EXISTENCE AND UNIQUENESS OF NEAR-HORIZON GEOMETRIES FOR
5-DIMENSIONAL BLACK HOLES
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ABSTRACT. We prove existence of all possible bi-axisymmetric near-horizon geometries of 5-dimensional
minimal supergravity. These solutions possess the cross-sectional horizon topology 52, S' x S2, or
L(p, q) and come with prescribed electric charge, two angular momenta, and a dipole charge (in the
ring case). Moreover, we establish uniqueness of these solutions up to an isometry of the symmetric

space Gia(2)/SO(4).

1. INTRODUCTION

An open problem in general relativity is the classification of stationary, asymptotically flat black
hole solutions (M, g) in spacetime dimension D > 4 [6, 9, 15]. In the analytic setting, the rigidity
theorem asserts that a stationary, rotating black hole is axisymmetric, that is, it admits an additional
spatial isometry with closed orbits [13, 16, 18]. The Killing field generating this isometry commutes
with the stationary Killing field. Solutions of the Einstein-Maxwell equations in D = 4 in this setting
can be recast as harmonic maps from the upper half plane to complex hyperbolic space equipped
with its canonical metric of negative sectional curvature. This can be used to show that a solution is
uniquely specified by three real parameters. Along with the fact that a D = 4 black hole must have
spatial horizon topology S?, this demonstrates that the Kerr-Newman family exhausts all possible
analytic, asymptotically flat black hole solutions of the Einstein-Maxwell equations (see [6] for a
review). A non-rotating black hole must be static, and this can be shown to imply it must belong
to the Reissner-Nordstrom family, which itself is a subset of the Kerr-Newman family.

The analogous classification problem in D = 5 remains open. The rigidity theorem guarantees
only the existence of a single U(1) isometry subgroup. It proves useful to assume the existence
of an additional rotational isometry. In this case a harmonic map formulation exists for the pure
vacuum Einstein equations and certain supergravity theories. The latter are natural generaliza-
tions of standard Einstein-Maxwell theory which are of interest in high-energy physics because their
action functionals are invariant under supersymmetry transformations. The topology theorem in
this restricted setting asserts that the topology of (a connected component of) the horizon must be
S35 x 82, or L(p,q) [12, 11, 17]. There is now a large literature on finding explicit solutions in
the above class, and in particular, examples have been constructed of several of these horizon types
[25, 29, 30, 33]. Using the vacuum harmonic map formulation, it has been proved that specification
of a certain set of invariants (interval data) uniquely characterize a black hole solution in this class
[10, 17]. More precisely, this data characterizes the fixed point sets of the U(1)? action on spacetime,
as well as the hypersurfaces on which a stationary Killing field is null. This fixes the topology of the
horizon and domain of outer communication, as well as other geometric invariants such as the mass
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and angular momenta of the spacetime. Existence, however, remains a challenging open problem
although recent progress has been made [20].

To address the classification problem we will restrict attention to the class of extreme black holes.
This subset of stationary solutions have vanishing surface gravity, that is the event horizon is a de-
generate Killing horizon. Extreme black holes play an important role in various contexts. Physically,
for fixed mass they have maximal charge and/or angular momenta and saturate certain geometric
inequalities. In particular, extreme black hole initial data is known to minimize the mass amongst
black hole initial data with fixed angular momenta and charge. This has been established in D = 4
[7] and in D = 5 for black hole initial data having S® [1, 3] and S! x S? [2] horizons. From the
standpoint of high-energy physics, the vanishing surface gravity implies that extreme black holes do
not Hawking radiate. Indeed, they are the best understood within theories of quantum gravity such
as string theory, which has supplied a statistical account of the Bekenstein-Hawking entropy of a
large class of extreme black holes [32].

The key property of extreme black holes that we will exploit is that each admits an associated
near-horizon geometry [24]. This is a well-defined geometric limit which yields a precise description of
spacetime in a neighborhood of the degenerate event horizon. This limit preserves certain properties
of the parent black hole, such as the horizon geometry, although asymptotic information such as
the mass and angular velocity is lost. Suitable definitions of charge and angular momenta, however,
do exist although there are subtleties in extrapolating these to the analogous quantities defined
in the usual way on the asymptotic sphere at spatial infinity. Classifying near-horizon geometries
gives valuable data on the possible set of all extreme black hole. In particular, the absence of a
near-horizon geometry with particular horizon topology (or geometry) implies non-existence of an
extreme black hole with that horizon. The inverse problem, proving the existence of parent extreme
black holes with prescribed asymptotic behavior is a difficult open issue; progress in this direction
has only recently been made in the axisymmetric case by integrating ‘out’ from the horizon along
outgoing null radial direction [27, 28].

As we explain below, the near-horizon limit zooms in on the region near the event horizon. This
removes a radial degree of freedom. Thus instead of solving PDEs on a (stationary) Lorentzian man-
ifold of dimension D, the field equations reduce to geometric equations on a D — 2-dimensional closed
Riemannian manifold (a spatial cross-section of the event horizon). This is clearly a considerable
simplification. In the problem at hand, U(1)P~3-invariant near-horizon geometries of stationary,
extreme black holes are cohomogeneity one. The near-horizon geometries reduce to harmonic maps
from a closed interval to a target space with nonpositive sectional curvature. It turns out that these
harmonic maps are singular in the sense that they will blow-up at the endpoints of the orbit space
interval. Given a harmonic map satisfying appropriate boundary conditions, one can always integrate
the rest of Einstein’s equations to obtain a near-horizon geometry.

For the large class of gravitational theories which admit a harmonic map formulation (e.g. pure
vacuum and various supergravity models) it is possible to integrate the resulting ODEs explicitly to
obtain an analytic expression for a coset representative matrix associated with the target space [23].
In the vacuum, it is possible to determine the harmonic map scalars explicitly and then obtain a full
classification of near-horizon geometries of D-dimensional stationary extreme vacuum black holes ad-
mitting a U(1)P~3 isometry subgroup [14]. However, in supergravity theories with more complicated
matter content (scalar fields and multiple Maxwell fields) the problem of obtaining the harmonic
map functions from the coset matrix reduces to solving a large set of algebraic constraints which
is, in practice, not possible. This makes it impossible to reconstruct the near-horizon geometries
from the harmonic map and prevents a classification, mainly because one cannot implement global
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regularity conditions on the local solutions. Thus neither the problem of existence nor uniqueness
can be addressed, which is unsatisfactory.

In this work we will instead introduce an abstract approach into the study of this problem of
existence and uniqueness for near-horizon geometries in theories admitting a harmonic map formu-
lation. Of particular interest is D = 5 minimal supergravity, as it arises within the context of string
theory compactified on the torus 7°. This approach is originally due to Weinstein [34], who exploited
the fact that the stationary, axisymmetric Einstein-Maxwell equations in 4-dimensions reduce to a
harmonic map with prescribed singularities ¥ : R3\ T' — H% where I' represents the axis of sym-
metry. In particular he succeeded in proving the existence and uniqueness of such harmonic maps
with prescribed singularities. This elegant technique yields solutions describing multiple rotating
black hole configurations which are smooth away from the axis. Very recently, this method was ex-
tended to the D = 5 bi-axisymmetric vacuum setting by one of the present authors, Weinstein, and
Yamada [20, 19]. This work achieved existence and uniqueness results for singular harmonic maps
corresponding to black holes of lens and ring topology and having various asymptotics at infinity.

2. STATEMENT OF MAIN RESULTS

We will consider five dimensional spacetimes (M, g, F') where M is a smooth, orientable manifold
equipped with a Lorentzian metric g having signature (—,+,+,+,+), and F is a closed 2-form
describing the Maxwell field. A solution (M, g, F') of D = 5 minimal supergravity is a critical point
of the following action functional

b
3v/3

where % is the Hodge dual operator associated to g and R is scalar curvature. In addition, a local
1-form gauge potential has been introduced so that F' = d.A, although in general Hy(M) # 0 so A
need not be globally defined. This theory automatically includes vacuum general relativity when
F = 0. The spacetime field equations derived from this functional are

1 1
Rab = §FachC - E’F|2gaba

1

dxF + \/§F ANF =0.

Unlike the more familiar pure Einstein-Maxwell system, d x F' # 0. As discussed above, the theory
(2.1) is more natural in a variety of contexts. Firstly, it arises in standard dimensional reduction
on tori of the 10 and 11-dimensional supergravity theories which govern the low-energy dynamics
of string and M-theory. Secondly, as we discuss below, the field equations reduced on spacetimes
having a U(1) x U(1) action by isometries admit a harmonic map formulation with nonpositively
curved target space.

Consider a stationary 5-dimensional spacetime containing a degenerate Killing horizon with Killing
field V. This implies that there is an embedded null hypersurface N’ on which |V|/2\f = 0 and
Vv V|ny = 0. A spatial cross section of N is a 3-dimensional closed Riemannian manifold H. A
spacetime containing an extreme black hole would satisfy these conditions. In a sufficiently small
neighborhood of the event horizon we may always introduce adapted Gaussian null coordinates that
describe the near-horizon geometry with spacetime metric

1
(2.1) S:/R*1—2F/\*F— FAFAA,
M

(2.2)

(2.3) gNH = r2a(y)dv2 + 2dvdr + 2r B4 (y)dvdy® + ’yabdy“dyb,
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where y*,a = 1...3 are local coordinates on H with v, its induced Riemannian metric, «, 5, are a
function and 1-form on H respectively, and V = 9,. The event horizon N corresponds to the null
hypersurface » = 0. Similarly the Maxwell field may be expressed in this coordinate system by

(2.4) Fxu = For(y)dv A dr + 7Fpq(y)dv A dy® + F,

where F is a closed 2-form on H. In fact the Bianchi identity dF = 0 further implies that

(2.5) Fyu = V3d(s(y)rdv) + F,
where we have set v/3¢(y) = —F,.. A lengthy computation [22] shows that the spacetime field
equations (2.2) are equivalent to the following set of equations defined on H
. 1 1 1, )
Ric(y)ap = iﬁaﬁb V(B + 5 acFhay ™ + 2§ Yab — VL|F\2
2. 1 1 F|?
( 6) o = 75(1[3& - §va/8a —¢% - u

2 127
d*vl*:‘:—*,yiﬁl:—'—\/g*,y(dg—gﬂ)—l—%ﬁ',

where V is the connection associated to (#,v). The above formulation of the field equations on

near-horizon geometry spacetimes have many advantages over a standard spacetime approach. In

particular, equations (2.6) are defined on a closed Riemannian manifold (H,~) as opposed to a non-

compact Lorentzian one. This is a considerable simplification which facilitates global arguments.
The electric charge associated to the near-horizon geometry is given by

(2.7) Qzléﬂ/H<*F+\}§A/\F>.

Note that the field equations imply that the integrand is a closed 3-form. If Ho(H) is nontrivial,
then a dipole charge may be defined by

1

(2.8) DO =5 | F

for each homology class [C] € Ho(#H). This is a ‘local’ charge in the sense that it is not associated to
a conserved magnetic charge. Furthermore, by introducing Killing fields 7;) that generate the U (1)2
isometry with associated 2m-orbits, so that

(2.9) Ly,g8=0, Ly F=0,
we may define angular momenta
1 2
2.10 P = —— d i) F+ —AAF
(2.10) 5= 1z [ i+ Al (<5 + Zzanr)

where the same notation is used to denote the dual 1-form to the rotational Killing fields, and £
represents Lie differentiation. The field equations and the existence of the isometry imply once again
that the integrand is a closed 3-form.

In the presence of a U(1)? isometry, solutions of the field equations for near-horizon geometries (or
equivalently solutions (v, 8,s, F') of (2.6)) can be interpreted as singular critical points of a weighted
Dirichlet energy for maps from (—1,1) = Gy(2)/SO(4). The latter is an 8-dimensional non-compact
Riemannian manifold equipped with a metric having non-positive sectional curvature.
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Theorem 2.1. Given a cross-sectional horizon topology of S3, S' x S%, or L(p,q) and values for
the electric charge Q, angular momenta J;, and dipole charge D (in the ring case), there exists a bi-
axisymmetric near-horizon geometry solution of 5-dimensional minimal supergravity realizing these
characteristics. Moreover this solution is unique up to an isometry in the target space GQ(Q)/SO(ZL)
and a translation in the arc length parameter for the the harmonic map.

We note that this theorem includes the vacuum case [14] in which @ = D = 0, and the target
space is replaced by SL(3,R)/SO(3).

3. BI-AXISYMMETRIC NEAR-HORIZON GEOMETRIES

We are interested in proving existence and uniqueness properties of a class of solutions (g, F)
of the field equations that describe near-horizon geometries. Such geometries describe in a precise
way the spacetime sufficiently close to a degenerate Killing horizon. The chief motivation for their
study is that it is generally expected that any stationary, rotating extreme black hole must contain
such a degenerate Killing horizon. In the analytic setting this has been established up to a set of
measure zero in the moduli space of solutions [13]. This fact is certainly true for all known examples.
Furthermore, each such ‘parent’ extreme black hole has an unique associated near-horizon geometry.
Of course, the existence of a given near-horizon geometry does not guarantee the existence of a black
hole spacetime with prescribed asymptotics. Nonetheless, knowledge of the space of near-horizon
geometry solutions gives valuable information on the set of allowed extreme black holes.

Let us briefly recall the general notion of a near-horizon geometry before specializing to the
U(1)%-invariant setting (for a detailed review, see [24]). Let A be a Killing horizon with normal
Killing vector field V. We may always introduce a Gaussian null coordinate chart (v,r,y%) in a
neighbourhood of A such that V' = 9,, the horizon is located at »r = 0, and y* (a = 1,2,3) are
coordinates on H, a spatial (constant v) section of N'. It will be assumed that # is a 3-dimensional
compact manifold. In this chart

g = rla(r, y)dv? + 2dvdr + 2rB,(r, y)dvdy® + Yab(r, y)dy"dy’,
(3.1) 1-
F = Fyrdv A dr + Fradr A dy® + Fuadv A dy® + 2 Fapdy® A dy’.

Such coordinates are ‘ingoing’ because the radial null vector field —9, is future directed at r = 0.
The near-horizon geometry is obtained by substituting v — v/e, r — er and letting e — 0. The
resulting geometry has metric

(3.2) gni = r2a(y)dv? + 2dvdr + 2r By (y)dvdy® + yap(y)dy®dy’,

where (a, 3,7) are defined on H. The Maxwell field does not automatically admit a well-defined limit;
rather, upon use of the Bianchi identity dF = 0, the identity Ric(V,V)|x = 0, and the field equation
(2.2) one finds Fy, = 0 at r = 0. It then follows (assuming smoothness) that the near-horizon limit
of the Maxwell field exists and is given by

(3.3) Fxu = —d(Fyr(y)rdv) + F,

where F is a closed 2-form on H. It is convenient to define ¢ := —Fyr/ V/3. The full spacetime field
equations (2.2) for the spacetime fields (gnm, Fnm) are equivalent to the coupled set of equations (2.6)
for the near-horizon data (Yap, Ba; s, F) [24]. In particular, the near-horizon spacetime is a solution
of the same field equations as its parent extreme black hole.

Suppose now that the spacetime admits a U(1)? action by isometries, so that (2.9) holds. These

isometries extend to the cross-section (#,7), and the generators of the symmetry are tangent to
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H. Introduce angular coordinates ¢°, i = 1,2 associated with these symmetries, having 27 periodic
orbits. Since the interior product of the symmetry generators with the volume form is closed, we
may define a function x by

(3.4) dz = CVol, (91,2, ),

where C is a constant. As proved in [17], the function x parameterizes the orbit space H /U (1)?, and
C may be chosen so that x € [~1,1]. In the chart (z, ¢!, $?) the cohomogeneity one horizon metric
~ then takes the form

dz? S
3.5 b dytdy? = ———— + \iido'dg/
(3.5) Yabdy'dy’ = Gy + Aijdg'dg
and the area of the horizon is
(3.6) Ap =8n?C™L.

A detailed analysis of the geometry of the torus action can be found in [17]. For z € (—1,1) the torus
action is free (the matrix A;; is rank 2), and the endpoints z = %1 represent fixed points. As x — +1,
the Killing fields vy = aﬁt@@ — 0 where @’ € Z. The matrix Aij is rank 1 at the fixed points, so
Nijay — 0 as x — £1. We are free to choose a; = (1,0) and a_ = (q,p) for coprime p,q € Z
without loss of generality. The topology of H is then characterized by these integers: (q,p) = (0, £1)
corresponds to S3, (¢q,p) = (£1,0) to S* x 52, and otherwise H = L(p, q).

In the remainder of this work we will normalize the area of the horizon by setting C = 1, i.e. so
that A = 872. The vector fields v4 degenerate smoothly at their respective fixed points provided
we impose the requirement

(3.7) T Ut

o=+l det A - Ajjalpaly 7

which eliminates conical singularities. The overall horizon scale can be reinstated by dimensional
analysis.

Remarkably, the combination of imposing U (1)? symmetry along with the field equations (2.2) (or
equivalently directly from (2.6)) on a general near-horizon geometry spacetime (gnr, Fnm) results in
an enhancement of symmetry R x U(1)?2 — SO(2,1) x U(1)? [26]. This result holds rather generally
for near-horizon geometries in D-dimensions invariant under a U(1)”~3 torus action satisfying the
field equations of general relativity coupled to an arbitrary number of Abelian gauge fields and
uncharged scalar fields. The SO(2,1) x U(1)? symmetry constrains solutions to take the form

2

= dz ; ; , .
gni =E(z) [—r2dv? + 2dvdr] + det A (@) + Xij(z) (d¢' + b'rdv) (d¢’ + blrdv),

Fyu =d [ardv — ¢'(z) (d¢' + b'rdv)] .

(3.8)

In the above expressions, the quantities a, b’ are constants and Z(z) > 0, 1" are smooth functions
on H. The 2-dimensional metric in the first square brackets is seen to be the 2-dimensional anti-de
Sitter spacetime (AdSsz), where the radius of curvature is set to be one. The action of SO(2,1) yields
a torus fibration over AdSs, and it leaves the AdSy part of the metric invariant. When b’ # 0 this
action transforms the 1-form rdv by an exact function which can be undone by a corresponding U(1)
shift in the direction bi8¢i. Similarly, the Maxwell field Fny is invariant.
The classification problem for all regular near-horizon geometries is to obtain all solutions (gn g, Fnm)

to (2.6). In the cohomogeneity one biaxisymmetric setting, using the rigidity result discussed above,
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one can substitute (3.8) into the near-horizon geometry equations and solve for all possible near-
horizon data (=, \i;, 9", a, b"). For the class of U (1)2-invariant near-horizon solutions we can straight-
forwardly read off the data appearing in (2.3) and (2.5). Namely

1 Aibib7 )\l b
s (M)

(11| [11-

dx,

—_
—

—
— —

(3.9) .
a— ~ ; ;
=, F = —d v A d Z’

where Z denotes differentiation with respect to 2. From (2.6) it follows that

S

d b'b/ )\z /\” 2
(3.10) L) = 2+ PP 2R gixi g 2 (a2
dx = 3=
Moreover, the (zz) and (ij) components of (2.6) yleld
AAZ Z2ONE NE N (a—yibh)?
IR N = e LN
. g tan TN AT = Ty s o WA T
(310 (a— b A

—ANij — AN+ AN A = XA bPbl 4 Mg o= gww +=

Finally the near-horizon geometry Maxwell equation reduces to

(3.12) 4 [EAZ”“AW} (a— ¢ibi) bk _ 2 e
' dx = V3 ’
where €* is a totally antisymmetric tensor with €' = 1.

Solving the coupled ODEs (3.10)-(3.12) in full generality by direct means appears to be very
difficult. In the vacuum case with vanishing Maxwell fields (¢',a = 0), the direct approach is
tractable and led to a full classification [21]. However, when F' # 0 the situation becomes clearly
more difficult and even in the static case (when 0, is hypersurface orthogonal) a full classification by
direct integrations remains open [22]. Following [23] we will exploit the fact that the supergravity
field equations (2.2) with U(1)? symmetry admit a harmonic map formulation from [—~1,1] to a non-
positively curved symmetric space target. This fact will be our main tool to establish existence and
uniqueness of biaxisymmetric solutions of (2.6). In the following subsection we will recall the salient
features of this formulation before applying it to spacetimes satisfying (3.8).

3.1. Harmonic map formulation of supergravity. Five-dimensional minimal supergravity may
be regarded as the natural extension of standard Einstein-Maxwell theory in that it has a number
of important mathematical properties. In particular, the field equations (2.2) are equivalent to a
harmonic map when enough toroidal isometries are present, in this case U(1)2. To see this we

summarize the relevant parts of the construction [23]. First decompose the spacetime metric as

(3.13) 8ab = ———hab + A0 )0,

det A

where h is to be regarded as a smooth Lorentzian metric on the 3-dimensional orbit space M /U (1)2.
There are globally defined scalar potentials v’ defined by

(3.14) dp’ = 1y, F,
after utilizing dF = 0 and topological censorship. It is straightforward to show that
(3.15) SW(MW =ty by F =0,
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so that the 9" are functions defined on the orbit space. We may also define a 1-form
(3.16) T = * F

that as a consequence of the Maxwell equation, satisfies

“lnaytng)

1
3.17 dY = —d (Y dy?* — ¢*dyt) .
(3.17) 7 (¢ dy® — ¢ dy’)
It follows that a globally defined electric potential x exists and satisfies
1
3.18 dx =T — — (P dp?* — p2dyt) .
(3.18) X 73 (V' dyp? —p*dyp?)

Next, recall that in pure vacuum the twist potentials ©% are closed 1-forms. In the supergravity
case they are no longer closed, since the Ricci tensor is nonvanishing. Using the field equations, a
computation [23] shows

3.19 de' = —Y Ay, F=d | dx+ d 2d )}

( ) 10 |:w < X 3\/§(¢ P — pPdp?t )

It follows that there exist globally defined charged twist potentials ¢* which obey
3.20 d Uldx + d d

(3.20) =0 =yt [+ S wlav? - v

These reduce to the vacuum twist potentials when F' = 0. Finally, note that the Maxwell field can
be reconstructed from the fields (A}, x, ¥?, ¢*) with the identity

(3.21) [<(n(2) Ay AT) + (det )Xy A dip?]

1
" det A

A long calculation [5] now gives the following reformulation of minimal supergravity. Namely, the
supergravity field equations (2.2) for U(1)2-invariant solutions (g, F') are equivalent to the following
system

1 a c
Ric(h)ge =Tt (A—lvaM—vaA) 4 YadetAVe det)
(3.22) 4 (det A)
T e + — d) 1/)] )\”9’ @]
2det A e 2d t A
B dW )\”@3)
(3.23) divy, <d tA) e
) PP T, /\”@J 2 5 i
(3.24) divy, (AN deypl) = ( Y fdem( 2(Y, dipt)p — 6" (Y, dy?)n)
and
. pUCY
(3.25) divy, <det)\> =0,
where
.\ Kkl ) AV (®i7@j)h _ 7 i 1 . mn m ny (TﬂT)h
(326) Ah)‘zg =A (d)‘zkad)\l])h det \ (diﬂ adw )h + 3)\11 A (d1/1 ,CW )h det A

and (-, -)p denotes the inner product on forms with respect to the metric h. Note that the final three
equations above are second order elliptic equations for the electromagnetic potentials ((*, x, 1").
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Solutions of this system of equations arise as critical points of a 3-dimensional theory of grav-
ity on (M/U(1)?,h) coupled to a wave map having nonpositively curved symmetric space target
G2,2/50(4), governed by the functional [5, 31]

(3.27) S[h, X] = (Rh - 2h“men8aXm6bX”) Voly,.
M/U(1)2
Here Ry, is the scalar curvature of h, and X = (A, ¢t x,9*) are coordinates on the target manifold
with metric
(ddet \)? n Tr(A~1d)\)? n pCACUCY n T2 N da dofpd
8(det \)? 8 4det X\ 4det A 4 '

(3.28) GrndX™dX"™ =
The Euler-Lagrange equations of (3.27) are given by

Ric(R)u :éTr(M_laaMM_labM) 2B X9 X",
V(M B,M) =0.

(3.29)

An explicit expression [23] for the 7 x 7 positive definite unimodular coset representative is

A B V2R
(3.30) M= Bt c VT |,
V2RY V2Tt S
where A, C are symmetric 3 x 3 matrices, B is a 3 x 3 matrix, R, T are 3 x 1 matrices and S is a
scalar. By setting x = v/3u, ' = —V/30%, and A = det Aij these submatrices may be expressed as

S =1+ 2(vpv® + X712,

T (A7 — %Gi])’jj
Ml — pll 4+ vrF + 5 — %VkCl] ,

(3.31) A (1 + )\_1;12))\1']' + A‘lg}fj + (2 + l/ka)ViVj + %(Viykekj — eikl/kljj) —)\_1@'
~A1 AL ’
vivd — %eij + %fwk&j U;
B = _Vkekj lﬁ . €lmVlC~m 9
vV A vV
o (1 + vpF)NT — pipd ¢+ (% — ™Ry — it
T+ (2 nlndm) e, — ¢ ’
where indices have been raised and lowered with A;; and
J
G =G — vy,
2 ~ 2 kL, A\ ~

(3.32) wi=-— (1 - *;) Ve g — 2+ M v+ NG + (—‘; + \/;Q G — %eikck,

c :gkg:k - 2,uykgk + )\[1 -+ l/kl/k + (2 + V]fljk))\fllul2 + A*2('u2 _ Vlém\/Xelm)Q}'
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The above formulation applies generally to any U(1)2-invariant solution of (2.2). In the next sub-
section we will restrict attention to near-horizon geometry members of this class.

3.2. Near-horizon geometry data as a harmonic map. The near-horizon geometry (g, F') given
by (3.8) admits a U(1)? action as isometries by construction. Therefore the entire class of solutions
must arise as critical points of the functional (3.27). The advantage of this latter formulation, as
opposed to the equivalent formulation (3.10)-(3.12) is that it allows for abstract theory to be applied.

To begin, we merely have to relate the near-horizon data to the harmonic map data X and orbit
space metric h. Observe that the dual 1-forms to the rotational Killing fields ;) are given by (with
abuse of notation)

(3.33) N = Aij(dg? + A7),

where A7 are 1-forms on the orbit space. The matrix )\;; appearing in (3.8) may then be identified
with that defined in (3.13). In addition, the functions 1’ appearing in (3.8) may be identified with
those defined in (3.14). The 3-dimensional orbit space (M/U(1)2,h) corresponding to (3.8) is a
warped product of [—1,1] and AdSs with

(3.34) hapdzda® = dz? + Z(x) det M\(z) [—r?dv? + 2dvdr] .
The remaining scalar potentials are

_a—9¢'b' 1

8:1:)( = \/g (¢15x¢2 - ¢28x¢1) )

\i;ib? — i(a — ibJ 2 .
S m PSR 2t (00 - at).

(3.35)

e

(1]

and it is clear that A7 = birdv.

Conversely, these can be inverted to reconstruct a near-horizon geometry from a given set of
harmonic map scalars and three-dimensional orbit space metric h of the near-horizon form above.
Using

1

i =\ zj j:c N 112_2m1 ,
(3.36) bi = =\ (ac+w [8X+3\/§(w3w @/”91/’)])

the constant a can be determined from the relations (3.35), namely

o iy \iJ
(3.37) a=2 <awx(1 + PPN + PNV 0,0 + ﬁ(wlaﬂp’z — P2 0,") (1 L ¥ ¢3 )) :

The biaxisymmetric near-horizon geometry equations (3.10)-(3.12) are equivalent to (3.29). In
fact, for near-horizon geometries the reduced Einstein equation can be immediately integrated to
give an explicit expression for Z(z). To see this note that the nonvanishing components of the Ricci
tensor of the base space metric h of (3.34) are

Ric(h)y :Q”(;)rz +r2,
(3.38) Ric(h)yr = — Q"Q(”“") Y

Q@ (@Y
Ricth)es == 2500 *(2@@)) /
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where Q = Zdet A. Since the coset representative matrix M is independent of the coordinates v
and r, the right-hand side of the reduced Einstein equation (3.29) only has a nonvanishing (z, z)
component. It then follows from Ric(h),, = 0 that

(3.39) Qz) =1 — 22,

as Q(£1) = det A(£1) = 0 and = > 0. The requirement Ric(h),, = 0 is automatically satisfied. The
harmonic map equation (3.29) for M may now be expressed as

(3.40) 9 [(1 =2 )M 19, M] =0,

which can be immediately be integrated to yield (1 — 22)M =19, M = M for some constant matrix
M. Furthermore, using (3.39) produces

2

which in turn yields, upon applying (3.29) the requirement that Tr(M3) = 16. We emphasize that
the difference between our approach and that developed in [23] is that in the latter, the harmonic
map equations (3.40) are solved for the matrix M (x) explicitly, in terms of a large set of integration
constants. The downside of this approach, however, is that given the complicated form of M (3.30)
it is not possible in practice to extract the harmonic map potentials, and hence the near-horizon
geometry, from knowledge of M(z). Thus it is not clear how to obtain a classification following this
method. In contrast, we will follow a more abstract approach focussing on properties of functional
(3.27).

In summary we have shown that for a U(1)%invariant near-horizon geometry of the form (3.8),
the field equations (2.2) reduce to solving the harmonic map equation (the second line of (3.29)) for
the 8 harmonic map scalars (\;j, ¢%, x,v"), and then reconstructing the remaining near-horizon data
(a, b?).

Before concluding this subsection we note that the electric charge (2.7), angular momenta (2.10),
and dipole charge (2.8) (if H = S x S?) can be expressed in terms of the boundary values of the
harmonic map scalars. We refer to [4] for the details of the computation and simply give the results
here, namely

(3.41) Ric(h)ps =

1
(3.42) Q= Z/_l dx = %(x(l) - x(=1)),
T [ i i i
(3.43 7= [ ac =T - ¢,
and in the case of a ring horizon the dipole charge is
1 i i
(3.44) D= /S F = al($i(~1) — (1)),

where v = ain(i) is the Killing field that vanishes at the poles of the S2.

3.3. Relation to harmonic map energy. In order to perform the existence and uniqueness ar-
gument in the next section, it is advantageous to replace the matrix of scalars );; with a more
convenient set of variables. This may be seen as a reparameterization of the target space. Firstly,
note that for the near-horizon geometries discussed above the metric h is completely determined by
(3.39), and hence decouples from the harmonic map in the the functional (3.27). We may therefore
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view it as a functional of the variables X alone defined on the closed interval [—1, 1] parameterized
by the coordinate x. Explicitly, one finds that S[h, X| = —27 where

1 dX™dXxX" 1
3.45 J= 1 —2%)Gmn — de.
(8.45) J /_1 [( ) dr drz  1-a2|"

Note that J = 0 on critical points as a consequence of the 3-dimensional Einstein equation (3.29)
upon using (3.41).

As explained in detail in [4], we now introduce a convenient reparamterization of the target space.
Firstly note that any U(1)?-invariant horizon geometry must be diffeomorphic to S x S? or the lens
L(p,q) [17] (see the discussion following (3.5)); here p and g are coprime integers. In the case of the
lens topology, introduce new variables (U, V, W) as follows

1 det A
-] AN
U=qlos <p2(1 - w2)> ’

1 p2(1 + 1’))\11 >
3.46 V= ,
(340 2 <(1 — ) [¢2 A1 — 2g 12 + A2
L A2 — qA1n )
W =sinh™! | =2 22— )
(peQU\/ 1— 22
with inverse transformations
2U
A1 = €2U+V(1 —x)coshW, Mg = 67 (\/ 1—22sinh W — qev(l — x) cosh W) ,

(3.47) -

Ao = eT (quV(l —z)coshW —2¢v/1 — 22sinh W + e~V (1 + z) cosh W) .
p
Note that the regularity condition (3.7) becomes

1— 232
(3.48) TSN k0 AP S

—6zU—-V _ 1
z—=+1 det ) - alj:aﬂi)\z.j z—*l

For the ring S* x S? a different parameterization is needed, namely
(3.49) A1l = UV cosh W, Agg = eQU*V(l — x2) cosh W, A2 = e?U\/1 — 22sinh W,

where

(3,50) V=V+ 2h1 + ha,
with

1 1 11—z

51 hi = —log(1 — 2? hy = -1 :
(351) V= jloet e, he=jiog (17
The conical singularity regularity condition (3.7) is now expressed as
v 1
. —6Uu+v _ 1L

(3.52) zlgil e =5

We may now rewrite the functional J in a unified way for all admissible topologies by associating
each with integers (p, ¢, s), where s = 0, 1, according to the rule
HgS:g: s=0, p=1, ¢=0,
H>=2S'x8? s=1, p=1, ¢=0.
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By setting
(3.54) Vs =V + 2shy + sha,
an involved computation [4] reveals that
(3.55) 32%—log2p2— 3‘2”
where, upon setting x = cos @ for later convenience

(V)

:/ {12 (BpU)% + (9gV)? + (9gW)? + sinh® W (8V + gha)?
0

26_6h1_h2_6U_V A1\2 2 _—6h1+ho—6U+V h —ho—V h 1 A2 2
(3.56) +p cosh TV (Og)" +pZe cosh W (e tanh WO, — @9>
—2h1—ho—2U—-V
e

cosh W

+ p? (Opp™)? + ple2the=2U+V cosh W (e~ 2=V tanh Woyo! — 89152)2

+ ple 4 =AUY2 _ 25V, sinf — 12U sin 6] 89h2} sin 6d6.

Here ¥ = (U, V, W, (1, %, x, !, ¢?) and

~ o . 1 P
(3.57) 6=17', ) = Z%, 7 = ( 0 q).

It is clear that 7 is finite, and we will now demonstrate that it may be interpreted as a reduced
energy, that is a renormalization of a singular Dirichlet energy for maps from S — Gg.9/SO(4).
Consider the round metric on S% given in Hopf coordinates (6, ¢!, ¢?), where 6 € (0, 7), by

(3.58) ggs = dZQ + sin?(6/2)(dp)? + cos?(0/2)(dp*)?.

We are interested in harmonic maps from (5%, ggs) to the symmetric space Gy)/SO(4) = R®
equipped with the following complete Riemanninan metric of non-positive curvature

—6u—v
G =12du? + cosh? wdv? + dw? + p? h ((:)1)2 4 p2e 0+ gogh w(e”" tanh wO! — (:)2)2
(3.59) s coshw
PP (A1) + pre T coshw(e ™ tanh wd! — d?)? + pPe 2,

Let © C 53 be a domain that avoids I', the union of the two circles at # = 0,7, and let U =
(u,v,w, ¢t ¢ x, vt 9?) « S3\T — Go2)/SO(4) be a singular bi-axisymmetric map. Then the
Dirichlet energy on this domain is given by

_ 4 676u7v _
Eq(V) = /Q {12(89u)2 + cosh? w(9pv)? + (Gpw)? + p* p—— (04)?
—2u—v
3.60 2, —6utv oo ~tanhw®? — 62)% 4 p2° 71y2
(3.60) +pe coshw (e tanhwOy — ©7)” +p - (Optb™)

+ pPe T coshw (e”¥ tanh wdptp' — 391/;2)2 + pPe tuYd }d%

where dV is the volume element on S3.
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The difference between the renormalized map ¥ and the unrenormalized map ¥ only appears in
the first two variables

(3.61) u=hy +U, v=nho+7V, w=TW,

where in the new coordinate h; = %log sin @ and he = logtan g. Through integration by parts and
with the help of Jy (sin #9ph2) = 0, the functional Z is shown to be related to the harmonic energy
To(¥) =Ea(¥) - |

via the formula
9 2
((28 cos? 3 1) + 3 cos? 9) (Dphs)?dV
(3.62) @

+/ (2 (25 cos? Q - 1> Vi — 12 cos GU) Oy hodA,
90 2

where v is the unit outer normal. From this it follows that the two functionals share the same critical
points.

4. EXISTENCE AND UNIQUENESS OF SINGULAR HARMONIC MAPS

In this section we prove existence and uniqueness of the relevant harmonic maps with prescribed
singularities at the north and south pole circles of S2. Our approach is based on that of Weinstein
[34], who treated a similar problem for maps from a compact manifold with nonempty boundary into
rank one symmetric space targets. Here, however, the setting is more difficult since the domain has
no boundary and the target space G2)/SO(4) is of rank two. On the other hand our domain has a
cohomogeneity one metric, where as in [34] it is cohomogeneity two.

4.1. The model map. Asymptotics for the singular harmonic map, as well as prescribed angu-
lar momentum and charges, are encoded in the model map which may be thought of as an ap-
proximate solution. The renormalized version of this bi-axisymmetric map will be denoted by
Vo = (Uo, Vo, Wo, ¢, x0,¥58). Let € > 0 and set Q. = {0 | [sinf| > e} x T2, On S?\ Q. we
may define W to be any smooth map, which interpolates between its prescription near the poles.
Near each pole the model map will be set to an exact solution. At the north pole with rod structure
(1,0), we may use the extreme charged Myers-Perry near-horizon geometry with potentials arbitrar-
ily prescribed at the pole. At the south pole the rod structure is (¢, p), and we may apply an isometry
in the target to transform the extreme charged Myers-Perry solution with potentials vanishing at the
pole to a solution having this rod structure and again vanishing potentials at the pole. In this way
the model map is smooth, satisfies the near-horizon geometry equations near each pole, and yields
arbitrarily prescribed angular momentum and charges from the formulae (3.42), (3.43), and (3.44).
Moreover the following properties are immediately implied by the construction.

Lemma 4.1. The reduced energy of the model map Wy is finite and the tension T(‘i’o) is pointwise
bounded.

Asymptotics for the model map may be derived from explicitly known near-horizon geometries
arising from extreme black holes such as the dipole charged black ring [26], and black lenses [25, 33],
namely

(4.1) Uo, (3, ¢35 x0 = O(1), Wy =O(sin®), 9Us, Fpxo, Opby = O(sin), 9gWo = O(1),

O(1) s=0 O(sinf) s=0
.0 ECAGES 0 .
—2log (sin§) +0O(1) s= —cot 5 +O(sinf) s=1

)

a2 w-
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m20) s— 20) —
(4.3) cz)é:{o(sm 2) 8 ‘f wéz{o(cos ) 5=0 0 i o), s=1,

O(1) 5= O(1) s=1"
.29 . _ 20 . _
(4.4) Dyl = sin .QO(smﬁ) s=0 7 B2 = cos ' 50(sinf) s=0 '
O(sin6) s=1 O(sin @) s=1

4.2. A priori estimates. Let {Q;} C S?\T be an exhaustion sequence of bi-axisymmetric domains
so that ©Q; C Q41 and lim;_, ©; = S3. Since the target space is nonpositively curved, standard
harmonic map theory [8] states that there exists a unique solution of the following Dirchlet problem
in which the model map is used to prescribe the boundary values

{r(\i/i):o in Q,

(4.5) AN
\I/i:\I’O on 8(2,

We now seek to establish appropriate estimates in order to ensure that the sequence 0, converges on
compact subsets of S3\ T'. The first step is to achieve an almost uniform distance bound depending
only on the distance at a fixed angle 6y € (0, 7).

Lemma 4.2. There exists a constant C depending only on 6y such that

(4.6) sup diStN((IJi, \i/(]) <C |:1 + diStN(\ifi, \i/o)|9:901| .

Q

Proof. Let d; = disty(¥;, ¥g). The nonpositive curvature of the target manifold ensures ([34, Lemma
2]) that on €;

(47) Ayr+@ > = (Il @) + I (Fo)ll) = ~Ir( o)l
Solve the boundary value problem
(4.8) Az =||7(To)|| on S[%ﬂo}’ z2=0 on 05[%790],

where S[% 6] 15 the region of S3 corresponding to the interval [0, 6] in the orbit space S3/U(1)2.

Note that this unique solution is smooth since 7(Wy) is identically zero in a neighborhood of the

poles (and is hence smooth there). It follows that z 4+ /1 + d? is subharmonic on S[?;__ 6ol where
Q;/U(1)? = (6;,0;") C [0,7], and so its maximum is achieved on the boundary. Therefore
(4.9) sup <z+ \/1+d§> < C(1+di(b)),
3
S[GZ_ 76()]
and this leads to the desired bound on S [?;‘_ o]’ Analogous arguments yield the bound on Sfeo o) O

The next goal is to achieve uniform energy and distance bounds, which are based on convexity of
the energy resulting from the nonpositive curvature of the target space. Let F; : ©; x [0,1] - N :=
G(2)/SO(4) be a family of geodesic deformations connecting W; to ¥y so that Fj(0,0) = U;(#) and
Fi(0,1) = Wy(h), see Figure 1. The components of F; will be denoted by

(4‘10) Fz(07 t) = (uz(07 t)v 1)2‘(9, t)a wi(07 t)a Czl (07 t)v sz(gv t)7 Xi(97 t)v 1/}11(97 t)7 1/%2(97 t))



16 AGHIL ALAEE, MARCUS KHURI, AND HARI KUNDURI

Since t — Fj(6,t) is a geodesic we have ||0;F;|| = disty(¥;, ¥y) = d;. The second variation of energy
yields

d? 8 N 2_N
(4.11) i

8 - -
22/ [\VdistN(\I/i,\Ilg)F - NRm(é?gFi,&Fi,atFi,@gFi)} dv,
s Q;
where in the second line the Kato inequality
(4.12) V3,7 0: il > (VIO F|| | = [Vdistn (W5, Uo)

has been employed. Since ¥; is harmonic the first variation vanishes at ¢ = 0, and thus integrating
twice produces

Eao,(

3

:(¥o)
- 0F 1 gt o
ZE]QZ'(‘lji)—’_Q/ / / [|VdiStN(\Ijiv‘I’0)|2_NRm(aaFiaatFuatFi,agFi) dtdt sin 6d6
- Jo Jo
0
=Eq,(V;) + / (IVdi|* + f:d?) sin 69,

i

(4.13)

where f; > 0 is given by

1 t . X
(4.14) fi=—2 / NRm <89Fi, OFi Ok 69F2->.
o . .

o= (1) Fi0:1) = Wo(0)

FIGURE 1. Geodesic deformation in the target space N.
Lemma 4.3. There exists a small interval (01,62) > 6y and a uniform constant § > 0 such that

o 02
(4.15) / (IVdi|? + fid?) sinfdf > 6 | (|Vd;|* + d2)db.
0 01

Proof. Let 7; denote the unit speed geodesic connecting 1 = F;(6p, 1) to F;(0p,0), and let J denote
the Jacobi field dpF; along this geodesic. In what follows we will suppress the index i. According
to the symmetries of the Riemann tensor, the matrix (R(-,7)7¥,-) is symmetric and hence admits
an orthonormal set of eigenvectors {e;} with eigenvalues A; < 0. Since the target manifold is a
symmetric space, the Riemann tensor is covariantly constant and therefore e; are parallel and A; are
constant along the geodesic. We then have

1 t 1 t
(4.16) fon =2 [ [ream =235 [ [
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The Jacobi equation implies that

(4.17) 0P (T ej) = (J,e5) = —(R(J,A)Y,¢5) = =Aj{ T e5),
and therefore

(4.18) (J,e5)(t) = cjlemt + cjge_\/mt.
Integrating and completing the square produces

(4.19)

1 :
f(00)2_2z/\j |:4’)\'|<62 B —1-2 ‘)\jDC?l—i-leCjQ"i‘
J

1 _ ,
re IR CIEEEEN Y
J

2
1 2|\

=Y sV 12 /] e + il Cj?]
’ (VI -1 —2/3)])

(e 2Vl Z 142 eV —1 -9 \)\j])—zl)\icz?
2V~ 1 - 2/]) J

2

Note that the coefficient of 0?2 in the last line is positive unless A; = 0.

A subsequence of the unit vectors (1) converges, and it may be assumed without loss of generality
that this limit is a regular direction by perturbing the point x; if necessary. Recall that a regular
vector is one which lies in a single maximal flat, and that the set of such vectors is dense in the
unit sphere. Thus, since the target space N is rank 2 there exists a vector perpendicular to ¥(1),
say eq, for which the curvature of the resulting 2-plane is bounded away from zero independent of
i, that is Ay < —c < 0. Furthermore, since the constants c;; and c;o are determined by (J, e;)(1)
and (J,e;)(1), and we may choose the model map at x1 to guarantee that |(J, e;)(1)| stays bounded
away from zero independent of i, it follows that f(6y) > 2§ > 0 independent of i. This lower bound
persists for a small interval around 6y, and thus yields the desired inequality (4.15). O

Proposition 4.4. The harmonic energy of the map V; is uniformly bounded on fized domains Q C
S3\ T, that is, there exists a constant C independent of i such that

(4.20) Eq(¥;) < C.
Moreover the distance function is uniformly bounded
(4.21) dist ; (¥, Up) < C.

Proof. By equations (3.62), (4.13), and ¥;|gn, = Wo|sq, we have

9+

(4.22) o, (Yo) > Lo, (¥;) + / i (|Vdi‘2 + fld?) sin 6d0.
0;
Observe that
o
(4.23) To, (Vo) — Zo, (V) = Zq, (Vo) — Za, (¥;) + / [12(Uy — U;) — 2s(Vy — V;)] sin 6d6,
0;

where fgi(\llo), :ZQL(\I]Z) are sums of squares and we have used sin#dyhe = 1. By construction of
the model map Zg,(¥¢) is uniformly bounded, and the integral on the right-hand side of (4.23) is
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controlled by the distance between the model and harmonic maps. It follows that

0
(4.24) C (1 + sup di> > T, (V) + / (IVd|* + f;d) sin 0do.
By Lemma 4.3
o 02
(4.25) / (IVdi|* + f;d?) sinfdd > 6 [ (|Vd,|* + d?)df.
91-_ 01

Moreover according to the Sobolev embedding W12 < C? in dimension one, combined with Lemma
4.2, we have

02
(4.26) / (IVd;|> +d?)do > C™ sup d? > C'sup d? > C;tsupd? — Os.
3 Q;

6=06
01 5[91792] 0

It follows that
(4.27) C > Io,(V;) + C L sup d?.

This immediately gives (4.21).
In order to obtain (4.20), use

(4.28) C > Io(V;)

from (4.27). The pure harmonic energy may take the place of the renormalized energy on the right-
hand side. To see this make the replacements u; = U; 4+ hy, v; = V; + ho, and w; = W; and compute
0+

Za(V;) =Eq(¥;) + / [12(9ph1)? — 2409h10pu;] sin 0d

(4.29)

o+
+ / (2091509 Vis — (Ophis)?] sin 00,

where Q/U(1)? = (§=,0%) and hys = 2shy + (s — 1)hg. Observe that
o+

0+
/ 2489}7,1891% sin #df

< 3/ (3gui)zsin0d9+48/

o+

1 -
(4.30) (Dphy)?sin Hdh < ZEQ(\II,-) +C,

and in a similar way

o+
1 -
(4.31) / 209hs0gVis sin 0dO| < ZEQ(\I&) + C.
Hence
- 1 ~
(4.32) To(¥i) 2 5Ea(¥:) - C,
and the desired result now follows. O

Energy bounds lead to pointwise density bounds with the help of Bochner’s formula and the
nonpositive curvature of the target manifold.

Lemma 4.5. The energy density of the harmonic map ¥; is uniformly bounded on compact subsets

Qc S3\T, that is
(4.33) sup |d¥;| < C.
Q
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Proof. This is a standard argument [34]. We include the outline for convenience of the reader.
Bochner’s formula yields

(4.34) A (|d\ff¢|2) — [Vd¥,|? + 5°Ric(d¥;, d¥;) — NRm(d¥;, d;, d;, dF;) > 0.

The squared density is then subharmonic, and the De Giorgi-Nash-Moser inequality combined with
Proposition 4.4 produces

(4.35) sup |dV;|2 < C'Eq (9;) < C,
Q
where C' is independent of 7 and Q C V. O

4.3. Existence and uniqueness. We say that a map U : S3 \I' = N is asymptotic to the model
map Wy if they remain within a bounded distance from one another even on approach to the poles,
that is dist N(\i/, \ifo) < C. A map which is asymptotic to the model map possesses the same singular
behavior as the model map near the poles.

Theorem 4.6. There exists a harmonic map ¥ : S3\ T — Go2)/SO(4) which is asymptotic to the
model map V.

Proof. The harmonic map equations satisfied by the sequence ¥;, combined with the pointwise
gradient bound (Lemma 4.5) and L® bound (4.21), imply uniform a priori estimates for all derivatives
on fixed domains @ C $2\ T'. In the usual way, by choosing a sequence of exhausting domains and
taking a diagonal subsequence, we find a sequence of maps \i'il which converges on compact subsets
to a smooth harmonic map . The limit also satisfies the L bound and is thus asymptotic to the
model map. O

In order to establish uniqueness for harmonic maps asymptotic to the same model map, we will
need the following preliminary result.

Lemma 4.7. Suppose that U1 and U5 are two harmonic maps from S3\TI' — N such that distN(lifl, \ifz)
is a nonzero constant. Let S C N be the 2-dimensional submanifold generated by the geodesic defor-
mation F(6,t) connecting U1 to Uy. If the sectional curvature of the coordinate 2-planes K(0;F, 0pF)
vanishes, then S is totally geodesic and flat.

Proof. We first show that S is flat. Consider the Gauss equations
NRm(8gF, 0, F, 0, F, g F) ="Rm(9gF, O, F, O, F, g F)

(4.36) )
— (A(O,F,0,F), A(0gF, 0sF)) + || A(0,F, 85 F)||?,

where YRm and “Rm are the Riemann curvature tensors of N and S, respectively, and A is the
second fundamental form. According to the assumption on the sectional curvature of the coordinate
2-planes, it suffices to show that the terms involving A vanish. Let n be a unit normal vector on
S, then the definition of the second fundamental form together with the fact that t — F(0,t) is a
geodesic produces

(437) An((?tF, 3tF) == (th, atF> = *<1’l, VtatF> =0.

Moreover by assumption ||0;F|| = disty (¥, ¥s) = const, and thus

1
(4.38) 0= S00ll0F | = (VoOiF, O,F) = Oi(0pF, O0F) — (0F. ViOhF) = 04(09F, O;F).
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It follows that

(4.39) (0pF, 0. F)(0,1) = (0pF, 0, F)(6,0).

Next, since K(9.F, 9pF') = 0 we have

(4.40) 0 = NRm(O,F, 0y F, 0;F,0pF) = (VN gOiF — VgV 04 F, 0gF) = 04 (V9O F, g F) — ||V 90: F||>.
Integrating over t and using (4.39) yields

1
/ [[VoO: F||2dt =(VgOiF, 0 F)(6,1) — (Ve0s F, 0 F)(8,0)
0

=09 ((OuF, 09 F')(0,1) — (O,F, 05 F)(6,0))

— <8tF, VQ89F> (9, 1) + <8tF, VQ89F> (9, 1)
— cot 6 ((0,F, 0y F) (0, 1) — (9, F, 83 F) (6, 0))
=0.

(4.41)

In the above computation we have employed the fact that as a result of the harmonic map equations
0 — F(0,1) and 8 — F(0,0) are pre-geodesics, that is they fail to be geodesics only due to their
parameterization and satisfy VgOyF' = — cot 00pF'. We now have

(442) An((?tF, (%F) = <th, 89F> = —(n, Vt89F> = 0,

and therefore S is flat.
To show that S is totally geodesic it remains to demonstrate that

(4.43) 0= An(agF, 89F) = <V9n, 89F> = —<1’l, V@@gF).
By differentiating V;0gF' = 0 with respect to 6 we find
(4.44) 0= VoVi0gF = Vi,V F + N R(0pF, 0, F)pF.

Since the curvature tensor is covariantly constant in a symmetric space, it follows that
(4.45) ViViVgOg F = 0.

Let now e(t) be a parallel transported vector field along the geodesic t — F'(#,t) which is normal to
S, then

(4.46) 0} (VgD F,e) = 0.

Furthermore the harmonic map equations show that

(4.47) (VoOpF,e)(0,1) = (Vg F,e)(0,0) =0,

and hence (Vy0pF,e)(0,t) = 0 for all t. As e was arbitrarily chosen normal to S, it follows that
(4.43) holds. O

We are now in a position to state the basic uniqueness result for the singular harmonic maps
having the same asymptotics.

Theorem 4.8. Suppose that Ui and Wy are two harmonic maps from S3 \I' — N which are
asymptotic to each other, that is their mutual distance distN(\ill, \ifg) remains bounded. Then there
exists an isometry of the target space ¢ : N — N such that \Tlg(s) =po \i/l(s + ¢) where s denotes
arc-length parameter and c is a constant.
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Proof. As before let F(60,t) denote a geodesic deformation connecting W, to Uy. Then the Poincaré
inequality, equation (4.22), and [4, Theorem 7.1] produce

™ - ~ 2
I(0,) zz(qzl)+c/ (distw (¥, ¥2) ~ D) sin 6y
(4.48) . g
2 [T [ [ W@r.am) (10F [P0 | - (@0, 00F)) sin bt
0 0 0

where D is a constant that represents the average value of dist N(\ifl, \112). Since both ¥y and Uy are
harmonic, their roles may be reversed in the above inequality. It follows that

(4.49) (V1) = I(¥y),

(4.50) disty (¥1, Uy) = D,

and

(4.51) (K(O.F, 0pF)| (1|10:F||*/|06F||* — (O:F, 0pF)) = 0.

e Case I: K(0:F,0pF) # 0 at some point. If IC(0:F,0pF) # 0 at (6p,t0), then by continuity
this persists for all nearby (6,¢). Thus by (4.51), there exists a neighborhood of (6, tp) on which

(4.52) [[0:F||?||0gF||* = (O.F, g F).

The Cauchy-Schwarz inequality then implies that these two vectors are multiples of each other, that
is

(4.53) adF = OpF.

Since J := 0y F is a Jacobi field, it is determined by J(ty) and 9;J(ty). But for (6,t) close to (0, o)
(4.54) J(t) = 0pF(6,t) = a(0,t)0:F(0,t),

and so

(4.55) J(to) = a(6,t0)0:F (0, to), O J (to) = Ora(0,t0)OLF (0, tp).

The Jacobi equation then yields
(4.56) OpF = J(t) = [a1(0)(t — to) + az(0)] O, F.

In particular, the pre-geodesics § — F(6,1) and 6 — F(6,0) coincide with the geodesic t — F'(6p,t)
up to reparameterization. We then have Wy (s) = Wy(s + ¢) for some constant ¢, where s denotes
arc-length parameter.

e Case II: K(0,F,0pF) = 0 for all points. If D = 0 then we are done, so assume that D # 0.
The subset S C N generated by F(6,t) is then a 2-dimensional submanifold. According to the
assumptions of this case, Lemma 4.7 implies that S is totally geodesic and flat. Let p € S and
O C T, N be the 2-plane spanned by JpF and 0;F. The surface S may be extended to be a complete
maximal flat by setting S = exp,(O). The pre-geodesics U1() = F(6,1) and Wo(0) = F(6,0) are
parallel straight lines in S in light of (4.50). Furthermore, the Iwasawa decomposition of the isometry
group G(2) may be used to show that there is a subgroup which operates transitively on the maximal
flat S, see [20, Section 6] for details in the SL(3,R)/SO(3) setting which carries over without change
to the present situation as both target spaces are rank 2. Thus, there exists an isometry of the target
space ¢ : N — N which maps T, onto ¥y up to translation in the arclength parameter. O
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4.4. Proof of the main theorem. In Section 3 it was demonstrated that bi-axisymmetric near-
horizon geometry solutions of 5-dimensional minimal supergravity correspond to singular harmonic
maps from S*\T' — Gy(9)/S0(4). These harmonic maps were shown to exist in Section 4 asymptotic
to a given model map. The choice of model map gives rise to corresponding minimal supergravity
near-horizon geometries having the prescribed horizon topology S3, S* x S2%, or L(p,q), and with
prescribed electric charge Q, angular momenta J;, and dipole charge D (in the ring case). The
uniqueness statement of Theorem 2.1 follows directly from Theorem 4.8.
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