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Abstract. We present a proof of the Riemannian Penrose inequality with charge in the context

of asymptotically flat initial data sets for the Einstein-Maxwell equations, having possibly multiple

black holes with no charged matter outside the horizon, and satisfying the relevant dominant energy

condition. The proof is based on a generalization of Hubert Bray’s conformal flow of metrics adapted

to this setting.

1. Introduction

In a seminal paper [26] (see also [27]), in which he proposed the celebrated cosmic censorhip
conjecture, R. Penrose also proposed a related inequality, now referred to as the Penrose Inequality.
The inequality is derived from cosmic censorship via a heuristic argument relying on Hawking’s area
theorem [14]. Consider an asymptotically flat Cauchy surface in a spacetime satisfying the dominant
energy condition, having ADM mass m, and containing an event horizon of area A = 4πρ2, which
undergoes gravitational collapse and settles to a Kerr-Newman solution. Since the ADM mass m∞
of the final state is no greater than m, the area radius ρ∞ is no less than ρ, and the final state must
satisfy m∞ ≥ 1

2ρ∞ in order to avoid naked singularities, it must have been the case that m ≥ 1
2ρ

also at the beginning of the evolution. A counterexample to the Penrose inequality would therefore
suggest data which leads under the Einstein evolution to naked singularities, and a proof of the
Penrose inequality may be viewed as evidence in support of cosmic censorship.

The event horizon is indiscernible in the original slice without knowing the full evolution, however
one may, without disturbing this inequality, replace the event horizon by the outermost minimal
area enclosure of the apparent horizon (the boundary of the region admitting trapped surfaces).
The inequality further simplifies in the time-symmetric case, in which the outermost minimal area
enclosure of the apparent horizon coincides with the outermost minimal surface, and the dominant
energy condition reduces simply to nonnegative scalar curvature. This leads to the Riemannian
version of the inequality: the ADM mass m and the area radius r of the outermost minimal surface
in an asymptotically flat 3-manifold of nonnegative scalar curvature, satisfy

(1.1) m ≥ ρ

2

with equality if and only if the manifold is isometric to the canonical slice of the Schwarzschild
spacetime. Note that this characterizes the canonical slice of Schwarzschild as the unique minimizer
of m among all such 3-manifolds admitting an outermost horizon of area A = 4πρ2.

This inequality was first proved in the special case where the horizon is connected by Huisken and
Ilmanen [15] using the inverse mean curvature flow, an approach proposed by Jang and Wald [17],
following Geroch [10] who had shown that the Hawking mass is nondecreasing under the flow. The
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inequality was proven in full generality by Bray [1] using a conformal flow of the initial Riemannian
metric, and the positive mass theorem [28], [31].

We now turn to the charged case which is somewhat more subtle. It is natural to conjecture as
above that the Reissner-Nordström spacetime, the charged analog of Schwarzschild, is the unique
minimizer of m, given ρ and q. Since Reissner-Nordström satisfies m = 1

2(ρ + q2/ρ) where q is
the total charge, one is thus lead to conjecture that in any asymptotically flat data satisfying an
appropriate energy condition it holds

(1.2) m ≥ 1

2

(
ρ+

q2

ρ

)
,

with equality if and only if the initial data is the canonical slice of Reissner-Nordström. This follows
from [15], and is based on Jang [16], but only for a connected horizon, since the proof relies on inverse
mean curvature flow. In fact (1.2) can fail if the horizon is not connected, and a counterexample
based on the Majumdar-Papapetrou spacetime with two black holes was constructed in [30]. This
counterexample nonetheless does not suggest a counterexample to cosmic censorship. This is because
the right-hand side of (1.2) is not monotone increasing in ρ. Indeed, already Jang observed that
(1.2) is equivalent to two inequalities:

(1.3) m−
√
m2 − q2 ≤ ρ ≤ m+

√
m2 − q2.

Cosmic censorship suggests that the upper bound always holds, while the counterexample in [30]
violates the lower bound. It turns out, however, that the lower bound also holds, and furthermore
is motivated by cosmic censorship in the case of a single black hole, or more generally when ρ ≥ |q|
(see [7]).

In this paper, we prove the upper bound in (1.3) for multiple black holes. By the positive mass
theorem with charge, m ≥ |q| with equality if and only if the data is Majumbdar-Papapetrou [12];
see [5], [19] for the rigidity result. Hence if ρ ≤ |q|, the upper bound in (1.3) follows immediately

(1.4) ρ ≤ |q| ≤ m ≤ m+
√
m2 − q2.

It thus only remains to prove the upper bound under the additional hypothesis |q| < ρ. Under this
hypothesis, it is the lower bound that follows immediately

(1.5) m ≤ |q|+
√
m2 − q2 < ρ+

√
m2 − q2.

In fact the condition |q| ≤ ρ is always valid for a single horizon, in light of its stability [11], [20],
however for multiple horizons this inequality is indeed a nontrivial restriction. In view of all the
above, the upper bound in (1.3) is equivalent to (1.2) under the additional hypothesis |q| ≤ ρ. The
proof of this latter statement will be based on a generalization of Bray’s conformal flow. It should
also be noted that the right-hand side of (1.2) is nondecreasing as a function of ρ (with fixed q),
precisely when |q| ≤ ρ. Thus, (1.2) with the auxiliary area-charge inequality may also be derived
using the heuristic Penrose argument.

The inequalities discussed in the previous paragraphs are most easily visualized in Figure 1. The
white area is the positive mass theorem m ≥ 0. The light shaded area is the Penrose inequality, and
the other two darker shaded areas are the charged Penrose inequality. The inequality represented by
the region to the left of the dashed vertical line ρ = |q|, and above the solid horizontal line m = |q|,
follows from the charged positive mass theorem. Moreover, the dotted curve in this region is the
lower bound in (1.3), or a continuation of the equality curve from (1.2); the black dot represents
the counterexample in [30]. This paper deals with the proof of the inequality represented by the
darkest shaded region, to the right of ρ = |q| and above m = 1

2(ρ+ q2/ρ), which is the upper bound
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Figure 1. Graphical representation of geometric inequalities

in (1.3) with |q| ≤ ρ, or (1.2) with |q| ≤ ρ. Lastly, it should be noted that every configuration with
one black hole component lies to the right of the vertical dashed line ρ = |q|, or equivalently, every
configuration to the left of the vertical line has multiple black hole components.

We end the introduction with a few definitions and the statement of our main theorem and its
corollaries. An initial data set (M, g,E,B) consists of a 3-manifold M , a Riemannian metric g, and
vector fields E and B. It will be assumed that the data satisfy the Maxwell constraints with no
charges outside the horizon divg E = divg B = 0, and that the charged dominant energy condition

(1.6) 16πµEM = Rg − 2(|E|2g + |B|2g) ≥ 0

is valid, where Rg is the scalar curvature of g and µEM is the energy density of the matter fields after
contributions from the electromagnetic field have been removed. It should be noted that typically
the charged dominant energy condition is given by the slightly stronger statement µEM ≥ |JEM |g,
where 4πJEM = E×B is minus one half the momentum density of the electromagnetic field. It turns
out, however, that for the results of the current paper the hypothesis (1.6) is sufficient. Moreover
in the case of equality for (1.2), it will be shown that E and B are linearly dependent so that
JEM = 0. Typically when Penrose-type inequalities are saturated, the vanishing of the momentum
density arises at least in part due to the stronger version of the charged dominant energy condition.
Nevertheless, the same result holds here under the weaker form of the energy condition (1.6).

We assume further that the data is strongly asymptotically flat, meaning that there is a compact
set K such that M \K is the finite union of disjoint ends, and in the coordinates given on each end
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the fields decay according to

(1.7) gij = δij +O2(|x|−1), Ei = O1(|x|−2), Bi = O1(|x|−2).

and Rg is integrable. This guarantees that the ADM mass and the total electric and magnetic charges

m =
1

16π

∫

S∞

(gij,j − gjj,i)νi dA,(1.8)

qe =
1

4π

∫

S∞

Eiν
i dA, qb =

1

4π

∫

S∞

Biν
i dA,(1.9)

are well defined, with squared total charge q2 = q2
e + q2

b . Here ν is the outer unit normal, and the
limit is taken in a designated end. Without loss of generality, we assume that the magnetic charge
qb = 0, and so from now on q = qe. This can always be achieved by a fixed rotation in (E,B)
space. Conformally compactifying all but the designated end, we can now restrict our attention to
surfaces which bound compact regions, and define S2 to enclose S1 to mean S1 = ∂K1, S2 = ∂K2 and
K1 ⊂ K2. An outermost horizon is a compact minimal surface not enclosed in any other compact
minimal surface. The following results were first discussed in the announcement [21].

Theorem 1.1. Let (M, g,E,B) be a strongly asymptotically flat initial data set with outermost
minimal surface boundary of area A = 4πρ2, satisfying the charged dominant energy condition and
the Maxwell constraints without charged matter. If |q| ≤ ρ, then (1.2) holds with equality if and only
if the data set arises as the canonical slice of the Reissner-Nordström spacetime.

Corollary 1.2. Let (M, g,E,B) be a strongly asymptotically flat initial data set with outermost
minimal surface boundary of area A = 4πρ2, satisfying the charged dominant energy condition and
the Maxwell constraints without charged matter. Then the upper bound in (1.3) holds with equality
if and only if the data set arises as the canonical slice of the Reissner-Nordström spacetime.

Corollary 1.3. Assume that the above hypotheses hold. If q and ρ are fixed with |q| ≤ ρ, then the
canonical Reissner-Nordström slice is the unique minimizer of m. Moreover, if m and q are fixed
with m ≥ |q|, then the canonical Reissner-Nordström slice is the unique maximizer of ρ.

In the case when charged matter is present, and in particular is not compactly supported, coun-
terexamples exist [22]. The full version of the inequality in the non-time-symmetric case remains an
open problem. A reduction argument similar to that proposed by Bray and the first author in [3],
[4], has been given in [9] (see also [18]). However it only applies to the case of a single black hole,
as it is based on a coupling of the static Jang equation with inverse mean curvature flow. Coupling
the static Jang equation to Bray’s conformal flow is possible and also leads to a reduction argument
for the Penrose inequality; this was briefly discussed in [4]. It seems likely then that a coupling
to the charged conformal flow presented in this paper, should reduce the general charged Penrose
inequality to the time-symmetric case as well. Whether the coupled system admits a solution with
the appropriate boundary and asymptotic behavior is then an important open question.

This paper is organized as follows. In the next two sections, a generalized version of Bray’s
conformal flow will be defined, and its existence will be established. In Section 4, it will be shown that
the flowing outermost minimal surfaces move out into the asymptotic end and eventually exhaust the
manifold. In Bray’s original flow this exhaustion always occurs, however for the charged conformal
flow, the exhaustion can only happen when |q| ≤ ρ, and is one of the most interesting and surprising
differences between this flow and the original. Section 5 is dedicated to monotonicity of the mass,
which follows from a modified doubling argument in analogy to the original flow. In Section 6 we solve
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a quasi-linear elliptic equation, whose solution plays an important part in the proof of monotonicity,
and in Section 7 proofs of the main theorem will be given. Lastly, two appendices are added which
include an auxiliary a priori estimate, and the model example for the new flow.

2. The Charged Conformal Flow

The goal here is to construct a flow (Mt, gt, Et, Bt) of asymptotically flat initial data for the
Einstein-Maxwell equations, starting from the given initial data (M, g,E,B) at t = 0, and which
preserves the boundary area |∂Mt|gt , total charge qt, Maxwell constraints, the charged dominant
energy condition, and exhibits a nonincreasing ADM mass m(t). Moreover, this flow should reduce
to Bray’s conformal flow when |E|g = |B|g = 0, and should proceed by coordinate rescalings in the
standard initial data for Reissner-Nordström. This flow, defined below, will be referred to as the
charged conformal flow.

Consider the conformal flow of metrics defined by gt = u4
t g, with u0 ≡ 1. Given the metric gt,

define ∂Mt to be the outermost minimal area enclosure of ∂M in (M, gt), and denote the region
enclosed by ∂Mt and spatial infinity by Mt. It will turn out that ∂Mt does not intersect ∂M , and
hence it is an outermost minimal surface. Also set Eit = u−6

t Ei and Bi
t = u−6

t Bi. Given gt, Et, Bt,
and ∂Mt, define vt to be the unique solution of the Dirichlet problem

(2.1) ∆gtvt −
(
|Et|2gt + |Bt|2gt

)
vt = 0, on Mt,

(2.2) vt = 0 on ∂Mt, vt → −1 as r →∞.
By expanding the solution in spherical harmonics, it follows that

(2.3) vt = −1 +
γt
r

+O

(
1

r2

)
as r →∞,

for some constant γt > 0. On M \Mt set vt ≡ 0. The function vt will act as the logarithmic velocity

of the flow d
dtut = vtut. Thus given vt, define ut = exp

(∫ t
0 vsds

)
.

The existence and regularity of this flow is similar to that of the original conformal flow, and
will be discussed in the next section. Moreover, it is clear that it reduces to Bray’s flow when the
electromagnetic field vanishes, and indeed is trivial in the Reissner-Nordström solution as is shown
in Appendix B. We now prove that it satisfies the other desired properties.

Theorem 2.1. For all t ≥ 0 it holds that qt = q, |∂tM |gt = |∂M |g, divgt Et = divgt Bt = 0 and

(2.4) Rgt ≥ 2
(
|Et|2gt + |Bt|2gt

)
.

Proof. The same arguments used by Bray [1] apply to show that the area remains constant throughout
the flow (see Section 3 below). In order to show that the charge remains constant, observe that
|Et|2gt = u−8

t |E|2g, and hence

(2.5) 4πqt =

∫

S∞

gt(Et, νt)dAgt =

∫

S∞

g(E, ν)dAg = 4πq.

Furthermore

(2.6) divgt Et =
1√

det gt
∂i

(√
det gtE

i
t

)
=

u−6
t√

det g
∂i

(√
det gEi

)
= u−6

t divg E = 0,

and similarly for the magnetic field B.



6 KHURI, WEINSTEIN, AND YAMADA

It remains to show that the charged dominant energy condition remains preserved throughout the
flow. Let Lg denotes the conformal Laplacian, then by a standard formula

(2.7) u5
tRgt = −8Lgut = −8

(
∆gut −

1

8
Rgut

)
,

so that with help from the conformal covariance of Lg it follows that

d

dt
(u8
tRgt) =

d

dt
[u3
t (u

5
tRgt)]

= 3u2
t

(
d

dt
ut

)
u5
tRgt + u3

t

d

dt
(−8Lgut)

= 3vtu
8
tRgt − 8u3

tLg(utvt)

= 3vtu
8
tRgt − 8u8

tLgtvt

= 3vtu
8
tRgt − 8u8

t

(
∆gtvt −

1

8
Rgtvt

)

= 4vtu
8
tRgt − 8vtu

8
t (|Et|2gt + |Bt|2gt).

(2.8)

Then since d
dt(u

8
t |Et|2gt) = d

dt(u
8
t |Bt|2gt) = 0, we have

(2.9)
d

dt
[u8
t

(
Rgt − 2|Et|2gt − 2|Bt|2gt

)
] = 4vtu

8
t

(
Rgt − 2|Et|2gt − 2|Bt|2gt

)
,

so that

(2.10) u8
t

(
Rgt − 2|Et|2gt − 2|Bt|2gt

)
= e

∫ t
0 4vsds

(
Rg − 2|E|2g − 2|B|2g

)
= u4

t

(
Rg − 2|E|2g − 2|B|2g

)
≥ 0.

�

Monotonicity of the mass is of course more difficult and relegated to its own section, Section 5.
Notice also that we do not prove that the flow converges to the canonical Reissner-Nordström data,
in analogy with the fact that the original conformal flow converges to the canonical Schwarzschild
data. While we strongly believe that this result holds for the charged conformal flow, it is not needed
to prove the main theorem and is hence left for future investigation.

3. Existence of the Flow

In this section we prove that the charged conformal flow exists, by employing the same discretiza-
tion procedure developed Bray. The presentation will closely follow that in [1]. For each ε ∈ (0, 1

2)
a family of approximate solutions uεt(x) will easily be constructed, and the solution shall arise from
the limit

(3.1) ut(x) = lim
ε→0

uεt(x).

Given the metric gεt = (uεt)
4g (with uε0 ≡ 1), define for t ≥ 0

(3.2) ∂M ε
t =





∂M if t = 0,
the outermost minimal area enclosure
of ∂M ε

t−ε in (M, gεt) if t = kε with k ∈ Z+,
∂M ε

btcε otherwise,
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where

(3.3) btcε := ε

⌊
t

ε

⌋
.

Let M ε
t denote the region enclosed between ∂M ε

t and spatial infinity. Moreover, given ∂M ε
t we may

define

(3.4) uεt(x) = exp
(∫ t

0
vεs(x) ds

)
,

where vεt is the solution of the Dirichlet problem

(3.5)





∆gεbtcε
vεt −

(
|Eεbtcε |

2
gεbtcε

+ |Bε
btcε |

2
gεbtcε

)
vεt = 0 on M ε

t ,

vεt = 0 on ∂M ε
t ,

vεt → −1 as |x| → ∞,

with vεt(x) ≡ 0 on M \M ε
t and (Eεt )

j = (uεt)
−6Ej , (Bε

t )
j = (uεt)

−6Bj . Note that (3.4) directly implies
that uεt(x)→ e−t as |x| → ∞.

Now observe that ∂M ε
t and hence vεt(x) are fixed for t ∈ [kε, (k+1)ε). Furthermore, for t = kε with

k ∈ Z+, ∂M ε
t does not touch ∂M ε

t−ε because ∂M ε
t−ε has negative mean curvature in (M, gεt). This

follows from the fact that ∂νu
ε
t|∂Mε

t−ε
< 0, where ν is the unit outer normal pointing to spatial infinity.

To see that this is in fact the case, first observe that ∂νu
ε
t−ε|∂Mε

t−ε
= 0 since ∂M ε

(k−1)ε is minimal in

(M, gε(k−1)ε), and ∂νv
ε
t−ε|∂Mε

t−ε
< 0 from the Hopf lemma. Therefore, using uεt = uεt−ε exp

(
εvε(k−1)ε

)

we find that

(3.6) ∂νu
ε
t

∣∣∣
∂Mε

t−ε
= uεt−ε∂ν exp

(
εvε(k−1)ε(x)

)∣∣∣
∂Mε

t−ε
= εuεt∂νv

ε
t−ε

∣∣∣
∂Mε

t−ε
< 0.

This inequality says that by pushing the surface ∂M ε
t−ε outwards, the area can be reduced in (M, gεt).

Hence, ∂M ε
t−ε acts as a barrier in (M, gεt). As the outermost condition implies the outer-minimizing

condition, ∂M ε
t is actually a strictly outer minimizing horizon of (M, gεt), and is smooth since gεt is

smooth outside ∂M ε
t−ε.

The same arguments presented in [1] yield the following facts. Not only are the surfaces ∂M ε
t

smooth, but any limits of these surfaces are smooth. Furthermore from the definition of ∂εt , it is
apparent that for ε > 0 the horizon ∂M ε

t2 encloses ∂M ε
t1 for all t2 ≥ t1 ≥ 0. Also, the horizon ∂M ε

t

is the outermost minimal area enclosure of ∂M in (M, gεt) when t = kε with k ∈ Z+.

Lemma 3.1. The functions uεt (x) are positive, bounded, locally Lipschitz functions (in x and t) with
uniform Lipschitz constants independent of ε.

Proof. Positivity is obvious from the definition of uεt. By the maximum principle, vεt cannot achieve
a nonnegative maximum. This then implies that uεt(x) ≤ 1. That uεt(x) is Lipschitz in t follows from
its definition and the fact that −1 < vεt (x) ≤ 0. That uεt(x) is Lipschitz in x follows from the fact
that vεt(x) is Lipschitz in x (with Lipschitz constant depending on t), which follows from Corollary
15 of [1]. �

Corollary 3.2. There exists a subsequence {εi} converging to zero such that

(3.7) ut(x) = lim
εi→0

uεit (x)

exists, is locally Lipschitz in x and t, and the convergence is locally uniform. Hence we may define

(3.8) gt = lim
εi→0

gεit = u4
t (x)g
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for t ≥ 0.

Define {Σ̃γ(t)} to be the collections of limit surfaces of ∂M εi
t in the limit as εi approaches 0. As

discussed in [1], the limiting surfaces {Σ̃γ(t)} are all smooth.

Proposition 3.3. The surface Σ̃γ2(t2) encloses Σ̃γ1(t1) for all t2 > t1 ≥ 0 and for any γ1 and γ2.

Proof. The same arguments as in the proof of Theorem 5 in [1] apply here, except for one technical
point that needs to be addressed. Namely, in [1], it is used that vεt is a harmonic function so that
the maximum principle applies. In our setting, this function should be replaced by uεtv

ε
t , since here

vεt represents the logarithmic velocity d
dtu

ε
t = vεtu

ε
t, while in [1] vεt represents the velocity d

dtu
ε
t = vεt .

Thus it remains to show that uεtv
ε
t satisfies an equation outside ∂M ε

t , to which the maximum principle
applies. To see this, note that (2.10) holds with ε, and use a standard property for the conformal
Laplacian to obtain

∆g(u
ε
tv
ε
t) = (uεt)

5∆gεt
vεt −

1

8
Rgεt (u

ε
t)

5vεt +
1

8
Rgu

ε
tv
ε
t

= vεt(u
ε
t)

5
(
|Eεt |2gεt + |Bε

t |2gεt
)
− 1

8
Rgεt (u

ε
t)

5vεt +
1

8
Rgu

ε
tv
ε
t

=

[
3

4
(uεt)

4
(
|Eεt |2gεt + |Bε

t |2gεt
)

+
1

4

(
|E|2g + |B|2g

)]
(uεtv

ε
t).

(3.9)

Since the term in brackets on the right-hand side is nonnegative, it follows that the resulting equation
for uεtv

ε
t admits a maximum principle. �

Define ∂Mt to be the outermost minimal area enclosure of the original horizon ∂M in (M, gt).
Apart from the proposition above, the rest of the proof of existence of the flow is identical to the
arguments in [1]. In particular, we have the following result.

Theorem 3.4. The surface ∂Mt2 encloses ∂Mt1 for all t2 > t1 ≥ 0, and the areas remain constant
|∂Mt|gt = |∂M |g for all t ≥ 0. Furthermore, the set J of t(≥ 0) at which point the surface “jumps”,
namely when

(3.10) lim
s→t−

∂Ms 6= lim
s→t+

∂Ms,

is countable, and for t /∈ J , Σ̃γ(t) is single valued. Given the horizon ∂Mt, vt may be defined as in

Section 2, and serves as the logarithmic velocity of the flow d
dtut = vtut.

4. Exhaustion

The existence of the charged conformal flow, and its properties listed in Sections 2 and 3, are
independent of the area/charge inequality |∂M |g ≥ 4πq2, or equivalently ρ ≥ |q| as expressed in the
introduction. It is then noteworthy and perhaps surprising, that the property of exhaustion, which
states that the flowing surfaces ∂Mt eventually enclose any bounded set, essentially holds1 if and
only if the area/charge inequality is valid. In fact, this section is the only place in the paper where
the area/charge inequality plays a role. As in [1], the proof will follow two basic steps. The first
consists of showing that ∂Mt cannot, for all t ≥ 0, be enclosed by any fixed large coordinate sphere
in the asymptotic end, and the second entails showing that it is not possible for ∂Mt to be only
partially contained, for all t ≥ 0, in a large coordinate sphere. It turns out that the second step may

1It is proven that the strict area/charge inequality is sufficient for exhaustion, and that the nonstrict area/charge

inequality is necessary for exhaustion.
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be proved directly from the same arguments in [1], and does not require the area/charge inequality.
Thus, we will focus here on the first step in which the area/charge inequality is needed.

Before proceeding, we show that the area/charge inequality is a necessary condition for exhaustion.
Note that if exhaustion occurs, then eventually the surfaces ∂Mt become connected.

Lemma 4.1. If for some t ≥ 0, ∂Mt is connected, then |∂M |g ≥ 4πq2.

Proof. Since the areas and charges are preserved throughout the flow, it suffices to prove the conclu-
sion at time t. Observe that by the second variation of area formula

(4.1) 0 ≤
∫

∂Mt

[
−ψ∆∂Mtψ − (| IIt |2 + Ricgt(ν, ν))ψ2 +H2

t ψ
2
]
dAt, for any ψ ∈ C∞(∂Mt),

where IIt is the second fundamental form and Ricgt(ν, ν) is the Ricci curvature in the normal direction.
Since ∂Mt is a minimal surface, the Gauss equations yield

(4.2) | IIt |2 + Ricgt(ν, ν) = | IIt |2 +
1

2
Rgt −Kt +

1

2
H2
t −

1

2
| IIt |2 =

1

2
| IIt |2 +

1

2
Rgt −Kt,

where Kt is Gaussian curvature. It follows that

(4.3) 0 ≤
∫

∂Mt

(
|∇ψ|2 − 1

2
| IIt |2ψ2 − 1

2
Rgtψ

2 +Ktψ
2

)
dAt.

Choose ψ ≡ 1, and note that since ∂Mt has spherical topology, the Gauss-Bonnet theorem and (2.4)
imply that

4π ≥
∫

∂Mt

1

2

(
| IIt |2 +Rgt

)
dAt ≥

∫

∂Mt

(
|Et|2gt + |Bt|2gt

)
dAt

≥
∫

∂Mt

(
|Et · ν|2 + |Bt · ν|2

)
dAt

≥ |∂Mt|−1
gt

[(∫

∂Mt

Et · νdAt
)2

+

(∫

∂Mt

Bt · νdAt
)2
]

=
(4π)2q2

t

|∂Mt|gt
,

(4.4)

where we have used Jensen’s inequality and the fact that the Maxwell fields are divergence free
(Theorem 2.1). �

We will now show that the strict area/charge inequality is also a sufficient condition for exhaustion.
This will require some preparation. In [1], it was assumed without loss of generality that the initial
data possessed harmonic asymptotics. Similarly, for the results of this section, we may assume
that the initial data (M, g,E,B) possess the so called charged harmonic asymptotics, developed by
Corvino in [6]. This means that in the asymptotic end g = U4

0 δ (where δ is the Euclidean metric)

for some function U0 satisfying Rg = −8U−5
0 ∆δU0 = 2|E|2g, with Ei = U−6

0 Eiδ and Eδ = −qe∇r−1.
Observe that the magnetic field is excluded here, since when the asymptotics are imposed B has
the same form as E with qe replaced by qb. However, as mentioned in the introduction, nothing is
lost by assuming qb = 0 (qe = q), so that B = 0 in the end with such asymptotics. It should also
be noted that the asymptotics used here for the electric field differ slightly from those in [6], where
E = U−6

0 ∇χ for some function χ = −qr−1 + O(r−2) which is harmonic in the end; the choice of
χ ensures that E is divergence free on M . Thus, in our version of the asymptotics, E is no longer
divergence free everywhere, a property which is of no use for the results in the current section.
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Write Ut = utU0 and Vt = vtutU0. Then in the asymptotic end

(4.5) LδUt = U5
t Lgt1 = −1

8
U5
t Rgt , LδVt = U5

t Lgtvt = U5
t

(
|Et|2gtvt −

1

8
Rgtvt

)
.

According to the charged harmonic asymptotics and (2.10) we have that Rgt = 2|Et|2gt = 2U−8
t |Eδ|2δ ,

therefore

(4.6) ∆δUt = −1

4
|Eδ|2δU−3

t , ∆δVt =
3

4
U−4
t |Eδ|2δVt.

Let Sr(t) be a large coordinate sphere in the asymptotic end, and define Ṽt to be the unique solution
of the boundary value problem

(4.7) ∆δṼt =
3

4
Ũ−4
t |Eδ|2δ Ṽt, Ṽt = 0 on Sr(t), Ṽt → −e−t as |x| → ∞,

where Ũt is the function Ut in the conformal flow of the Reissner-Nordström initial data (see Appendix

B). Note that Ṽt is the velocity function Vt in the conformal flow of the Reissner-Nordström initial
data, and in particular

(4.8) Ṽt =
−e−2t + e2t m̃2−q2

4|x|2√
e−2t + m̃

|x| + e2t m̃
2−q2

4|x|2

for some constant m̃. We choose m̃ so that the boundary condition of (4.7) is satisfied, namely

(4.9) m̃ =
√

4e−4tr(t)2 + q2.

It follows that

(4.10) Ũt =

(
e−2t +

√
4e−4tr(t)2 + q2

|x| + e−2t r(t)
2

|x|2

)1/2

.

For reasons that will become clear in the proof of Proposition 4.4 below, we would like to compare
the solution of the conformal flow Ut, or more precisely a radial approximation Ût, with the model
solution from the Reissner-Nordström example Ũt. The desired radial approximation is given as the
unique (radial) solution of
(4.11)

∆δÛt = −1

4
|Eδ|2δÛ−3

t , Ût =

(
1

4πr(t)2

∫

Sr(t)

U4
t dAδ

)1/4

on Sr(t), Ût → e−t as |x| → ∞.

The corresponding radial velocity function V̂t = d
dt Ût is the unique solution of the boundary value

problem

(4.12) ∆δV̂t =
3

4
Û−3
t |Eδ|2δ V̂t, V̂t =

d

dt
[Ût(r(t))] on Sr(t), V̂t → −e−t as |x| → ∞.

It turns out that Ût has a relatively simple explicit form.

Lemma 4.2. Let r(t) = ε
√
A0e

2t with A0 = |∂M |g. If ε is sufficiently small, then there exists a
constant α > −1

2q
2, depending on Ut|Sr(t), such that

(4.13) Û4
t (x) = e−4t +

e−2t
√

8
3

(
α+ 1

2q
2
)

|x| +
α

|x|2 +
e2t
√

8
3

(
α+ 1

2q
2
)
(α− q2)

6|x|3 +
e4t(α− q2)2

36|x|4 .
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Proof. Consider the equation satisfied by Û4
t :

(4.14) ∆δÛ
4
t = −|Eδ|2δ +

3

4
Û−4
t |∇Û4

t |2δ .

Since the equation and all coefficients are analytic in their arguments, we may assume that the
solution is given by an expansion

(4.15) Û4
t = e−4t +

c1

|x| +
c2

|x|2 +
c3

|x|3 + · · · .

We then proceed to calculate each term in (4.14). For instance

(4.16) ∆δÛ
4
t =

2c2

|x|4 +
6c3

|x|5 +
12c4

|x|6 +
20c5

|x|7 +
30c6

|x|8 + · · · ,

so that

Û4
t ∆δÛ

4
t =

2e−4tc2

|x|4 +
2c1c2 + 6e−4tc3

|x|5 +
2c2

2 + 6c1c3 + 12e−4tc4

|x|6

+
8c2c3 + 12c1c4 + 20e−4tc5

|x|7 +
2c2c4 + 6c2

3 + 12c2c4 + 20c1c5 + 30e−4tc6

|x|8 + · · · .
(4.17)

Next observe that

(4.18) ∂rÛ
4
t = − c1

|x|2 −
2c2

|x|3 −
3c3

|x|4 −
4c4

|x|5 −
5c5

|x|6 − · · · ,

which yields

(4.19) |∇Û4
t |2 = |∂rÛ4

t |2 =
c2

1

|x|4 +
4c1c2

|x|5 +
4c2

2 + 6c1c3

|x|6 +
8c1c4 + 12c2c3

|x|7 +
9c2

3 + 16c2c4 + 10c1c5

|x|8 +· · · .

Finally

(4.20) Û4
t |Eδ|2 =

e−4tq2

|x|4 +
c1q

2

|x|5 +
c2q

2

|x|6 +
c3q

2

|x|7 +
c4q

2

|x|8 + · · · .

By combining these expansions and using equation (4.14), we find the following relations

2e−4tc2 = −e−4tq2 +
3

4
c2

1,

6e−4tc3 + 2c1c2 = −c1q
2 + 3c1c2,

12e−4tc4 + 6c1c3 + 2c2
2 = −q2c2 + 3c2

2 +
9

2
c1c3,

20e−4tc5 + 12c1c4 + 6c2c3 + 2c2c3 = −q2c3 + 6c1c4 + 9c2c3.

(4.21)

From this we can solve for the constants ci:

c2 =
3

8
e4tc2

1 −
1

2
q2,

c3 =
1

16
e8tc3

1 −
1

4
e4tq2c1,

c4 =
3

48
e4tq4 − 1

32
e8tc2

1q
2 +

1

256
e12tc4

1,

ci = 0, i ≥ 5.

(4.22)
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Although the higher order terms for i > 5 have not been computed here, one may deduce that they
all vanish by simply checking that (4.15), with these coefficients, solves (4.14). The constant c1 may
be chosen in order to realize the correct boundary condition.

Let us now obtain the form (4.13). The first task is to show that c1 > 0. To see this, first recall
the result of Bray and Iga [2], which states that

(4.23) U4
t ≥

cA0

|x|2 outside of Sr(t)

for some positive constant c. Since the average value of U4
t agrees with that of Û4

t on Sr(t), we find
that

(4.24) Û4
t ≥ cε−2e−4t > e−4t on Sr(t),

if ε is small enough. Moreover Û4
t → e−4t as |x| → ∞. From equation (4.14), it is clear that Û4

t

cannot obtain an interior minimum, thus

(4.25) Û4
t > e−4t outside of Sr(t).

It follows that c1 > 0. Now solve for ci in terms of c2 to produce

(4.26) c1 = e−2t

√
8

3

(
c2 +

1

2
q2

)
, c3 =

e2t

6

√
8

3

(
c2 +

1

2
q2

)
(c2 − q2), c4 =

1

36
e4t(c2 − q2)2.

The desired result is obtained by setting α = c2 and noting that α > −1
2q

2 by (4.22). �

Notice that the Reissner-Nordström conformal factors have a similar expansion to that of Ût,
namely

Ũ4
t =

(
e−2t +

√
4e−4tr(t)2 + q2

|x| +
e−2tr(t)2

|x|2

)2

=e−4t +
2e−2t

√
4e−4tr(t)2 + q2

|x| +
6e−4tr(t)2 + q2

|x|2

+
2e−2tr(t)2

√
4e−4tr(t)2 + q2

|x|3 +
e−4tr(t)4

|x|4 .

(4.27)

This is not too surprising, since Ũt satisfies the same equation (4.14) as Û4
t , and has the same

asymptotic behavior as |x| → ∞. Observe also that

(4.28) Ṽt =
d

dt
Ũt = −

e−2t
(

1− r(t)2

|x|2

)

(
e−2t −

√
4e−4tr(t)2+q2

|x| + e2t r(t)
2

|x|2

)1/2
,

satisfies

(4.29) ∆δṼt =
3

4
Ũ−4
t |Eδ|2δ Ṽt, Ṽt = 0 on Sr(t), Ṽt → −e−t as |x| → ∞.

The next lemma gives the foundational estimate on which the exhaustion proof is based. It is also
the primary place where the area/charge inequality is required.

Lemma 4.3. Let r(t) = ε
√
A0e

2t with A0 = |∂M |g. If A0 > 4πq2 and ε is sufficiently small, then

(4.30) Ût(x) ≥ Ũt(x) for |x| ≥ r(t).
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Proof. Note that by setting α = q2 + 6e−4tr(t)2, Ût becomes Ũt. In fact, by directly comparing the
coefficients in the expressions for these two functions, it is apparent that the desired result follows if

(4.31) α− q2 ≥ 6e−4tr(t)2 = 6ε2A0 and (α− q2)2 ≥ 36e−8tr(t)4 = 36ε4A2
0.

Observe that since |Sr(t)|gt ≥ |∂Mt|gt = |∂M |g, we have

A0

4π
≤ 1

4π

∫

Sr(t)

U4
t dAδ =

1

4π

∫

Sr(t)

Û4
t dAδ

= ε2A0 + ε
√
A0

√
8

3

(
α+

1

2
q2

)
+ α+

1

6ε
√
A0

√
8

3

(
α+

1

2
q2

)
(α− q2) +

(α− q2)2

36ε2A0
.

(4.32)

Suppose that both inequalities in (4.31) are violated, then

(4.33)
A0

4π
< 2ε2A0 + ε

√
A0

√
8

3

(
3

2
q2 + 6ε2A0

)
+ q2 + 6ε2A0 + ε

√
8A0

3

(
3

2
q2 + 6ε2A0

)
.

However this is impossible for small ε, since A0 > 4πq2 independent of ε. Therefore, at least one of
the inequalities in (4.31) must be satisfied. If the first inequality is satisfied, then so is the second.
So assume now that the second inequality is satisfied but not the first. The only way that this can
happen is if α − q2 < −6ε2A0. We claim however, that α ≥ q2 as a result of the positive mass
theorem with charge [12], and hence (4.31) holds.

To verify the claim, consider the initial data (R3 \ {0}, Û4
t δ, Û

−6
t Eδ), which satisfies the charged

dominant energy condition, the Maxwell constraint, and has mass m̂ = 1
2

√
8
3

(
α+ 1

2q
2
)
. Note that

although Ût was initially defined in (4.11) only on R3 \Br(t), the explicit expression for Ût in Lemma

4.2 is valid on R3 \ {0}. If α = q2 then we are done, so assume that α 6= q2. Then according to

the expansion of Ût, this initial data set has an asymptotically flat end corresponding to {0}, and
therefore a minimal surface exists which separates the two ends. We may now apply the positive
mass theorem with charge to conclude that m̂ ≥ |q|, and the claim follows. �

We have now finished the preparation, and are ready to establish the first step in the proof of
exhaustion.

Proposition 4.4. Let r(t) = ε
√
A0e

2t with A0 = |∂M |g. If A0 > 4πq2 and ε is sufficiently small,
then ∂Mt cannot be entirely enclosed by the coordinate sphere Sr(t) for all t.

Proof. The proof is by contradiction. Thus assume that ∂Mt is entirely enclosed by Sr(t) for all

t ≥ t. It will then be shown that if t is sufficiently large, then ∂Mt is not the outermost minimal
area enclosure of ∂M with respect to the metric gt, yielding a contradiction.

Consider the equation satisfied by the difference Wt = Ṽt − V̂t

(4.34) ∆δWt =
3

4
Û−4
t |Eδ|2δWt +

3

4
(Ũ−4

t − Û−4
t )Ṽt|Eδ|2δ .

Moreover Wt → 0 as |x| → ∞, and

(4.35) V̂t(r(t)) =
d

dt
[Ût(r(t))] < 0 = Ṽt(r(t))

so that Wt > 0 on Sr(t). In (4.35) we used the formula (4.13) to show that d
dt [Ût(r(t))] < 0. Since

Ũ−4
t − Û−4

t ≥ 0 by Lemma 4.3, we may apply the maximum principle to conclude that Wt ≥ 0
outside Sr(t).
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The remaining arguments proceed similar to those in the proof of Theorem 12 in [1]. From the

above, we have that V̂t ≤ Ṽt outside of Sr(t).
2 This allows an estimate of Ût from above, since

V̂t = d
dt Ût. In this direction, first notice that

(4.36)

Ṽt = −
e−2t

(
1− r(t)2

|x|2

)

(
e−2t −

√
4e−4tr(t)2+q2

|x| + e2t r(t)
2

|x|2

)1/2
≤ −

e−2t
(

1− r(t)2

|x|2

)

(
e−2t + 2e−2tr(t)

|x| + e2t r(t)
2

|x|2

)1/2
= −e−t

(
1− r(t)

|x|

)
.

Now choose a constant c > 0 such that Ût(x) ≤ e−t + c
|x| for all x outside of Sr(t). Then for all x

outside of Sr(t),

(4.37) Ût(x) = Ût(x) +

∫ t

t
V̂sds ≤ Ût(x) +

∫ t

t
Ṽsds ≤ e−t +

1

|x|
[
c+ ε

√
A0(et − et)

]
.

It follows that

(4.38) |Sr(t)|gt =

∫

Sr(t)

U4
t dAδ =

∫

Sr(t)

Û4
t dAδ ≤ 4πr(t)2Û4

t (r(t)) ≤ 4πε2A0[2 +O(ε−1e−t)]4.

Therefore, for ε sufficiently small and t ≥ t sufficiently large |Sr(t)|gt < A0. �

We are now ready to state the main result of this section.

Theorem 4.5. If |∂M |g > 4πq2, then the collection of subdomains {Mt} exhausts the manifold M .
In particular, the flowing surfaces ∂Mt eventually become connected (topological 2-spheres) for all
sufficiently large times.

Given Proposition 4.4, the proof of this statement is identical to that which appears in Section 10
of [1], after noting that Ut is superharmonic by (4.6).

5. Monotonicity of the Mass

Monotonicity of the mass is proven with a doubling argument similar to that in [1]. However here,
the doubling procedure is based on the proof of uniqueness for the Reissner-Nördstrom black hole
given by Masood-ul-Alam [23]. Let (M−t ∪M+

t , g
±
t ) be the doubled manifold with M±t representing

two copies of Mt glued along their boundaries and g±t = (w±t )4gt, where

(5.1) w±t =
1

2

√
(1± vt)2 − φ2

t .

The function vt approximates vt, and φt imitates the role of an electromagnetic potential in the static
case; analogues of both functions are used in [23]. Ultimately though, these functions are chosen to
impart positivity to the scalar curvature of g±t .

In order to define vt, let τ0 be sufficiently small, and set τ(x) = distgt(x, ∂Mt). Denote surfaces
of constant distance to the boundary and the domain consisting of points whose distance to the
boundary is larger than τ , by Sτ and M(τ) respectively. Then vt is the unique solution of the
boundary value problem

(5.2) ∆gtvt − ftvt = 0 on Mt, vt = 0 on ∂Mt,

2It may also be possible to prove this inequality directly from the explicit formulas for V̂t and Ṽt, with help from

the area/charge inequality.
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(5.3) vt = −1 +
γt
r

+O

(
1

r2

)
as r →∞,

where

(5.4) ft =

{
λ2η(τ) τ < 5

4τ0

|Et|2gt + |Bt|2gt on M(2τ0)

}
.

Here λ is a small parameter to be determined, η is a cut-off function such that η(τ) = 1−2τ−1
0 (τ−τ0)

for 3
4τ0 < τ < 5

4τ0, η(τ) = 0 for τ < 1
2τ0, |η′(τ)| ≤ cτ−1

0 , and |η′′(τ)| ≤ cτ−2
0 . On the transition region

5
4τ0 < τ < 2τ0, ft is defined so that

(5.5) ft ≤ λ2η

(
5

4
τ0

)
+ |Et|2gt + |Bt|2gt =

1

2
λ2 + |Et|2gt + |Bt|2gt ,

and so as to make a smooth positive function on M(τ0).
The function φt is also defined piecewise. Namely it will be shown in the next section that if

λ, τ0 > 0 and τ0 is sufficiently small, then there is a positive solution of the following Dirichlet
problem

(5.6) ∆gtφt −
∇vt · ∇φt

vt
=

Λ

φt

∣∣∣∣ft −
|∇φt|2
v2
t

∣∣∣∣ on M(τ0),

(5.7) φt = λτ4
0 on Sτ0 , φt → 0 as r →∞,

where Λ is a positive constants to be specified. On the interior region define

(5.8) φt = λτ4
0 + ∂τφt|Sτ0 (τ − τ0)η(τ) when 0 ≤ τ ≤ τ0,

where there is a slight abuse of notation in that ∂τφt|Sτ0 is defined for all 0 ≤ τ ≤ τ0 by the fact that

it is constant along the geodesic flow. Observe that φt is C1,1 across Sτ0 , and thus φt is C1,1(Mt).
Notice that if |E|g = |B|g = 0 and λ = 0 then ft = 0, which implies that φt = 0 and vt = vt. It

follows that in the absence of the electromagnetic field, the conformal factors (5.1) reduce, modulo
the choice of λ, to the same expressions used in [1]. Let us now establish positivity of the conformal
factors.

Lemma 5.1. If λ, τ0 are appropriately small, and Λ > 1, then (1± vt)2 − φ2
t > 0 on Mt.

Proof. Observe that (1± vt)2 − φ2
t = (1± vt + φt)(1± vt − φt). Thus since vt < 0 and φt > 0, it is

enough to show that 1 + vt−φt > 0. First we show this on M(2τ0). Equations (5.2) and (5.6) imply
that

∆gt(1 + vt − φt) +
∇φt · ∇(1 + vt − φt)

vt
=

(
|Et|2gt + |Bt|2gt −

|∇φt|2
v2
t

)
vt −

Λ

φt

∣∣∣∣ft −
|∇φt|2
v2
t

∣∣∣∣

≤ −
(

Λ

φt
+ vt

) ∣∣∣∣ft −
|∇φt|2
v2
t

∣∣∣∣+ (|Et|2gt + |Bt|2gt − ft)vt

≤ −
(

Λ

φt
+ vt

) ∣∣∣∣ft −
|∇φt|2
v2
t

∣∣∣∣ .

(5.9)

Also

(5.10) (1 + vt − φt)|S2τ0
> 0, (1 + vt − φt)→ 0 as r →∞,
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if λ, τ0 are small enough. Clearly the right-hand side of (5.9) is nonpositive if Λ > 1. This is due
to the fact that φt ≤ λτ4

0 and |vt| < 1 by the maximum principle. Thus, by the minimum principle
1 + vt − φt > 0 on M(2τ0).

Let us now consider the remaining region. Again use the fact that φt ≤ λτ4
0 on the region between

Sτ0 and S2τ0 . Moreover, in Appendix A it is shown that φt ≤ c(τ0)λ for τ < τ0. Hence, since
|vt| ≤ cτ0 on Mt \M(2τ0) (by the mean value theorem), if λ, τ0 are chosen appropriately (small),
then 1 + vt − φt > 0 for τ < 2τ0. �

In order to justify the use of vt in place of vt, in connection with monotonicity of the mass, it must
be established that the monopoles of these two functions at spatial infinity remain arbitrarily close.

Theorem 5.2. If an upper bound for λ is fixed, then |γt − γt| ≤ cτ
1/4
0 where c is independent of λ

and τ0.

Proof. We have

(5.11) ∆gt(vt − vt)− ft(vt − vt) = (|Et|2gt + |Bt|2gt − ft)vt on Mt,

(5.12) (vt − vt)|∂Mt = 0, (vt − vt) =
γt − γt
r

+O

(
1

r2

)
as r →∞.

Thus

−4π(γt − γt) =

∫

Mt

∆gt(vt − vt) +

∫

∂Mt

∂τ (vt − vt)

=

∫

Mt

[ft(vt − vt) + (|Et|2gt + |Bt|2gt − ft)vt] +

∫

∂Mt

∂τ (vt − vt),
(5.13)

and hence

(5.14) |γt − γt| ≤ C
(
|vt − vt|C1(∂Mt)+ ‖ ft(vt − vt) ‖L1(Mt) + ‖ |Et|2gt + |Bt|2gt − ft ‖L1(Mt)

)
.

In order to estimate |vt − vt|C1(∂Mt), use that

(5.15) |vt − vt|C1(∂Mt) ≤ |vt − vt|C1(Mt) ≤ C ‖ vt − vt ‖W 2,p(Mt)

for p > 3. By the Lp estimates for (5.11)

(5.16) ‖ vt − vt ‖W 2,p(Mt)≤ C(‖ |Et|2gt + |Bt|2gt − ft ‖Lp(Mt) + ‖ vt − vt ‖Lp(Mt)).

We choose p large enough and even, and estimate ‖ vt−vt ‖Lp(Mt). To do this, multiply the equation

(5.11) by (vt − vt)
p
3
−1 and integrate by parts. It follows that

(5.17)

∫

Mt

(p
3
− 1
)(6

p

)2

|∇(vt − vt)
p
6 |2 + ft|vt − vt|

p
3 = −

∫

Mt

(vt − vt)
p
3
−1ht,
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where ht = vt(|Et|2gt + |Bt|2gt − ft). Since (vt − vt)
p
6 = 0 on ∂Mt and vanishes sufficiently fast as

r →∞, we may apply the Gagliardo-Nirenberg-Sobolev inequality to obtain∫

Mt

|vt − vt|p =

∫

Mt

(
|vt − vt|

p
6

)6

≤ C
(∫

Mt

|∇(vt − vt)
p
6 |2
)3

≤ C
(∫

Mt

|vt − vt|
p
3
−1|ht|

)3

≤ C
(∫

Mt

(
|vt − vt|

p
3
−1
)q) 3

q
(∫

Mt

|ht|p
) 3
p

,

(5.18)

where p−1 + q−1 = 1. We want q(p3 − 1) = p, which implies q = 3p
p−3 and p = 3p

2p+3 . Thus

(5.19) ‖ vt − vt ‖Lp(Mt)≤ C ‖ ht ‖
L

3p
2p+3 (Mt)

≤ C ‖ |Et|2gt + |Bt|2gt − ft ‖
L

3p
2p+3 (Mt)

.

It follows that

(5.20) ‖ vt − vt ‖W 2,p(Mt)≤ C
(
‖ |Et|2gt + |Bt|2gt − ft ‖

L
3p

2p+3 (Mt)
+ ‖ |Et|2gt + |Bt|2gt − ft ‖Lp(Mt)

)
.

Notice also that if B(r) denotes the domain contained within the coordinate sphere Sr in the
asymptotic end, then for r0 sufficiently large

(5.21) ‖ ft(vt − vt) ‖L1(Mt)≤ C
(∫

B(r0)
|vt − vt|+

∫

Mt\B(r0)
r−4|vt − vt|

)
,

since ft ≤ cr−4 on Mt \B(r0). Thus
(5.22)

‖ ft(vt−vt) ‖L1(Mt)≤ C
(

Vol(B(r0))
1
q ‖ vt − vt ‖Lp(B(r0)) + ‖ r−4 ‖Lq(Mt\B(r0))‖ vt − vt ‖Lp(Mt\B(r0))

)
,

so that

(5.23) ‖ ft(vt − vt) ‖L1(Mt)≤ C ‖ vt − vt ‖Lp(Mt) .

Therefore

(5.24) |γt − γt| ≤ C
(
‖ |Et|2gt + |Bt|2gt − ft ‖

L
3p

2p+3 (Mt)
+ ‖ |Et|2gt + |Bt|2gt − ft ‖Lp(Mt)

)
,

for p > 3.
Recall the definition of ft in (5.4). We see that |Et|2gt + |Bt|2gt − ft ≡ 0 except on a set of small

measure depending on τ0. In particular by choosing p = 4 we obtain the desired result. �

As in Bray’s doubling argument [1], we have that the time derivative of the mass of gt is given by

(5.25) m′t = −2(mt − e−2tγt) = −2m̃t + 2e−2t(γt − γt),
where m̃t = mt − e−2tγt is the mass of the doubled manifold. Note that φt can be ignored in this
computation, since φt = O(r−1) as r → ∞. Moreover, since ∂τφt = 0 at ∂Mt, the mean curvatures
across the glued boundaries agree. Therefore as φt ∈ C1,1(Mt) and vt ∈ C∞(Mt), we may apply
the positive mass theorem with corners [25], [29] to conclude that m̃t ≥ 0, provided the scalar
curvature of the doubled manifold is nonnegative. Thus, it remains to show that the scalar curvature
is nonnegative.
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Lemma 5.3. The scalar curvature of the doubled manifold is given by

Rg±t
=

1

2
(vt)

−2(w±t )−8

∣∣∣∣φtvt∇vt −
1

2
(v2
t + φ2

t − 1)∇φt
∣∣∣∣
2

+ (w±t )−4(Rgt − 2|Et|2gt − 2|Bt|2gt) + 2(w±t )−4(|Et|2gt + |Bt|2gt − ft)

+
1

2
(w±t )−6

[
((1± vt)2 − φ2

t ∓ 4vt(1± vt))
(
ft −

|∇φt|2
v2
t

)
+ φt

(
∆gtφt −

∇vt · ∇φt
vt

)]
.

(5.26)

Proof. A standard formula yields

(5.27) Rg−t
= −8(w−t )−5

(
∆gtw

−
t −

1

8
Rgtw

−
t

)
.

Next, observe that

(5.28) ∇w−t = −1

2

(1− vt)∇vt + φt∇φt√
(1− vt)2 − φ2

t

so

(5.29) ∆gtw
−
t = −1

2

(1− vt)∆gtvt + φt∆gtφt√
(1− vt)2 − φ2

t

+
1

2

|∇vt|2 − |∇φt|2√
(1− vt)2 − φ2

t

− 1

2

|(1− vt)∇vt + φt∇φt|2
((1− vt)2 − φ2

t )
3/2

.

It follows that

Rg−t
=

1

2
(vt)

−2(w−t )−8

∣∣∣∣φtvt∇vt −
1

2
(v2
t + φ2

t − 1)∇φt
∣∣∣∣
2

+ (w−t )−4(Rgt − 2|Et|2gt − 2|Bt|2gt)

+ 2(w−t )−4(|Et|2gt + |Bt|2gt − ft) + 2(w−t )−6(1− vt)(∆gtvt − ftvt)

+
1

2
(w−t )−6

[
((1− vt)2 − φ2

t + 4vt(1− vt))
(
ft −

|∇φt|2
v2
t

)
+ φt

(
∆gtφt −

∇vt · ∇φt
vt

)]
.

(5.30)

Since vt satisfies (5.2), we obtain the desired result for Rg−t
. A similar calculation yields the formula

for Rg+t
. �

We are now ready to establish monotonicity of the mass.

Theorem 5.4. The mass mt is nonincreasing.

Proof. First, we note that there exist small perturbations gt → gεt , Et → Eεt , Bt → Bε
t for which a

strict charged dominant energy condition holds on Mt, and in particular

(5.31) Rgεt − 2
(
|Eεt |2gεt + |Bε

t |2gεt
)
≥ Cεt on Mt \M(τ0),

for some constant Cεt > 0. Here ε is the perturbation parameter, and Cεt → 0 as ε → 0. Moreover,
this perturbation may be constructed to preserve the property of minimality for the boundary, as
well as the divergence free property of the Maxwell fields. After the perturbation, although ∂Mt

is minimal it may not be outermost, however, for the present purpose the outermost condition is
not necessary. That is, the doubling argument only requires that the boundary be minimal, not
outermost. Let us now construct the desired deformation. Fix a smooth positive function % which
vanishes sufficiently fast at spatial infinity, and solve the semi-linear boundary value problem

(5.32) ∆gtzt,ε −
1

8
Rgtzt,ε +

1

8
(Rgt + ε%) z−3

t,ε = 0 on Mt,
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(5.33) ∂τzt,ε = 0 on ∂Mt, zt,ε → 1 as r →∞.
It is easily seen that a smooth positive solution exists for small ε, and is pointwise close to 1, by the
implicit function theorem. Furthermore, equation (5.32) implies that the conformal metric gεt = z4

t,εgt
has scalar curvature Rgεt = (Rgt + ε%) z−8

t,ε , and the Neumann boundary condition guarantees that

the boundary is still a minimal surface with respect to the new metric. Now define (Eεt )
i = z−6

t,ε E
i
t

and (Bε
t )
i = z−6

t,εB
i
t, so that the perturbed Maxwell fields remain divergence free. Lastly, a strict

charged dominant energy condition holds

(5.34) Rgεt = (Rgt + ε%) z−8
t,ε ≥ 2z−8

t,ε

(
|Et|2gt + |Bt|2gt

)
+
ε

2
% > 2

(
|Eεt |2gεt + |Bε

t |2gεt
)
.

The constant Cεt may then be taken to be minMt\M(τ0)
ε
2%.

We will now apply the doubling argument to (Mt, g
ε
t , E

ε
t , B

ε
t ). Note that since λ, τ0 > 0 are small

enough, Theorem 6.9 guarantees existence of the conformal factors (5.1). According to (5.25)

(5.35) m′t = −2m̃ε
t + 2e−2t(γt − γt) + θεt ,

where θεt → 0 as ε → 0. Since |γt − γt| and θεt may be made arbitrarily small, it will follow that
m′t ≤ 0 if the mass of the doubled manifold is nonnegative m̃ε

t ≥ 0. In light of the discussion preceding
Lemma 5.3, it suffices to show that the scalar curvature of the doubled manifold is nonnegative. This
will be accomplished in two cases associated with different regions. For convenience, in what follows,
the superscript ε will be omitted from most of the notation.

Case 1: τ ≥ τ0.

In this region, with the help of (5.34), we find that

Rg±t
≥1

2
(w±t )−6

[
((1± vt)2 − φ2

t ∓ 4vt(1± vt))
(
ft −

|∇φt|2
v2
t

)
+ Λ

∣∣∣∣ft −
|∇φt|2
v2
t

∣∣∣∣
]

+ (w±t )−4
[ε

2
%+ 2

(
|Et|2gt + |Bt|2gt − ft

)]
.

(5.36)

The first line on the right-hand side is clearly nonnegative if Λ ≥ 12, since |vt| < 1. Moreover, the
second line is nonnegative for τ ≥ 2τ0 in light of (5.4), and is nonnegative for τ0 ≤ τ ≤ 2τ0 by (5.5)
if λ is sufficiently small, depending on ε.

Case 2: 0 ≤ τ < τ0.

In this region (5.31) holds, and |vt|, φt, ft ∼ 0, w±t ∼ 1. Therefore (5.26) implies

(5.37) Rg±t
≥ 1

2
(w±t )−6

[
Cεt − 4ft − 2

|∇φt|2
v2
t

+ φt

(
∆gtφt −

∇vt · ∇φt
vt

)]
.

According to (5.8) we may write

(5.38) φt = λτ4
0 + β(x, τ)(τ − τ0)η(τ) when 0 ≤ τ < τ0,

where x are coordinates on Sτ and β(x, τ) = ∂τφt(x, τ0). Then

(5.39) |∂τφt| ≤ |β|, |∂2
τφt| ≤ cτ−1

0 |β|, |∇φt| ≤ cτ0|∇β|, |∇2
φt| ≤ cτ0|∇2

β|,
where ∇ represents the induced connection on Sτ . Estimates for β are established in Appendix A
(Theorem A.1), namely

(5.40) |β|+ |∇β|+ |∇2
β| ≤ c(τ0, ε)λ.
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Here, unlike in the appendix, the constant c(τ0, ε) depends on ε since φt depends on the perturbed
initial data. It follows that

φt

∣∣∣∣∆gtφt −
∇vt · ∇φt

vt

∣∣∣∣ = φt

∣∣∣∣∆φt + ∂2
τφt +H∂τφt −

∇vt · ∇φt
vt

∣∣∣∣

≤ cφt
(
τ−1

0 |β|+ τ0(|∇β|+ |∇2
β|)
)

≤ c(τ0, ε)λ
2.

(5.41)

Similarly

(5.42)
|∇φt|2
v2
t

≤ c
( |∂τφt|2 + |∇φt|2

τ2
0

)
≤ c

(
τ−2

0 |β|2 + |∇β|2
)
≤ c(τ0, ε)λ

2.

Therefore by choosing λ sufficiently small, dependent on ε and τ0, we find that the scalar curvature
is nonnegative. �

6. Existence of the Conformal Factor

In this section we will show that a positive solution of the Dirichlet problem (5.6), (5.7) exists,
by constructing solutions to an auxiliary problem on a finite domain and then taking a limit as the
finite domains exhaust M(τ0).

Let M(τ0, r0) denote the complement in Mt of the region of distance less than τ0 from ∂Mt and
the region outside Sr0 in the asymptotically flat end. Define

(6.1) ft,r0 =





λ2η(τ) τ < 5
4τ0

|Et|2gt + |Bt|2gt on M(2τ0,
1
4r0)

δ2

r40
χ(r) 1

2r0 < r




,

which agrees with ft on M(0, 1
4r0). Here δ > 0 is a small parameter to be determined and χ is

a smooth cut-off function with χ ≡ 1 on 1
2r0 < r < r0 + 1, χ ≡ 0 on r > 2r0, |∇χ| ≤ cr−1

0 , and

|∇2χ| ≤ cr−2
0 . On the transition region 1

4r0 < r < 1
2r0, ft,r0 is chosen so as to make a smooth positive

function. Next, solve (5.2), (5.3) with ft replaced by ft,r0

(6.2) ∆gtvt,r0 − ft,r0vt,r0 = 0 on Mt, vt,r0 = 0 on ∂Mt,

(6.3) vt,r0 = −1 +
γt,r0
r

+O

(
1

r2

)
as r →∞.

The first main task is to establish existence of a positive solution to the auxiliary Dirichlet problem

(6.4) ∆gtφt,r0 −
∇vt,r0 · ∇φt,r0

vt,r0
=

Λ

φt,r0

∣∣∣∣∣ft,r0 −
|∇φt,r0 |2gt
v2
t,r0

∣∣∣∣∣ on M(τ0, r0),

(6.5) φt = λτ4
0 on Sτ0 , φt =

δ

4r0
on Sr0 .

A priori estimates will be shown to hold independent of r0, so that the desired solution of (5.6), (5.7)
will arise as the limit φt,r0 → φt as r0 →∞.

The following version of the Leray-Schauder fixed point theorem will be applied to (6.4), (6.5).
In what follows, we will temporarily drop all references to the subindices t and r0 associated with
functions, as well as the subscript gt associated with operators and norms.
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Theorem 6.1. Suppose that B is a Banach space with norm ‖ · ‖, C ⊂ B is a closed convex subset,
φ0 is a point of C, T : C × [0, 1]→ C is continuous and compact with T (φ, 0) = φ0, for all φ ∈ C, and
suppose that there is a fixed constant Γ > 0 such that

(6.6) ‖ φ ‖< Γ

is satisfied whenever φ ∈ C satisfies T (φ, s) = φ for some s ∈ [0, 1]. Then there exists φ ∈ C such
that T (φ, 1) = φ.

Note that this version of the theorem is slightly more general than that given in [13] (Theorem
11.6). The only difference is that T is defined on C instead of B. This generalization is easily obtained
using Dugundjis extension theorem [8] (Theorem 7.2).

In order to set up the fixed point theorem, fix a positive function % ∈ C∞(M) with % ∼ r−3 as
r →∞, and consider the regularized equation

(6.7) ∆φ− ∇v · ∇φ
v

=
sΛφ

(sφ+ ε)2

∣∣∣∣f −
|∇φ|2
v2

∣∣∣∣+ (1− s)%φ on M(τ0, r0),

(6.8) φ = λτ4
0 on Sτ0 , φ =

δ

4r0
on Sr0 .

In equation (6.7), there are actually two regularizations at play. One is the ε-regularization which
avoids problems when φ vanishes, and the other is a capillarity regularization associated with the
extra term (1 − s)%φ, which aids in establishing C1 estimates when s is sufficiently far away from
the important value 1. Later we will let ε→ 0 in order to obtain a solution of (6.4).

Let C be the cone of nonnegative C2(M(τ0, r0)) functions; note that since M(τ0, r0) is closed, this
is the space of functions which are C2 up to the boundary. It is clear that C is closed and convex.
Define the map T : C × [0, 1]→ C by T (φ, s) = ψ, where ψ solves

(6.9) ∆ψ − ∇v · ∇ψ
v

−
(

sΛ

(sφ+ ε)2

∣∣∣∣f −
|∇φ|2
v2

∣∣∣∣+ (1− s)%
)
ψ = 0 on M(τ0, r0),

(6.10) ψ = λτ4
0 on Sτ0 , ψ =

δ

4r0
on Sr0 .

Then given φ ∈ C there exists a unique solution ψ ∈ C2,α(M(τ0, r0)) by elliptic theory, for any
0 < α < 1. Moreover ψ > 0 by the maximum principle, so ψ ∈ C. The Schauder estimates imply
that

(6.11) |ψ|C2,α(M(τ0,r0)) ≤ C(|φ|C1,α(M(τ0,r0)), ε),

and that T is continuous. Since C2,α ↪→ C2 is compact, we also find that T is compact.
Next observe that if s = 0 then ψ does not depend on φ. Thus, in order to apply the Leray-

Schauder fixed point theorem, it remains only to prove the a priori estimate

(6.12) |φ|C2,α(M(τ0,r0)) ≤ C
for a fixed point T (φ, s) = φ, where C is independent of s. Note that a fixed point satisfies the
boundary value problem (6.7), (6.8). The estimate (6.12) will be established in several steps. First,
maximum principle techniques produce C0 bounds and also reduce C1 bounds to boundary gradient
estimates, which are then obtained with a local barrier argument. A positive subsolution is then
constructed, which allows a boot-strap procedure to yield higher order bounds.

Proposition 6.2. For any s and ε, supM(τ0,r0) φ ≤ max{λτ4
0 ,

δ
4r0
}.



22 KHURI, WEINSTEIN, AND YAMADA

Proof. This follows directly from the maximum principle applied to (6.7), (6.8). �

Proposition 6.3. If Λ > 8 then there exists a constant C independent of s, ε, and r0 such that

(6.13) sup
M(τ0,r0)

|∇φ| ≤ C(1 + |f |C1) + sup
∂M(τ0,r0)

|∇φ|.

Proof. We will apply a maximum principle argument to the equation satisfied by |∇φ|. Observe that

∆|∇φ| = ∇j
(
φi∇ijφ
|∇φ|

)

=
|∇2φ|2
|∇φ| +

φi∇j∇i∇jφ
|∇φ| − φi(∇ijφ)φl∇jlφ

|∇φ|3

=
|∇2φ|2
|∇φ| +

φi∂i∆φ

|∇φ| +
Rijφ

iφj

|∇φ| −
|∇|∇φ||2
|∇φ| ,

(6.14)

where Rij denotes components of the Ricci tensor. Suppose that a global interior maximum exists
for |∇φ|. Then at this point we may assume that

(6.15)
|∇φ|2
v2 >

C2(1 + |f |C1)2

v2 ≥ 2f

for some constant C > 0, otherwise the desired result holds immediately. Thus by (6.7) and (6.14),
and setting h(φ) = sΛφ(sφ+ ε)−2, it follows that

∆|∇φ| = |∇
2φ|2
|∇φ| +

1

|∇φ|

[
φi∇ilv∇lφ

v
+
φi∇lv∇liφ

v
− (∇v · ∇φ)2

v2 + h′|∇φ|2
( |∇φ|2

v2 − f
)]

+
h

|∇φ|

(
φi∂i|∇φ|2

v2 − 2
(∇φ · ∇v)

v3 |∇φ|2 −∇φ · ∇f
)

+
Rijφ

iφj

|∇φ| −
|∇|∇φ||2
|∇φ| + (1− s)φ

i∂i (%φ)

|∇φ| .

(6.16)

At the maximum

(6.17) 0 = ∂i|∇φ|2 = 2φj∇jiφ, ∆|∇φ| ≤ 0.

Hence

(6.18) 0 ≥ |∇
2φ|2
|∇φ| +

h′

v2 |∇φ|3−
2h|∇v|
|v|3 |∇φ|

2 +
(
(1− s)%− |h′|f − c(x)

)
|∇φ|−h|∇f |−(1−s)|∇%|φ,

for some positive function c(x) independent of s, ε, and r0, and falling-off at least on the order of
r−3 in the asymptotic end.

Let {e1, e2, e3 = ∇φ
|∇φ|} be an orthonormal basis of tangent vectors at the maximum point, then

with the help of (6.17)

(6.19) |∇2φ|2 =
∑

i,j=1,2

[
∇2φ(ei, ej)

]2 ≥ 1

2


∑

i=1,2

∇2φ(ei, ei)




2

=
1

2
(∆φ)2 .

Moreover, using (6.7) and (6.15) produces

(6.20) (∆φ)2 ≥ h2

4v4 |∇φ|4 −
2h|∇v|
|v|3 |∇φ|

3 − 2(1− s)%φ|∇v|
|v| |∇φ| − 2hf |∇v|

|v| |∇φ|.
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Combining this with (6.18) then yields

0 ≥
(
h2

8v4 +
h′

v2

)
|∇φ|3 − 3h|∇v|

|v|3 |∇φ|
2 +

(
(1− s)%− |h′|f − c(x)

)
|∇φ|

− h|∇f | − (1− s)|∇%|φ− (1− s)%φ|∇v|
|v| − hf |∇v|

|v| .

(6.21)

Let us now calculate

h′ +
1

8
h2 =

sΛ(−sφ+ ε)

(sφ+ ε)3
+

s2Λ2φ2

8(sφ+ ε)4

=
Λ

8

[
(Λ− 8s)(sφ+ ε)2 + ε(16s− 2Λ)(sφ+ ε) + Λε2

(sφ+ ε)4

]
.

(6.22)

By Young’s inequality

(6.23) ε(16s− 2Λ)(sφ+ ε) ≤ Λε2 +
(8s− Λ)2(sφ+ ε)2

Λ
,

and hence

(6.24) h′ +
1

8
h2 ≥ s(Λ− 8s)

(sφ+ ε)2
.

Then since |v| ≤ 1,

(6.25)
h2

8v4 +
h′

v2 ≥
s(Λ− 8s)

(sφ+ ε)2v2 .

We are now in a position to obtain a contradiction to the assumption (6.15), if C is chosen
sufficiently large and independent of s, ε, and r0. If s ≤ 1

2 , then apply (6.15) and (6.25) to dominate
all terms in (6.18) involving h. That is,

(6.26)

(
h2

8v4 +
h′

v2

)
|∇φ|3 − 3h|∇v|

|v|3 |∇φ|
2 − |h′|f |∇φ| − h|∇f | − hf |∇v|

|v| > 0

if C is large enough. Similarly, if s ≥ 1
2 , then (6.15) and (6.25) may be used to dominate all terms in

(6.18) whether or not they involve h. Furthermore, for s ≤ 1
2 , (1− s)%|∇φ| may be used to dominate

all terms not involving h. That is,

(6.27) ((1− s)%− c(x)) |∇φ| − (1− s)|∇%|φ− (1− s)%φ|∇v|
|v| > 0

if C is large enough. Notice that inequalities (6.26) and (6.27) are not consistent with (6.18). We
conclude that there must exist a finite C, independent of s, ε, and r0, such that |∇φ| ≤ C(1 + |f |C1)
at a global interior max, if this point exists. If the global maximum is not attained on the interior,
then it must be obtained on the boundary, and the desired result (6.13) follows. �

We will now establish boundary gradient estimates by constructing appropriate local barriers.

Lemma 6.4. If λτ4
0 ≥ δ

4r0
, and τ0 > 0 is sufficiently small, then there exists a constant C independent

of s, ε, λ, and τ0 such that

(6.28) |∇φ|Sτ0 ≤ Cλτ0.
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Proof. Since φ is constant on Sτ0 it suffices to estimate the normal derivative. As λτ4
0 ≥ δ

4r0
, an

upper barrier is trivial to construct. Namely, by the maximum principle φ ≤ λτ4
0 globally. Hence we

have

(6.29) ∂τφ|Sτ0 ≤ 0.

A lower barrier will now be constructed as the solution to an Eikonal equation near the boundary

(6.30) |∇φ|2 = fv2 on D(τ0, τ1), φ = λτ4
0 on Sτ0 ,

where τ1 = τ0 +τ
5/2
0 and D(τ0, τ1) denotes the domain enclosed by Sτ0 and Sτ1 . Note that the surface

Sτ0 is noncharacteristic for this initial value problem, since it is possible to solve for ∂τφ|Sτ0 . We
claim that there is a solution with φ < 0 on Sτ1 . This will follow from an implicit function theorem
argument. First construct an approximate solution φ0. Expand

(6.31) v = v0 + v1(τ − τ0) +O(|τ − τ0|2),

and observe that since ∂τv|∂M < 0 we have ∂τv|Sτ0 = v1 < 0, and also −cτ0 ≤ v0 ≤ −c−1τ0. Then

plugging (6.31) into equation (6.30), and using f = λ2[1− 2τ−1
0 (τ − τ0)] on D(τ0, τ1), yields

(6.32) φ0 = λτ4
0 + λv0(τ − τ0) +

λ

2

(
v1 − τ−1

0 v0

)
(τ − τ0)2 + · · ·+O

(
λ|τ − τ0|N+1

τN−1
0

)
,

with

(6.33) |∇φ0|2 = fv2 +O

(
λ2|τ − τ0|N

τN−2
0

)

for any large N , depending on how many terms are given in φ0. Below, N ≥ 3 is sufficient.
Consider now the linearized equation

(6.34) Lϕ := ∇φ0 · ∇ϕ = ψ on D(τ0, τ1), ϕ = 0 on Sτ0 .

Since ∂τφ0|Sτ0 = λv0 6= 0, the method of characteristics shows that we can always solve this initial

value problem. Moreover L : C̃1 → C0 is an isomorphism if C̃1 consists of all C1 functions vanishing
on Sτ0 . We may now apply the implicit function theorem to obtain a local smooth solution φ of

(6.30) for |τ0 − τ1| = τ
5/2
0 sufficiently small.

To show that φ|Sτ1 < 0, choose τ0 sufficiently small so that φ0|Sτ1 < 0. This is satisfied if

(6.35) λτ4
0 < λ|v0||τ1 − τ0| ∼ λτ7/2

0 .

It follows that

(6.36) φ = φ0 + (φ− φ0) = φ0 +O

(
λ|τ − τ0|N
τN−2

0

)
< 0 on Sτ1 ,

if τ0 is sufficiently small.
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Continuing with the proof of the boundary gradient estimate, we will use φ as a lower barrier. To
see that φ is a subsolution of (6.7) on D(τ0, τ1), calculate

∆φ = ∂2
τφ+H∂τφ+ ∆Sτφ

= ∂2
τφ0 +H∂τφ0 + ∆Sτφ0 +O

(
λ|τ1 − τ0|N−2

τN−2
0

)

= λ(v1 − τ−1
0 v0) +O

(
λ|τ1 − τ0|

τ0

)
,

(6.37)

and

∇v · ∇φ
v

=
∂τv∂τφ

v
+
∇v · ∇φ

v

=
∂τv∂τφ0

v
+
∇v · ∇φ0

v
+O

(
λ|τ1 − τ0|N−1

τN−1
0

)

=

(
1

τ
+O(1)

)
(λv0 +O(λ|τ1 − τ0|)) +O

(
λ|τ1 − τ0|

τ0

)

=
λv0

τ
+O

(
λ|v0|+

λ|τ1 − τ0|
τ0

)
,

(6.38)

where we have used v = ṽτ +O(τ2) with ṽ < 0; ∇ represents the induced connection on Sτ . On the
other side of (6.7), equation (6.30) eliminates one term and the other satisfies

(6.39) (1− s)%φ ≤ cλτ3
0 .

Now observe that

(6.40) v1 = ∂τv|Sτ0 = ∂τv|∂M +O(τ0), v0 = v|Sτ0 = ∂τv|∂Mτ0 +O(τ2
0 ),

which implies

(6.41) v1 −
(

1

τ0
+

1

τ

)
v0 = −τ0

τ
∂τv|∂M +O(τ0) ≥ 2c+O

( |τ1 − τ0|
τ0

)

for some constant c > 0. Hence, if τ0 is sufficiently small

(6.42) ∆φ−
∇v · ∇φ

v
= λ

[
v1 −

(
1

τ0
+

1

τ

)
v0

]
+O

(
λ|v0|+

λ|τ1 − τ0|
τ0

)
≥ 2cλ+O(λτ

3/2
0 ) > 0.

Note that this positive lower bound is a result of the choice f = λ2[1−2τ−1
0 (τ−τ0)] on D(τ0, τ1), and

is the reason for defining f in this way. In light of (6.30) and (6.39), we find that φ is a subsolution
of (6.7) in the following sense

(6.43) ∆φ−
∇v · ∇φ

v
>

sΛφ

(sφ+ ε)2

∣∣∣∣∣f −
|∇φ|2
v2

∣∣∣∣∣+ (1− s)%φ.

It is important that the coefficient sΛφ
(sφ+ε)2

involves φ instead of φ, for the comparison argument

below. This motivates using the Eikonal equation (6.30) to construct the subsolution.
Having shown that φ is a subsolution, we now compare it with φ. Note that

(6.44) ∆(φ− φ)−
∇v · ∇(φ− φ)

v
<

sΛφ

(sφ+ ε)2

(∣∣∣∣f −
|∇φ|2
v2

∣∣∣∣−
∣∣∣∣∣f −

|∇φ|2
v2

∣∣∣∣∣

)
+ (1− s)%(φ− φ),
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and

(6.45) (φ− φ)|Sτ0 = 0, (φ− φ)|Sτ1 > 0.

At an interior minimum of φ− φ, |∇φ| = |∇φ| and ∆(φ− φ) ≥ 0, which yields a contradiction. We
conclude that φ− φ ≥ 0 on D(τ0, τ1), and hence ∂τφ|Sτ0 ≥ ∂τφ|Sτ0 . Since

(6.46) ∂τφ = ∂τφ0 +O

(
λ|τ1 − τ0|N−1

τN−1
0

)
= λv0 +O

(
λ|τ1 − τ0|

τ0

)
≥ −cλτ0,

the desired result follows. �

Using similar methods a boundary gradient estimate may be established at Sr0 .

Lemma 6.5. If r0 is sufficiently large, then

(6.47) |∇φ|Sr0 ≤
2

r0
.

Proof. Let r1 = 1
2r0. An upper barrier may be constructed in the form

(6.48) φ =
δ

4r0
+ a(r0 − r) for r ∈ [r1, r0].

A basic calculation shows that

(6.49) ∆φ− ∇v · ∇φ
v

= −2a

r
+O

( a
r2

)
.

Hence, if a > 0 and r0 is large enough, φ is a supersolution

∆φ− ∇v · ∇φ
v

= −2a

r
+O

( a
r2

)

< 0 ≤ sΛφ

(sφ+ ε)2

∣∣∣∣f −
|∇φ|2
v2

∣∣∣∣+ (1− s)%φ.
(6.50)

Moreover if a = 2r−1
0 , then

(6.51) φ|Sr1 =
δ

4r0
+ 1 > λτ4

0 = sup
M(τ0,r0)

φ.

A comparison argument then implies that φ ≥ φ for r1 ≤ r ≤ r0. Therefore

(6.52) ∂rφ|Sr0 ≥ −
2

r0
.

As in the proof of Lemma 6.4, a lower barrier will be constructed as a solution to the Eikonal
equation

(6.53) |∇φ|2 = fv2 on B(r1, r0), φ =
δ

4r0
on Sr0 ,

where B(r1, r0) is the region between Sr1 and Sr0 . Note that Sr0 is noncharacteristic for this initial
value problem, since it is possible to solve for ∂rφ|Sr0 . In order to apply the implicit function theorem,
an approximate solution may be found in the form

(6.54) φ0 =
δ

4r0
− δ

r2
0

(r0 − r).
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Using the fact that f = δ2

r40
, a direct calculation produces

(6.55) |∇φ0|2 − fv2 = O

(
δ2

rr4
0

)
.

The implicit function theorem now yields a solution

(6.56) φ = φ0 +O

(
δ

r2
0

)
.

Moreover

(6.57) φ|Sr1 = − δ

4r0
+O

(
δ

r2
0

)
< 0,

if r0 is large enough.
In order to show that φ is a subsolution on B(r1, r0), observe that

(6.58) ∆φ = ∂2
rφ+

2

r
∂rφ+O(r−1|∇2φ|+ r−2|∇φ|) =

2δ

rr2
0

+O

(
δ

r4
0

)
,

and

(6.59)
∇v · ∇φ

v
= O

( |∇φ|
r2

)
= O

(
δ

r4
0

)
.

On the other side of equation (6.7), one term is eliminated with the aid of (6.53) and the other
satisfies

(6.60) (1− s)%|φ| = O

(
δ

r4
0

)
,

since % ≤ cr−3. It follows that

∆φ−
∇v · ∇φ

v
=

2δ

rr2
0

+O

(
δ

r4
0

)

≥ 2δ

r3
0

+O

(
δ

r4
0

)

> O

(
δ

r4
0

)
=

sΛφ

(sφ+ ε)2

∣∣∣∣∣f −
|∇φ|2
v2

∣∣∣∣∣+ (1− s)%φ.

(6.61)

A comparison argument now shows that φ ≥ φ on B(r1, r0), which yields

(6.62) ∂rφ|Sr0 ≤
δ

2r2
0

if r0 is sufficiently large. �

By combining Proposition 6.3, Lemma 6.4, and Lemma 6.5 we obtain global C1 bounds.

Corollary 6.6. If τ0 > 0 is sufficiently small, r0 is sufficiently large, and Λ > 8 then there exists a
constant C independent of s, ε, and r0 such that

(6.63) sup
M(τ0,r0)

|∇φ| ≤ C(1 + |f |C1).

We are now in position to establish a basic existence results.
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Theorem 6.7. If λ, τ0 > 0, τ0 is sufficiently small, r0 is sufficiently large, and Λ > 8 then there
exists a positive solution φr0,ε ∈ C2,α(M(τ0, r0)), for any α ∈ [0, 1), of (6.7), (6.8) with s = 1.

Proof. In order to apply the Leray-Schauder theorem, it suffices to establish a C2,α estimate. Observe
that with the aid of Proposition 6.2 and Corollary 6.6, and the fact that sφ + ε ≥ ε > 0, we have
∆φ− ∇v·∇φv ∈ L∞ and the corresponding bound is independent of s. This implies that φ ∈W 2,p for

any p, and hence φ ∈ C1,α for any α < 1, again independent of s. Thus ∆φ − ∇v·∇φv ∈ C0,α, which

implies that φ ∈ C2,α. That is,

(6.64) |φ|C2,α(M(τ0,r0)) ≤ C
where C is independent of s. This guarantees the existence of a positive solution φr0,ε ∈ C2,α(M(τ0, r0))
of (6.7), (6.8) with s = 1, which satisfies (6.64). �

In order to proceed further towards the goal of establishing C2,α estimates independent of ε, a
uniform positive lower bound for φr0,ε is needed. To this end let us rewrite (6.7), with s = 1, as an
equation for ζ := (φr0,ε + ε)3. Observe that

(6.65) ∆ζ = 3(φr0,ε + ε)2∆φr0,ε + 6(φ+ ε)|∇φr0,ε|2

and

(6.66)
∇v · ∇ζ

v
=

3(∇v · ∇φr0,ε)
v

(φr0,ε + ε)2.

It follows that

(6.67) ∆ζ − ∇v · ∇ζ
v

= 3Λ[(φr0,ε + ε)− ε]
∣∣∣∣f −

|∇φr0,ε|2
v2

∣∣∣∣+ 6|∇φr0,ε|2ζ
1
3 .

Hence

(6.68) ∆ζ − ∇v · ∇ζ
v

− Φζ
1
3 = −3εΛ

∣∣∣∣f −
|∇φr0,ε|2

v2

∣∣∣∣ ≤ 0,

where

(6.69) Φ = 3Λ

∣∣∣∣f −
|∇φr0,ε|2

v2

∣∣∣∣+ 6|∇φr0,ε|2,

and

(6.70) ζ|Sτ0 = (λτ4
0 + ε)3, ζ|Sr0 =

(
δ

4r0
+ ε

)3

.

According to the C0 and C1 estimates Φ ≤ Φ0, where Φ0 is a function independent of ε, r0, and
φr0,ε.

Suppose that there exists a solution of the Dirichlet problem

(6.71) ∆ζ −
∇v · ∇ζ

v
− Φ0ζ

1
3 = 0 on M(τ0, r0),

(6.72) ζ = (λτ4
0 )3 on Sτ0 , ζ =

(
δ

4r0

)3

on Sr0 .

By the maximum principle the solution is positive. Moreover, it is independent of ε, and φr0,ε, and
ζ ≥ ζ. To see this, use a comparison argument. Observe that

(6.73) ∆(ζ − ζ)−
∇v · ∇(ζ − ζ)

v
≤ Φζ

1
3 − Φ0ζ

1
3 ,
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(6.74) (ζ − ζ)|Sτ0 > 0, (ζ − ζ)|Sr0 > 0.

Suppose that ζ−ζ < 0 somewhere, and let x0 be the point at which the global minimum is achieved.

Then ζ
1
3 (x0) < ζ

1
3 (x0), |∇(ζ − ζ)(x0)| = 0, and ∆(ζ − ζ)(x0) ≥ 0, so that

0 ≤ ∆(ζ − ζ)(x0)−
∇v · ∇(ζ − ζ)

v
(x0)

≤ Φζ
1
3 (x0)− Φ0ζ

1
3 (x0)

≤ ζ 1
3 (Φ− Φ0)(x0) < 0.

(6.75)

This contradiction implies that ζ ≥ ζ on all of M(τ0, r0), and yields the desired uniform positive

lower bound. Hence (φr0,ε + ε)3 ≥ ζ or rather φr0,ε ≥ ζ
1
3 − ε. Since ζ > 0 is independent of ε, we

find that φr0,ε ≥ 1
2ζ

1
3 for all sufficiently small ε.

Proposition 6.8. If λ, τ0 > 0 then there exists a smooth positive function ζ independent of ε, and

φr0,ε, such that φr0,ε ≥ ζ
1
3 − ε on M(τ0, r0). In particular, φr0,ε ≥ 1

2ζ
1
3 for all sufficiently small ε.

Proof. It only remains to establish the existence of ζ. Write the equation as

(6.76) div

(∇ζ
v

)
− Φ0

v
ζ

1
3 = 0,

and consider the functional

(6.77) I[ζ] =

∫

M(τ0,r0)

1

2

|∇ζ|2
|v| +

3

4

Φ0

|v| ζ
4
3 .

We will minimize it over all H1(M(τ0, r0))-functions with the fixed boundary values as in (6.72). To
show that this functional is bounded from below, apply Hölder’s inequality and use Vol(M(τ0, r0)) <
∞ to find

(6.78)

∫

M(τ0,r0)

Φ0

|v| ζ
4
3 ≤ σ ‖ ζ ‖2L2 +c1,

where σ is a small parameter. Moreover, by Poincaré’s inequality
∫

M(τ0,r0)
|∇ζ|2 =

∫

M(τ0,r0)
|∇(ζ − (λτ4

0 )3)|2

≥
∫

M(τ0,r0)
c−1

2 |ζ − (λτ4
0 )3|2

=

∫

M(τ0,r0)
c−1

2 (ζ2 − 2(λτ4
0 )3ζ + (λτ4

0 )6)

≥
∫

M(τ0,r0)
2c−1

2 ζ2 − c3.

(6.79)

It follows that if σ is sufficiently small then

(6.80) I[ζ] ≥ c−1
4 ‖ ζ ‖2H1 −c5,

and hence I[ζ] is bounded from below.
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By direct methods in the calculus of variations, there is a minimizing sequence that has a weakly
convergent (in H1) subsequence ζi ⇀ ζ. Then since H1 ↪→ L2 is compact, ζi → ζ strongly in L2. In

particular ζi → ζ in L
4
3 , so that

(6.81)

∫

M(τ0,r0)
ζ

4
3
i →

∫

M(τ0,r0)
ζ

4
3 .

Since the H1 norm is weakly lower semicontinuous, it follows that ζ realizes the infimum, and is
hence a weak solution.

Now use elliptic regularity. Since ζ
1
3 ∈ L6, by (6.71) we have ∆ζ − ∇v·∇ζv ∈ L6, which implies

that ζ ∈ W 2,6 ↪→ C1, 1
2 . This in turn implies ζ

1
3 ∈ C0, so that ζ ∈ W 2,p for any p > 1, and hence

ζ ∈ C1,α for any α < 1. Since ζ > 0 it follows that ζ
1
3 ∈ C0,α, and hence ζ ∈ C2,α. Boot-strapping

then produces ζ ∈ C∞. �

Having established a uniform lower bound, we may let ε → 0 and r0 → ∞ to obtain the main
existence result.

Theorem 6.9. If λ, τ0 > 0, τ0 is sufficiently small, and Λ > 8, then there exists a positive solution
φt ∈ C2,α(M(τ0)), for any α ∈ [0, 1), of (5.6), (5.7).

Proof. In light of the uniform lower bound in Proposition 6.8, the same arguments appearing in the
proof of Theorem 6.7 yield a C2,α estimate (6.64), with C independent of ε. Thus, after possibly
passing to a subsequence φr0,ε → φt,r0 as ε→ 0, yielding a positive solution of (6.4), (6.5) which also
satisfies (6.64).

We will now let r0 → ∞. In order to control the decay at spatial infinity, we construct a global
upper barrier by solving
(6.82)

∆φt,r0 −
∇vt,r0 · φt,r0

vt
= 0 on M(τ0), φt,r0 |Sτ0 = 1, φt,r0 =

ct,r0
r

+O

(
1

r2

)
as r →∞,

where ct,r0 is a positive constant. Since vt,r0 smoothly converges to vt as r0 → ∞, it holds that

ct,r0 → ct > 0 and φt,r0 → φt, the solution of (6.82) with vt,r0 replaced by vt. Thus if δ is chosen

sufficiently small (independent of r0), then φt,r0 |Sr0 > φt,r0 |Sr0 . A standard comparison argument

now applies to yield φt,r0 > φt,r0 on M(τ0, r0).
Let ζ

t,r0
denote the lower bound which arises from the construction in Proposition 6.8. Since

Φ0 and sup ζ
t,r0

are controlled independent of r0, higher order a priori estimates for ζ
t,r0

are also

independent of r0, so that ζ
t,r0
→ ζ

t
on compact subsets as r0 →∞, where ζ

t
> 0 satisfies equation

(6.71) with vt,r0 replaced by vt. Therefore, since ζ
1
3
t,r0
≤ φt,r0 , the function φt,r0 is uniformly bounded

below by a positive constant on any compact subset, independent of r0. As the C0 and C1 bounds of
Proposition 6.2 and Corollary 6.6 are also independent of r0, C2,α estimates on compact subsets may
be established analogously to (6.64) and independently of r0. This implies that, after possibly passing

to a subsequence, φt,r0 → φt as r0 →∞, where φt satisfies (5.6). Moreover since ζ
1
3
t ≤ φt ≤ φt, (5.7)

is also valid and φt is strictly positive. �

Remark 6.10. It is unlikely that higher order regularity better than C2,α is possible, due to the
presence of an absolute value on the right-hand side of (5.6).
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7. Proof of the Main Theorem

The purpose of this section is to prove Theorem 1.1. First observe that if ρ = |q|, or equivalently
|∂M |g = 4πq2, then the Penrose inequality with charge (1.2) is equivalent to the positive mass
theorem with charge m ≥ |q|, which has already been established in [12]. The case of equality for
this theorem, asserts that the initial data must be isometric to the canonical slice of the Majumdar-
Papapetrou spacetime [5]. However, such initial data does not possess a minimal surface boundary,
and hence does not fall under the hypotheses of Theorem 1.1. Hence, when the area/charge inequality
is saturated we must have m > |q|.

Now assume that |∂M |g > 4πq2, so that in particular Theorem 4.5 applies. Note that the results
of Section 4 require a perturbation of the initial data to achieve charged harmonic asymptotics, thus
we assume here that such a perturbation has been made. Theorems 2.1 and 5.4 imply that the areas
|∂Mt|gt and charges qt remain constant throughout the flow, while the mass m(t) is nonincreasing.
Moreover, Theorem 4.5 guarantees that for some finite time t the minimal boundary ∂Mt is connected.
Consider now the initial data set (Mt, gt, Et, Bt). It satisfies all the hypotheses of the Penrose
inequality with charge for a single black hole, namely the boundary is an outermost minimal surface,
the charged dominant energy condition is valid, and the Maxwell constraints holds without charged
matter. As the inequality has been proven for a single black hole [15], [16], it follows that

(7.1) m(0) ≥ m(t) ≥
√
|∂Mt|gt

16π
+

√
π

|∂Mt|gt
q2
t =

√
|∂M0|g0

16π
+

√
π

|∂M0|g0
q2

0.

Since this holds for an arbitrarily small perturbation of the data, (1.2) holds for the original initial
data. Notice that we avoid the convergence issue concerning the flow, by employing the inverse mean
curvature flow once the minimal surface becomes connected. Whether the charged conformal flow
converges to the canonical Reissner-Nordström data is an interesting question, which we strongly
believe has an affirmative answer. Ultimately though, it is not necessary for the current result, and
so it will be left for future investigation.

It remains to establish the rigidity statement. Here we will not need to perturb the initial data to
achieve charged harmonic asymptotics. Suppose that equality holds in (1.2). We conclude that the
mass remains constant throughout the flow m′(t) = 0. To see this, suppose not, then

(7.2) m(t̃) <

√
|∂M0|g0

16π
+

√
π

|∂M0|g0
q2

0

for some t̃. A contradiction is obtained by applying the results of the previous paragraph to the
initial data set (Mt̃, gt̃, Et̃, Bt̃). Equation (5.35) now implies that

(7.3) e−2t(γt − γt) +
1

2
θεt = m̃ε(t) for all t ≥ 0,

where m̃ε(t) is the mass of the doubled manifold (M+
t ∪M−t , (gεt )+ ∪ (gεt )

−) and gεt is defined in the
proof of Theorem 5.4.

We claim that the doubled manifold must be diffeomorphic to R3. To see this, suppose that it is not
true. Then ∂Mt must have two or more components. According to the result of Meeks-Simon-Yau
[24], there is then an outermost minimal surface St(ε, τ0) in the doubled manifold which encloses the
nontrivial topology. Since the scalar curvature of the doubled manifold is nonnegative, the Penrose
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inequality and (7.3) then yield

(7.4) e−2t(γt − γt) +
1

2
θεt ≥

√
|St(ε, τ0)|(gεt )+∪(gεt )−

16π
for all t ≥ 0.

For each fixed t, Theorem 5.2 shows that |γt−γt| → 0 as τ0 → 0, and from the proof of Theorem 5.4
we have θεt → 0 as ε → 0. On the other hand φt → 0 and vt → vt both in C0 as τ0 → 0 and ε → 0
(note that higher order convergence of φt is not generally possible), so that the conformal factors

defining the doubled metric converge as w±t → 1±vt
2 in C0. Let g̃±t =

(
1±vt

2

)4
gt. It follows that

(7.5) |St(ε, τ0)|(gεt )+∪(gεt )− ≥
1

2
|St(ε, τ0)|g̃+t ∪g̃−t ,

for τ0, ε sufficiently small. There is, however, a positive lower bound for the area of any surface
enclosing the nontrivial topology in (M+

t ∪M−t , g̃+
t ∪ g̃−t ). Hence there is a positive lower bound

independent of τ0 and ε for the right-hand side of (7.5). This leads to a contradiction with (7.4) for
sufficiently small τ0 and ε. Therefore the doubled manifold must have trivial topology, or equivalently
∂Mt consists of one component for all t ≥ 0.

Rigidity for the Penrose inequality with charge in the case of one black hole was established in [9].
This result relies on monotonicity of the so called charged Hawking mass

(7.6) MCH(S) =

√
|S|
16π

(
1 +

4πq2

|S| −
1

16π

∫

S
H2dA

)
,

under inverse mean curvature flow. In [9] only the electric field was present, and q in (7.6) represented
the total electric charge. However, the same proof applies when both the electric and magnetic fields
are present, if q2 = q2

e + q2
b . It follows that (M, g) is isometric to the canonical slice of the Reissner-

Nordström spacetime, and E = −qe∇r−1, B = −qb∇r−1 in the usual anisotropic coordinates. This
concludes the proof.

Appendix A. Estimates at Sτ0

In this section we will establish the estimates for φt at Sτ0 appearing in (5.40). For simplicity,
the subindex t will be suppressed. Note that by the Hopf lemma ∂τφ|Sτ0 < 0, so the level sets of φ
foliate a neighborhood of Sτ0 . Consider the domain

(A.1) Ωρ = {x ∈M | σλτ4
0 < φ < λτ4

0 },
where σ is sufficiently small to guarantee that Ωσ ⊂ D(τ0,

5
4τ0), the domain enclosed by Sτ0 and

S 5
4
τ0

. Then f = λ2[1− 2τ−1
0 (τ − τ0)] on Ωσ. We may then apply the method of proof for Proposition

6.3 to obtain a C1 estimate on Ωσ. The key inequality which leads to the desired estimate is the
analogue of (6.18). Namely using (6.25), c−1τ0 ≤ |v| ≤ cτ0, and s = 1, ε = 0 we find that at a global
maximum for |∇φ|,

(A.2) 0 ≥ c−1(Λ− 8)

τ2
0φ

2
|∇φ|3 − cΛ

τ3
0φ
|∇φ|2 − c

(
Λf

φ2
+ 1

)
|∇φ| − Λ

φ
|∇f | − cΛf

τ0φ

for some constant c > 0 independent of λ, τ0, and σ. It is clear that if |∇φ| > c0λτ0 for c0 sufficiently
large, then a contradiction is obtained from (A.2). We conclude that at a global interior maximum,
there exists a finite constant c such that |∇φ| ≤ cλτ0. It follows that

(A.3) sup
Ωσ

|∇φ| ≤ cλτ0 + sup
∂Ωσ

|∇φ|.
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The boundary of Ωσ consists of two types of components. One is Sτ0 , where a gradient estimate
has already been established in Lemma 6.4. The other type of component is also a level set of φ,
and possesses a neighborhood in which f has the desired expression, so Lemma 6.4 applies here as
well to yield |∇φ|∂Ωσ ≤ cλτ0. Together with (A.3), this implies that

(A.4) sup
Ωσ

|∇φ| ≤ cλτ0.

We now claim that Sτ0 ⊂ Ωσ for some τ0 > τ0 independent of λ. To see this, let x be coordinates
on Sτ , and observe that (A.4) implies

(A.5) φ(x, τ)− φ(x, τ0) =

∫ τ

τ0

∂τφ(x, ς)dς ≥ −cλτ0(τ − τ0),

so that

(A.6) φ(x, τ) ≥ λτ4
0 − cλτ0(τ − τ0).

Thus, if τ0 = τ0 + 1
2cτ

3
0 then

(A.7) φ|Sτ0 ≥
1

2
λτ4

0 > σλτ4
0 ,

assuming that σ < 1/2. This verifies the claim. It follows that Vol(Ωσ) ≥ C0 > 0 where C0 is
independent of λ. Therefore the constants appearing in the Lp and Schauder estimates, as well as
the Sobolev embeddings, are independent of λ.

By the Lp estimates and the equation (5.6) satisfied by φ,

(A.8) ‖ φ ‖W 2,p(Ωσ)≤ c
(
Λ ‖ φ−1f ‖Lp(Ωσ) +Λ ‖ φ−1|∇φ|2 ‖Lp(Ωσ) + ‖ φ ‖Lp(Ωσ) + ‖ φ ‖W 2,p(∂Ωσ)

)

where the constant c depends on τ0 but not on λ. With the aid of (A.4), σλτ4
0 ≤ φ ≤ λτ4

0 , and
f ≤ λ2, this implies that

(A.9) ‖ φ ‖W 2,p(Ωσ)≤ c(τ0)λ, which yields |φ|C1,α(Ωσ) ≤ c(τ0)λ.

By the Schauder estimates

(A.10) |φ|C2,α(Ωσ) ≤ c
(
Λ|φ−1f |C0,α(Ωσ) + Λ|φ−1|∇φ|2|C0,α(Ωσ) + |φ|C0(Ωσ) + |φ|C2,α(∂Ωσ)

)
≤ c(τ0)λ.

Due to the absolute value on the right-hand side of (5.6), C2,α-estimates are generally the highest
order estimates possible. However, since one-sided derivatives of the absolute value of a smooth
function are Lipschitz, taking the one-sided derivative ∂τ at Sτ0 yields an equation for ∂τφ whose
right-hand side is Lipschitz near Sτ0 . Then C2,α-estimates follow for ∂τφ. We have thus proven the
following theorem.

Theorem A.1. If τ0 is sufficiently small and Λ > 8, then the solution of (5.6), (5.7) constructed in
Theorem 6.9 satisfies

(A.11) |∇2∂τφt|Sτ0 + |∇2φt|Sτ0 + |∇φt|Sτ0 + φt|Sτ0 ≤ c(τ0)λ,

where c(τ0) is independent of λ.
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Appendix B. The Reissner-Nordström Flow

In this section we construct the charged conformal flow in the canonical slice of the Reissner-
Nordström spacetime. Consider the exterior Reissner-Nordström metric with mass m and squared
total charge q2 = q2

e + q2
b , in non-isotropic coordinates,

(B.1) −
(

1− 2m

r
+
q2

r2

)
dt

2
+

(
1− 2m

r
+
q2

r2

)−1

dr2 + r2dσ2, r ≥ m+
√
m2 − q2,

where dσ2 is the round metric on the 2-sphere. The electric and magnetic fields are given by

(B.2) Ei = −
(

1− 2m

r
+
q2

r2

)−1

∂i

(qe
r

)
, Bi = −

(
1− 2m

r
+
q2

r2

)−1

∂i

(qb
r

)
.

Change coordinates by

(B.3) r = r +m+
m2 − q2

4r

to obtain the expression of the metric in isotropic coordinates

(B.4) −
(

1− m2−q2
4r2

1 + m
r + m2−q2

4r2

)2

dt
2

+

(
1 +

m

r
+
m2 − q2

4r2

)2

δ, r ≥
√
m2 − q2

2
,

with corresponding electric and magnetic fields fields

(B.5) Ei = −
(

1 +
m

r
+
m2 − q2

4r2

)−1

∂i

(qe
r

)
, Bi = −

(
1 +

m

r
+
m2 − q2

4r2

)−1

∂i

(qb
r

)
,

where δ is the Euclidean metric.
We may write the Reissner-Nordström spacetime metric as −V 2dt

2
+ g. In isotropic coordinates

g = U4δ, where

(B.6) U(x) =

√
1 +

m

r
+
m2 − q2

4r2
.

The electric field may now be expressed as
(B.7)

Ei = −V −1∂i

(
qe
ρ

)
in non-isotropic coordinates, Ei = −U−2∂i

(qe
r

)
in isotropic coordinates.

Notice that this makes sense from previous formulas, since (in isotropic coordinates) we know that
Ei = U−6Eiδ is divergence free whenever Eδ is divergence free with respect to δ; this is of course the
case, as Eδ = qe∇r−1. We can also check that the electric fields agree in the two different coordinates:

Erdr =
1

V

qe
r2dr =

1

V

qe
r2

dr

dr
dr =

1

V

qe
r2

(
1− m2 − q2

4r2

)
dr

=
1

V

qe
r2U4

(
1− m2 − q2

4r2

)
dr = −U−2∂r

(qe
r

)
dr = Erdr.

(B.8)

Similar considerations hold for the magnetic field.
The conformal flow gt = u4

t g is given by rescaling coordinates by x 7→ e−2tx, thus

(B.9) ut(x) =

√
e−2t + m

r + e2t(m2−q2)
4r2√

1 + m
r + m2−q2

4r2

.
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In order to calculate the flow velocity vt, observe that

(B.10) vt =
d

dt
log ut =

−e−2t + e2t m2−q2
4r2

e−2t + m
r + e2t m

2−q2
4r2

.

As usual vt = 0 on the minimal surface ∂Mt = {r =

√
m2−q2

2 e2t}, and vt → −1 as r → ∞. Set

Ut = utU , then gt = U4
t δ. In order to calculate the equation satisfied by vt, recall the identities

(B.11) Lgtvt = U−5
t Lδ(Utvt), Rgt = −8U−5

t LδUt = −8U−5
t ∆δUt.

It follows that

∆gtvt =
1

8
Rgtvt + U−5

t ∆δ(Utvt)

= −U−5
t vt∆δUt + U−5

t (Ut∆δvt + 2∇Ut · ∇vt + vt∆δUt)

= U−4
t (∆δvt + 2∇ logUt · ∇vt).

(B.12)

A computation shows that

∆δvt = ∂2
rvt +

2

r
∂rvt

=
m2−q2
r4

+ e2t m(m2−q2)
2r5(

e−2t + m
r + e2t m

2−q2
4r2

)2 −
2
(
e−2t m

r2
+ m2−q2

r3
+ e2t m(m2−q2)

4r4

)(
m
r2

+ e2t m2−q2
2r3

)

(
e−2t + m

r + e2t m
2−q2
4r2

)3 ,
(B.13)

and

(B.14) ∂rvt = −e
−2t m

r2
+ m2−q2

r3
+ e2t m(m2−q2)

4r2(
e−2t + m

r + e2t m
2−q2
4r2

)2 ,

(B.15) ∂r logUt = −
m
r2

+ e2t m2−q2
2r3

2
(
e−2t + m

r + e2t m
2−q2
4r2

) .

Therefore

(B.16) ∆gtvt =
q2r−4

(
e−2t + m

r + e2t m
2−q2
4r2

)4 vt.

However since Eit = U−6
t Eiδ we have

(B.17) |Et|2gt = U−8
t |Eδ|2δ =

q2
er
−4

(
e−2t + m

r + e2t m
2−q2
4r2

)4 ,

with an identical formula for the squared norm of the magnetic field when qe is replaced by qb. It is
also true that Rgt = 2

(
|Et|2gt + |Bt|2gt

)
, which may be verified from the identity

(B.18) Rgt = −8U−5
t LδUt = −8U−5

t ∆δUt.

Thus, the equation satisfied by the velocity function is

(B.19) ∆gtvt −
(
|Et|2gt + |Bt|2gt

)
vt = 0 or ∆gtvt −

1

2
Rgtvt = 0.
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We remark that this equation for vt is precisely the one satisfied by the warping factor of the
Reissner-Nordström spacetime. In fact the Reissner-Nordström spacetime metric may be written as

−v2
t dt

2
+ u4

t g. This structure is also valid for the Schwarzschild spacetime if ut and vt arise from
Bray’s original conformal flow. Given an arbitrary metric g, this shows how to associate a static
spacetime with (M, g), namely use the conformal factor and velocity functions from the conformal
flow, to generate a static spacetime as above.
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