12

= b11∂xs + b12∂ys = 0, s(p1, y) = cy, (10)

where c is a nonzero constant to be determined. Observe that since b11 = |g|−1∇22z 6=
0 near p, the line x = p1 is noncharacteristic for (10). Thus the theory of first or-
der partial differential equations guarantees the existence of a unique local solution
s ∈ C3, in light of the fact that b11, b12 ∈ C3.

We now calculate each of the new coefficients for the Darboux equation. First

note that b
11

= b11, and with the help of (10)

b
22

=b11(∂xs)2 + 2b12∂xs∂ys + b22(∂ys)2

=(b11)−1(∂ys)2 det bij

=(|g|b11)−1(∂ys)2K(1 − |∇gz|
2).

Therefore in the new coordinates Darboux’s equation (4) is given by

b11∇11z + Kf∇22z = 2K(1 − |∇gz|
2), (11)

where ∇ij denote covariant derivatives with respect to the new coordinates (t, s)
and

f = (|g|b11)−1(∂ys)2(1 − |∇gz|
2).

Notice that if we choose

c = b11|g|1/2(1 − |∇gz|
2)−1/2(p),

then (b11)−1f(p) = 1. Moreover by setting

u(t, s) = z(t, s) −

∫ t

0

(

∫ t′

0

(Γ
1

11∂tz + Γ
2

11∂sz)(t′′, s)dt′′

)

dt′

we have ∂ttu = ∇11z, so that (11) becomes

∂ttu + K∂ssu = Kf

with

f = (b11)−1[2(1 − |∇gz|
2) + (f(p) − f)∇22z] + Γ

1

22∂tz + Γ
2

22∂sz + ∂ss(u − z).

Lastly we observe that f(t, s) > 0 in a sufficiently small neighborhood of p if n is
large, since as in the proof of Lemma 2 we may assume that |∇z|(0, 0) = 0.

Appendix

Here we show that the local isometric embedding problem is equivalent to the
local solvability of the Darboux equation (1). Assume that there exists a local
C2 embedding F = (z1, z2, z3) for a given metric g. Then according to the Gauss
equations

∇ijF = hijν,
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where hij are the components of the second fundamental form with respect to a
unit normal ν. Then by taking the Euclidean inner product of this equation with

the vector ~k = (0, 0, 1), we obtain

det∇ijz = K|g|(ν · ~k)2

where for convenience we denote z3 by z. Furthermore, if × represents the cross
product operation between two vectors in R

3 then

(ν · ~k)2 = 1 −

∣

∣

∣

∣

∣

(∂1F × ∂2F ) × ~k

|∂1F × ∂2F |

∣

∣

∣

∣

∣

2

= 1 − gij∂iz∂jz = 1 − |∇gz|
2,

where gij are components of the inverse matrix (gij)
−1. Clearly the remaining two

components of F must also satisfy equation (1). Conversely, if a local solution of
(1) exists for a given metric g and |∇gz| < 1, then a calculation shows that g − dz2

is a Riemannian metric and is flat. It follows that there exists a local change of
coordinates z1 = z1(x

1, x2), z2 = z1(x
1, x2) such that g − dz2 = dz2

1 + dz2
2 .
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