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Abstract. We show that extreme Myers-Perry initial data realize the unique absolute minimum of

the total mass in a physically relevant (Brill) class of maximal, asymptotically flat, bi-axisymmetric

initial data for the Einstein equations with fixed angular momenta. As a consequence, we prove the

mass-angular momentum inequality in this setting for 5-dimensional spacetimes. That is, all data in

this class satisfy the inequality m3 ≥ 27π
32

(|J1|+ |J2|)2, where m and Ji, i = 1, 2 are the total mass

and angular momenta of the spacetime. Moreover, equality holds if and only if the initial data set is

isometric to the canonical slice of an extreme Myers-Perry black hole.

1. Introduction

Based on the standard picture of gravitational collapse for 3 + 1 dimensional asymptotically flat
spacetimes [7], heuristic physical arguments [14] lead to an inequality relating the total (ADM) mass
and angular momentum

(1.1) m ≥
√
|J |,

if angular momentum is conserved during the evolution. In order to achieve such a property for
the angular momentum, axisymmetry is typically imposed along with other conditions on the matter
fields. It turns out that it is most natural to treat this inequality at the level of initial data (M3, g, k),
where g is a Riemannian metric on the 3-manifold M3, and k represents the extrinsic curvature of
the embedding into spacetime. In this regard, Dain [13] was the first to rigorously establish (1.1) for
a general class of vacuum, maximal initial data sets. In this result it was assumed that M3 ∼= R3\{0}
admits a global Brill (cylindrical) coordinate system (ρ, z, φ) in which the metric takes the form

(1.2) g = e2U+2α(dρ2 + dz2) + ρ2e2U (dφ+Aρdρ+Azdz)
2,

for some coefficients U , α, Aρ, and Az satisfying appropriate asymptotics. This particularly simple
form of the metric played an important role in the proof. Namely with this, the scalar curvature
may be integrated by parts to arrive at a lower bound for the mass, in terms of a (reduced) harmonic
energy functional. The second step of the argument then entails showing that the energy functional
is minimized by an extreme Kerr harmonic map with the same angular momentum. Later, Chrusciel
[8] showed that the class of initial data that Dain used was quite general. More precisely, he showed
that any simply connected, axisymmetric initial data set with certain asymptotics, admits global
Brill coordinates. Further progress was also made with regards to the harmonic map part of the
problem. In [34], Schoen and Zhou used the convexity properties of harmonic map energies along
geodesic deformations in order to simplify the proof, achieve weaker hypotheses on the asymptotics,
and to obtain a gap lower bound between the energy of the given data and that of the minimizer. A
charged version of (1.1) has also been established in [9, 12, 34]. Corresponding rigidity statements
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have also been given [13, 28, 34] when these inequalities are saturated, that is the initial data must
be the canonical slice of an extreme Kerr or extreme Kerr-Newman black hole. Furthermore, an
extension of these inequalities to the case of multiple black holes has been given in [11, 28], although
here the lower bound for the mass is not known as an explicit quantity.

All of the results mentioned so far involve the maximal assumption, which yields important pos-
itivity properties for the scalar curvature. In the nonmaximal case, Zhou [36] has treated (1.1) for
vacuum initial data with small Trg k, and Cha and the second author have reduced the general case,
for both the original inequality [5] and its charged version [6] to solving a canonical system of elliptic
equations.

As alluded to above, a closely related topic to the proof of the mass-angular momentum and mass-
angular momentum-charge inequality is the uniqueness and existence of stationary, axisymmetric
black hole solutions to the vacuum and electrovacuum Einstein equations. This problem is equivalent
to showing uniqueness and existence of certain singular harmonic maps from R3 into 2-dimensional
hyperbolic space H2 and complex hyperbolic space H2

C, respectively. In particular, in the single
black hole case, it is known in this setting [10] that the Kerr(-Newman) family of black hole solutions
exhausts all possibilities. The extreme members of this family then provide the minimizers for the
mass lower bound.

The purpose of the present article is to establish a mass-angular momentum inequality in five
dimensions. The investigation of higher dimensional black hole solutions has attracted a great deal
of interest in recent years [16, 22], chiefly motivated by string theory and the gauge theory-gravity
correspondence. A central result in this area is the proof by Galloway and Schoen [18, 19] that
cross-sections H of the event horizon, and more generally marginally outer trapped surfaces, must
be of positive Yamabe type if the dominant energy condition is satisfied. This implies that H is
diffeomorphic to the sphere S3 or its quotients, S1 × S2, or connected sums thereof. A second
key result due to Hollands, Ishibashi, and Wald [23], and independently by Isenberg and Moncrief
[25], is a rigidity theorem which states that in the analytic setting, a stationary, rotating black hole
must admit an additional U(1) isometry. Explicit vacuum solutions corresponding to H ∼= S3 and
H ∼= S1×S2 are known, these are respectively the Myers-Perry family of solutions [32] and the ‘black
ring’ solution of Emparan and Reall [15] (see also [33]). More recently, the first example of a black
hole with real projective space topology H ∼= RP3 has been found as a solution to supergravity [30].
All these solutions admit U(1)2 isometries.

In order to establish geometric inequalities involving angular momentum for black holes in 5-
dimensions, it is natural to consider initial data admitting a U(1)2 action by isometries. As each
such inequality is expected to be associated with a model spacetime, which saturates the inequality,
it is useful here to recall the basic uniqueness theorem for 5-dimensional stationary vacuum black
hole solutions, in order to determine which solutions may serve as models. The first important fact
to note is that in five dimensions, black holes are not determined by their mass and charges alone.
This is exhibited dramatically by the existence of the black ring solution which can possess the same
mass and angular momenta as a Myers-Perry black hole, but with a horizon of different topology.
Furthermore, Hollands and Yzadjiev [24] have shown that after fixing mass and angular momenta,
nondegenerate stationary vacuum black holes with U(1)2 isometries are uniquely determined by a
set of invariants which characterize the fixed points of the U(1)2 action and the surfaces on which
the timelike Killing field is null; this is referred to as the ‘orbit space’ data. This data encodes,
in particular, the topology of the horizon and the second homology group of the domain of outer
communication. An analogous result holds for extreme (degenerate) black holes [17]. Interestingly,
these results do not address the question of existence of black hole solutions for a given orbit space.
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However, they indicate that the unique solution (if it exists) associated with each orbit space has
the potential to serve as a model black hole for a geometric inequality.

In general, the orbit space is a 2-dimensional manifold with a boundary consisting of 1-dimensional
segments and corners. On such segments and corners, respectively one and two linear combinations
of the Killing fields generating the U(1)2 isometries have fixed points [1, 2, 24]. In the present work
we will restrict attention to initial data which have the same orbit space structure as that of the
Myers-Perry black holes. Here the orbit space may be identified with a half plane minus the origin,
in which the boundary consists of two infinitely long rays, each of which serves as the fixed point set
for one of the two rotational Killing fields.

Consider an initial data set (M4, g, k) for the 5-dimensional Einstein equations. Again this consists
of a 4-manifold M4, Riemannian metric g, and symmetric 2-tensor k representing extrinsic curvature.
The energy and momentum density of the matter fields are given by

(1.3) 16πµ = R+ (Trg k)2 − |k|2g, 8πJ = divg(k − (Trg k)g),

where R is the scalar curvature of g. It will be assumed throughout that the data are bi-axially
symmetric. This means that the group of isometries of the Riemannian manifold (M4, g) has a
subgroup isomorphic to U(1)2 with no discrete isotropy subgroups, and that all quantities defining
the initial data are invariant under the U(1)2 action. Thus if η(l), l = 1, 2 are the two Killing field
generators associated with this symmetry, then

(1.4) Lη(l)g = Lη(l)k = Lη(l)µ = Lη(l)J = 0,

where Lη(l) denotes Lie differentiation. We will also postulate that M4 has two ends, with one desig-
nated end being asymptotically flat, and the other being either asymptotically flat or asymptotically
cylindrical. Recall that a domain M4

end ⊂ M4 is an asymptotically flat end if it is diffeomorphic
to R4 \ Ball, and in the coordinates given by the asymptotic diffeomorphism the following fall-off
conditions hold

(1.5) gab = δab +O1(r−1−κ), kab = O(r−2−κ), µ ∈ L1(M4
end), Ji ∈ L1(M4

end),

for some κ > 0. These asymptotics guarantee that the ADM energy and linear momentum are
well-defined, with the energy given by the following limit

(1.6) m =
1

16π

∫
S∞

(gab,a − gaa,b)νb,

where S∞ indicates the limit as r → ∞ of integrals over coordinate spheres Sr, with unit outer
normal ν. Although the asymptotics (1.5) are not strong enough to ensure that the linear momentum
vanishes, and so the mass does not coincide with the energy, we will throughout this paper refer to
the quantity (1.6) as the mass in order to reserve the use of the term ‘energy’ in reference to harmonic
maps. We note that the weaker hypothesis gab, pab ∈ L2(M4

end) may be used in place of the explicit
asymptotics involving κ, where p = k − (Trg k)g is the momentum tensor, in order to achieve well-
defined ADM energy-momentum. Moreover, it is likely that the results of this paper hold under
these weaker conditions, but we will not pursue such questions here. Now consider the ADM angular
momenta

(1.7) Jl =
1

8π

∫
S∞

(kab − (Trg k)gab)ν
aηb(l), l = 1, 2.

A priori this may not yield a finite well-defined quantity solely under the asymptotics (1.5), since
the Killing fields grow like r2. However, under the addition assumption that J(η(l)) ∈ L1(M4

end),
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l = 1, 2 we have that (1.7) is finite. This may easily be seen by integrating the following expression
over M4

end,

(1.8) divg p(η(l)) = (divg p)(η(l)) +
1

2
〈p,Lη(l)g〉 = 8πJ(η(l)).

Our main result is as follows.

Theorem 1.1. Let (M4, g, k) be a smooth, complete, bi-axially symmetric, maximal initial data set
for the 5-dimensional Einstein equations satisfying µ ≥ 0 and J(η(l)) = 0, l = 1, 2 and with two
ends, one designated asymptotically flat and the other either asymptotically flat or asymptotically
cylindrical. If M4 is diffeomorphic to R4 \ {0} and admits a global system of generalized Brill
coordinates then

(1.9) m3 ≥ 27π

32
(|J1|+ |J2|)2 .

Moreover if Ji 6= 0, i = 1, 2, then equality holds if and only if (M4, g, k) is isometric to the canonical
slice of an extreme Myers-Perry spacetime.

This theorem may be considered as a direct generalization of Dain’s result [13] to higher dimen-
sions, as both assume the existence of a global Brill coordinate system. It also generalizes the local
versions of inequality (1.9) established in [3, 4], for data which are sufficiently close to extreme
Myers-Perry. Moreover, this result may be interpreted as giving a variational characterization of the
extreme Myers-Perry initial data, as the mass minimizers among all data with fixed angular momen-
tum. Note that the horizon geometries of 5-dimensional extreme vacuum black holes also arise as
minimizers in the context of the area-angular momenta inequalities proved in [21]; such minimizers
have been completely classified [29].

The assumption of nonvanishing angular momenta is included since otherwise there is no extreme
Myers-Perry black hole to serve as a model; the extreme Myers-Perry solutions with one or more
vanishing angular momenta do not contain a black hole. In particular, the inequality when Ji = 0,
i = 1, 2 reduces to the positive mass theorem, and due to the topology of the initial data the case of
equality cannot be achieved. Let us now make a few remarks concerning the other hypotheses. From
the preceding discussion the motivation for most of the hypotheses should be clear, except perhaps
those associated with the momentum density and Brill coordinates. The assumption J(η(l)) = 0,
l = 1, 2 is, as mentioned above, used to obtain well-defined total angular momenta, but will also be
used for the important purpose of guaranteeing the existence of twist potentials, which encode the
relevant information concerning angular momentum and help reduce the proof to a harmonic map
problem. The existence of a generalized Brill coordinate system ensures that there is a global system
of (cylindrical) coordinates such that the metric takes a simple form analogous to (1.2) in the 3 + 1
dimensional case; a precise description will be given in the next section. Although this appears to
be a restrictive assumption, let us recall that in the 3 + 1 setting, Chrusciel [8] (see also [27]) has
shown under general conditions that simply connected axisymmetric initial data admit global Brill
coordinates. Similarly, we conjecture that under appropriate asymptotics, a simply connected bi-
axisymmetric initial data set with trivial second homology group admits a desired set of generalized
Brill coordinates.

A natural question to ask is whether the current theorem admits generalizations to dimensions
higher than 5. It turns out that this is not possible if we require the data to be asymptotically flat with
a 2-dimensional orbit space. To see this, suppose that a spacetime has dimension n with a U(1)n−3

symmetry. Asymptotic flatness implies that the initial data will have SO(n−1) as the compact part
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of the asymptotic symmetry group, however this special orthogonal group admits at most (n− 1)/2
mutually commuting generators. Thus, the only dimensions for which U(1)n−3 ⊂ SO(n − 1) are
n = 4, 5.

This paper is organized as follows. In Section 2 we give a detailed description of generalized
Brill coordinates. In Section 3 we derive a lower bound for the mass in terms of a functional that
will be related to the harmonic energy of a map from R3 → SL(3,R)/SO(3). Section 4 is then
dedicated to proving that the extreme Myers-Perry harmonic map achieves the absolute minimum
of this functional, and at the end of this section we then prove Theorem 1.1. A discussion of future
directions and generalizations of the results presented here is given in Section 5. Finally an appendix
is included to record, among other things, important properties of the Myers-Perry black holes.

2. Generalized Brill Coordinates

In this section we seek a certain type of cylindrical coordinate system for the initial data, which are
isothermal for the metric induced on the orbit space. These generalized Brill coordinates are related
to the well-known Weyl coordinates familiar from the Ernst reduction of the stationary vacuum
Einstein equations. The primary difference between Brill and Weyl coordinates is that the former
applies to the region inside and outside of a black hole, while the latter only covers the outer region.
However, in the case of extreme black holes the two types of coordinates coincide. The following
definition was initially given in [1, 4] in a more general context, whereas here it is refined for the
particular problem at hand.

Definition 2.1. An initial data set (M4, g, k) with a U(1)2 symmetry, and M4 ∼= R4 \ {0}, is said
to admit a system of generalized Brill coordinates (ρ, z, φ1, φ2) if globally the metric takes the form

(2.1) g =
e2U+2α

2
√
ρ2 + z2

(
dρ2 + dz2

)
+ e2Uλij

(
dφi +Aildy

l
)(

dφj +Ajl dy
l
)
,

for some functions U , α, Ail, and a symmetric positive definite matrix λ = (λij) with detλ = ρ2,
i, j, l = 1, 2, (y1, y2) = (ρ, z), all independent of (φ1, φ2) and satisfying the asymptotics (2.4)-(2.11).
Moreover, the coordinates should take values in the following ranges ρ ∈ [0,∞), z ∈ R, and φi ∈
[0, 2π], i = 1, 2.

The similarity of the metric structure (2.1) above with that of traditional Brill coordinates in

3-dimensions (1.2) is evident, except perhaps for the presence of
√
ρ2 + z2. This term is included

so that like in the 3-dimensional case, (2.1) reduces to the flat metric when U = α = Ail = 0, if
λ = σ := r2 diag(sin2 θ, cos2 θ), where the appropriate polar coordinates are given by

(2.2) ρ =
1

2
r2 sin(2θ), z =

1

2
r2 cos(2θ), r2 = 2

√
ρ2 + z2,

with r ∈ [0,∞), θ ∈ [0, π/2]. Note that the coordinates (θ, φ1, φ2) are Hopf coordinates for the
3-sphere, which are naturally associated with the Hopf fibration. In particular, the flat metric is
given in these two coordinate systems by

(2.3) δ4 =
dρ2 + dz2

2
√
ρ2 + z2

+ σijdφ
idφj = dr2 + r2dθ2 + r2

(
sin2 θ(dφ1)2 + cos2 θ(dφ2)2

)
.

We also note that without loss of generality the generators of the U(1)2 symmetry may be chosen
such that η(l) = ∂φl , l = 1, 2.

Let us now record the appropriate asymptotics in three different regions, namely at infinity, the
origin, and near the axis. The particular decay rates are motivated in general by the indicated
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asymptotically flat and asymptotically cylindrical geometries, and by the desire for certain coeffi-
cients, including λij and Ail, to not yield a direct contribution to the ADM mass. In what follows
a, b are functions of θ, κ > 0 is as in the previous section, and σ̃ = σ̃ijdφ

idφj is a Riemannian
metric on the torus T 2 depending only on θ. We begin with the designated asymptotically flat end
characterized by r →∞, and require

(2.4) U = O1(r−1−κ), α = O1(r−1−κ), Aiρ = ρO1(r−5−κ), Aiz = O1(r−3−κ),

(2.5) λii =
(
1 + (−1)iar−1−κ +O1(r−2−κ)

)
σii, λ12 = ρ2O1(r−5−κ), |k|g = O(r−2−κ).

Next consider the asymptotics as r → 0, where there are two types to account for. Namely, in the
asymptotically flat case

(2.6) U = −2 log r +O1(1), α = O1(r1+κ), Aiρ = ρO1(r1+κ), Aiz = O1(r3+κ),

(2.7) λii =
(
1 + (−1)ibr1+κ +O1(r2+κ)

)
σii, λ12 = ρ2O1(r−

1
2

+κ), |k|g = O(r2+κ),

and in the asymptotically cylindrical case

(2.8) U = − log r +O1(1), α = O1(1), Aiρ = ρO1(r1+κ), Aiz = O1(r3+κ),

(2.9) λij = r2σ̃ij +O1(r2+κ), |k|g = O(r2+κ).

Lastly, let Γ = Γ+ ∪ Γ− denote the two axes Γ± = {ρ = 0,±z > 0}, then the asymptotics as ρ → 0
are given by

(2.10) U = O1(1), α = O1(1), Aiρ = O1(ρ), Aiz = O1(1), |k|g = O(1),

(2.11) λ11, λ12 = O(ρ2), λ22 = O(1) on Γ+, λ22, λ12 = O(ρ2), λ11 = O(1) on Γ−.

It should be pointed out that regularity of the geometry along the axis implies a compatibility
condition between α and λ. To see this, let ϑ ∈ (−∞, 2π) be the cone angle deficiency coming from
the metric g at the axes of rotation, that is

(2.12)
2π

2π − ϑ
= lim

ρ→0

2π · Radius

Circumference
= lim

ρ→0

∫ ρ

0

√
e2U+2α

2
√
ρ2+z2

+ e2UλijAiρA
j
ρdρ√

e2Uλii
=
eα(0,z)√

2|z|
lim
ρ→0

ρ√
λii

where i = 1, 2 corresponds to Γ+,Γ−, respectively. The cone angle deficiency should vanish ϑ = 0,
since (M4, g) is smooth across the axis, and thus

(2.13) α(0, z) =
1

2
log
(
|z|∂2

ρλii(0, z)
)

=: α±(z) on Γ±.

To close this section, we confirm here that the asymptotically flat asymptotics (2.4), (2.5) and
(2.6), (2.7) used to define Brill coordinates are consistent with those given in (1.5). First observe
that the fall-off imposed on k in (2.5) trivially implies that in (1.5). Consider now the cartesian
coordinates

(2.14) x1 = r cos θ cosφ1, x2 = r cos θ sinφ1, x3 = r sin θ cosφ2, x4 = r sin θ sinφ2.
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Upon expressing the metric in these coordinates it follows that

g =e2U+2α(dr2 + r2dθ2) + e2Uλij

(
dφi +Aildy

l
)(

dφj +Ajl dy
l
)

=δ + (e2U+2α − 1)︸ ︷︷ ︸
O1(r−1−κ)

(dr2 + r2dθ2)︸ ︷︷ ︸
O1(1)

+ (e2Uλij − σij)︸ ︷︷ ︸
O1(r−1−κ)

dφidφj︸ ︷︷ ︸
O1(r−2)

+ e2Uλij︸ ︷︷ ︸
O1(1)

Ajl︸︷︷︸
O1(r−3−κ)

dφidyl︸ ︷︷ ︸
O1(1)

+ e2Uλij︸ ︷︷ ︸
O1(r2)

Aildy
l︸ ︷︷ ︸

O1(r−2−κ)

( dφj︸︷︷︸
O1(r−1)

+ Ajl dy
l︸ ︷︷ ︸

O1(r−2−κ)

)

=δ +O1(r−1−κ),

(2.15)

where we have used dρ = O(r) and dz = O(r). Similar computations yield the same result for the
asymptotics (2.6), (2.7).

3. The Mass Functional

One of the advantages of Brill data is that it provides a particularly simple expression for the
scalar curvature. Namely, as shown in [4] we have

(3.1) e2U+2α−2 log rR = −6∆U−2∆ρ,zα−6|∇U |2+
det∇λ

2ρ2
−1

4
e−2α+2 log rλij(A

i
ρ,z−Aiz,ρ)(Ajρ,z−Ajz,ρ),

where ∆ and the norm | · | are with respect to the following flat metric

(3.2) δ3 = r2
(
dr2 + r2dθ2

)
+
r4 sin2(2θ)

4
dφ2 = dρ2 + dz2 + ρ2dφ2

on an auxiliary R3 in which all quantities are independent of the new variable φ ∈ [0, 2π], and ∆ρ,z

is with respect to the flat metric δ2 = dρ2 + dz2 on the orbit space. Moreover, the notation used for
the last term on the first line is shorthand for

(3.3) det∇λ = det

(
∇λ11 ∇λ12

∇λ12 ∇λ22

)
= δ3(∇λ11,∇λ22)− |∇λ12|2.

From (3.1) one may integrate by parts to obtain a closed form expression [4] for the mass

m =
1

8

∫
R3

(
e2U+2α−2 log rR+ 6|∇U |2 − det∇λ

2ρ2

)
dx

+
1

32

∫
R3

e−2α+2 log rλij(A
i
ρ,z −Aiz,ρ)(Ajρ,z −Ajz,ρ)dx+

π

2

∑
ς=±

∫
Γς

αςdz,
(3.4)

where the volume form dx is again with respect to δ3.
The next goal is to relate the right-hand side of (3.4) to a reduced form of a harmonic energy. In

order to accomplish this, the scalar curvature will be replaced by an expression involving potentials
for the angular momentum. Consider the 1-form

(3.5) P(l) = 2 ?
(
p(η(l)) ∧ η(1) ∧ η(2)

)
= 2εabcdp

b
sη
s
(l)η

c
(1)η

d
(2)dx

a

on M4, where εabcd is the volume form for g, ? is the Hodge star, and p is the momentum tensor. A
computation, utilizing the momentum constraint and the fact that η(l) is a Killing field, then shows
that

(3.6) dP(l) = −8πJ(η(l))εabcdη
c
(1)η

d
(2)dx

a ∧ dxb.
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Thus, under the the assumptions that J(η(l)) = 0, l = 1, 2 and M4 is simply connected, twist
potentials exist such that

(3.7) dζ l = P(l), l = 1, 2.

It is then clear from (3.5) that ∂zζ
l|Γ = 0, so that ζ l is constant on each axis Γ±. These constants

in turn determine the ADM angular momenta

Jl =
1

8π

∫
S∞

p(η(l), ν)

= lim
r→0

1

8π

∫
∂B(r)

k(∂φl , ν)dV

= lim
r→0

1

16π

∫
∂B(1)

k(∂φl , ν)e3U+αr3 sin(2θ)dθdφ1dφ2

= lim
r→0

1

16π

∫
∂B(1)

∂θζ
ldθdφ1dφ2

=
π

4
(ζ l|Γ− − ζ l|Γ+),

(3.8)

where B(r) is the coordinate ball of radius r centered at the origin. Furthermore, consider the frame

(3.9) e1 = e−U−α+log r
(
∂ρ −Aiρ∂φi

)
, e2 = e−U−α+log r

(
∂z −Aiz∂φi

)
, ei+2 = e−U∂φi , i = 1, 2,

with dual co-frame

(3.10) θ1 = eU+α−log rdρ, θ2 = eU+α−log rdz, θi+2 = eU
(
dφi +Aildy

l
)
, i = 1, 2,

so that the metric may be written as

(3.11) g = (δ2)lnθ
lθn + λijθ

i+2θj+2,

and

(3.12) k(e1, ei+2) = −e
−4U−α+log r

2ρ
∂zζ

i, k(e2, ei+2) =
e−4U−α+log r

2ρ
∂ρζ

i.

Therefore, in light of the maximal condition Trg k = 0 we have

R =16πµ+ |k|2g

=16πµ+
e−8U−2α+2 log r

2ρ2
∇ζtλ−1∇ζ

+ k(e1, e1)2 + 2k(e1, e2)2 + k(e2, e2)2 + λijλlnk(ei, el)k(ej , en),

(3.13)

where

(3.14) ∇ζtλ−1∇ζ =
(
∇ζ1 ∇ζ2

)(λ11 λ12

λ12 λ22

)(
∇ζ1

∇ζ2

)
=
∑
i,j=1,2

λijδ3(∇ζi,∇ζj).

It follows that by combining (3.4) and (3.13)

m =M(U, λ, ζ) +
1

8

∫
R3

(
16πe2U+2α−2 log rµ+

1

4
e−2α+2 log rλij(A

i
ρ,z −Aiz,ρ)(Ajρ,z −Ajz,ρ)

)
dx

+
1

8

∫
R3

e2U+2α−2 log r
(
k(e1, e1)2 + 2k(e1, e2)2 + k(e2, e2)2 + λijλlnk(ei, el)k(ej , en)

)
dx,

(3.15)
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where

(3.16) M(U, λ, ζ) =
1

8

∫
R3

(
6|∇U |2 − det∇λ

2ρ2
+
e−6U

2ρ2
∇ζtλ−1∇ζ

)
dx+

π

2

∑
ς=±

∫
Γς

αςdz.

The mass functional M is to be related to a reduced harmonic energy. However, it is not even
immediately apparent from the expression in (3.16) that this quantity is nonnegative in general.
It turns out that this may be resolved with an appropriate transformation or change of variables
(λ11, λ22, λ12) → (V,W ); note that since detλ = ρ2 there are only two independent functions con-
tained in λ. Define the new variables by

(3.17) V =
1

2
log

(
λ11 cos2 θ

λ22 sin2 θ

)
, W = sinh−1

(
λ12

ρ

)
,

and note the inverse transformation is then given by

(3.18) λ11 =
(√

ρ2 + z2 − z
)
eV coshW, λ22 =

(√
ρ2 + z2 + z

)
e−V coshW, λ12 = ρ sinhW.

From the third equation in (3.18), and (2.11), we find that W = 0 on Γ. Using this fact together
with the first two equations in (3.18), and recalling that there are no conical singularities (2.13),
shows that

(3.19) V = 2α+ on Γ+, V = −2α− on Γ−.

Consider now the following harmonic functions on (R3 \ Γ, δ3) which are naturally associated with
the above transformation:

(3.20) h1 =
1

2
log ρ, h2 =

1

2
log

(√
ρ2 + z2 − z√
ρ2 + z2 + z

)
.

In particular a computation yields

(3.21) −det∇λ
ρ2

= |∇V |2 + |∇W |2 + sinh2W |∇ (V + h2)|2 + 2δ3(∇h2,∇V ),

and the last term may be integrated away to the boundary

1

8

∫
R3

δ3(∇h2,∇V )dx =− lim
ε→0

1

8

∫
ρ=ε

V ∂ρh2

=
π

4

(∫
Γ−

V dz −
∫

Γ+

V dz

)
=− π

2

∑
ς=±

∫
Γς

αςdz.

(3.22)

Notice that this boundary term cancels the one in (3.16), and so it follows that

M(U, V,W, ζ1, ζ2) =
1

16

∫
R3

12|∇U |2 + |∇V |2 + |∇W |2 + sinh2W |∇(V + h2)|2dx

+
1

16

∫
R3

e−6h1−6U+h2+V coshW
∣∣∣e−h2−V tanhW∇ζ1 −∇ζ2

∣∣∣2 dx
+

1

16

∫
R3

e−6h1−6U−h2−V

coshW
|∇ζ1|2dx.

(3.23)
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This version of the mass functional is clearly nonnegative, and together with (3.15) it establishes the
positive mass theorem for generalized Brill initial data. In the next section we will relate this mass
functional to a harmonic energy, and establish the mass-angular momentum inequality.

4. Convexity and the Global Minimizer

Consider the symmetric space SL(3,R)/SO(3) ∼= R5 endowed ([20], [26], [31]) with the nonposi-
tively curved metric

(4.1) ds2 = 12du2 + cosh2w dv2 + dw2 +
e−(6u+v)

coshw
(dζ1)2 + e−6u+v coshw

(
e−v tanhw dζ1 − dζ2

)2
.

The harmonic energy of a map Ψ̃ = (u, v, w, ζ1, ζ2) : R3 → SL(3,R)/SO(3), on a domain Ω ⊂ R3, is
then given by

EΩ(Ψ̃) =

∫
Ω

12|∇u|2 + cosh2w|∇v|2 + |∇w|2 +
e−6u−v

coshw
|∇ζ1|2dx

+

∫
Ω
e−6u+v coshw

∣∣e−v tanhw∇ζ1 −∇ζ2
∣∣2 dx.(4.2)

If Ω has a trivial intersection with the axes of rotation Γ = {ρ = 0}, and we write u = U + h1,
v = V + h2, and w = W where h1 and h2 are the harmonic functions defined in (3.20), then with
an integration by parts the reduced energy IΩ of the map Ψ = (U, V,W, ζ1, ζ2) may be expressed in

terms the harmonic energy of Ψ̃ by

(4.3) IΩ(Ψ) = EΩ(Ψ̃)− 12

∫
∂Ω

(h1 + 2U)∂νh1 −
∫
∂Ω

(h2 + 2V )∂νh2,

where ν denotes the unit outer normal to the boundary ∂Ω and

IΩ(Ψ) =

∫
Ω

12|∇U |2 + |∇V |2 + |∇W |2 + sinh2W |∇(V + h2)|2 +
e−6h1−6U−h2−V

coshW
|∇ζ1|2dx

+

∫
Ω
e−6h1−6U+h2+V coshW

∣∣∣e−h2−V tanhW∇ζ1 −∇ζ2
∣∣∣2 dx.(4.4)

Observe that I = IR3 = 16M where M is the mass functional (3.23). The reduced energy I may
be considered a regularization of E since the infinite terms

∫
|∇h1|2 and

∫
cosh2W |∇h2|2 have been

removed. Furthermore, since the two functionals only differ by boundary terms they have the same
critical points.

Let Ψ̃0 = (u0, v0, w0, ζ
1
0 , ζ

2
0 ) denote the extreme Myers-Perry harmonic map (see Appendix B), and

let Ψ0 = (U0, V0,W0, ζ
1
0 , ζ

2
0 ) be the associated renormalized map with u0 = U0 + h1, v0 = V0 + h2,

and w0 = W0. Therefore, Ψ0 is a critical point of I. The purpose of this section is to show that Ψ0

achieves the global minimum for I.

Theorem 4.1. Suppose that Ψ = (U, V,W, ζ1, ζ2) is smooth and satisfies the asymptotics (4.12)-
(4.23) with ζ1|Γ = ζ1

0 |Γ and ζ2|Γ = ζ2
0 |Γ, then there exists a constant C > 0 such that

(4.5) I(Ψ)− I(Ψ0) ≥ C
(∫

R3

dist6
SL(3,R)/SO(3)(Ψ,Ψ0)dx

) 1
3

.

The primary idea behind this result is the fact that the harmonic energy, of maps with a nonpos-
itively curved target space, is convex along geodesic deformations. This property was exploited in
[34] to achieve a similar result where the role of extreme Myers-Perry was played by extreme Kerr. In
order to apply this strategy it is necessary to show that the reduced energy inherits convexity from
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the harmonic energy, and for this it is helpful to cut-off the given map data in certain regimes and
paste in an extreme Myers-Perry map. More precisely, let δ, ε > 0 be small parameters and define
sets Ωδ,ε = {δ < r < 2/δ; ρ > ε} and Aδ,ε = B2/δ \Ωδ,ε, where B2/δ is the ball of radius 2/δ centered
at the origin. Suppose that Ψ has already undergone the cut-and-paste procedure, and thus satisfies

(4.6) supp(U − U0) ⊂ B2/δ, supp(V − V0,W −W0, ζ
1 − ζ1

0 , ζ
2 − ζ2

0 ) ⊂ Ωδ,ε.

Let Ψ̃t, t ∈ [0, 1], be a geodesic in SL(3,R)/SO(3) which connects Ψ̃1 = Ψ̃ and Ψ̃0. Then Ψt ≡ Ψ0

outside B2/δ and (Vt,Wt, ζ
1
t , ζ

2
t ) ≡ (V0,W0, ζ

1
0 , ζ

2
0 ) on Aδ,ε, so that in particular Ut = U0 + t(U −U0)

and Vt = V0 on these regions. This linear behavior of Ut and constancy of Vt (in t) ensures that the
boundary terms of (4.3) do not contribute when implementing convexity of the harmonic energy.
From this it follows that

(4.7)
d2

dt2
I(Ψt) ≥ 2

∫
R3

|∇distSL(3,R)/SO(3)(Ψ,Ψ0)|2dx.

Furthermore, since Ψ0 is a critical point

(4.8)
d

dt
I(Ψt)|t=0 = 0.

Therefore, the conclusion of Theorem 4.1 is achieved by integrating (4.7) and using a Sobolev in-
equality. In what follows we will justify each of these steps.

In order to proceed we will record the appropriate asymptotic behavior of Ψ and Ψ0. In the
statements below, it is important to keep in mind that in the relevant coordinate system, the flat
metric on R3 is given by

(4.9) r2
(
dr2 + r2dθ2

)
+
r4 sin2(2θ)

4
dφ2 = dρ2 + dz2 + ρ2dφ2,

with Euclidean volume form

(4.10) dx =
1

2
r5 sin(2θ)dr ∧ dθ ∧ dφ = ρdρ ∧ dz ∧ dφ,

where the transformation between polar and cylindrical coordinates is given in (2.2). Thus, for
example, the norms of vectors when expressed in these polar coordinates appear to have extra fall-
off as compared to the corresponding expressions in traditional polar coordinates. The motivation for
using this nonstandard version of polar coordinates is related to the derivation of the mass functional
(3.16). For later use, we note here that the second harmonic function of (3.20) takes a simple form
when expressed in polar coordinates

(4.11) h2 =
1

2
log

(√
ρ2 + z2 − z√
ρ2 + z2 + z

)
=

1

2
log

(
1− cos(2θ)

1 + cos(2θ)

)
= log(tan θ).

When stating the asymptotics there are three regimes to analyze, namely the designated asymp-
totically flat end (r → ∞), the nondesignated end (r → 0) which is either asymptotically flat or
asymptotically cylindrical, and the limit at the axis (ρ→ 0 with δ ≤ r ≤ 2/δ). A motivation for the
choice of asymptotics is to have the weakest conditions which guarantee finite reduced energy, and
include the decay rates of the Myers-Perry harmonic maps (both extreme and non-extreme); these
properties are easily shown to be satisfied by the asymptotics below. In what follows, κ > 0 is a
fixed parameter that may take on arbitrarily small values. Let us consider the asymptotically flat
end first. We require that as r →∞ the following decay occurs

(4.12) U = O(r−1−κ), V = O(r−1−κ), W =
√
ρO(r−2−κ),
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(4.13) |∇U | = O(r−3−κ), |∇V | = O(r−3−κ), |∇W | = ρ−
1
2O(r−2−κ),

(4.14) |∇ζ1| = ρ
√

sin θO(r−2−κ), |∇ζ2| = ρ
√

cos θO(r−2−κ).

Next consider asymptotics in the nondesignated end, which are broken up into two cases. As r → 0
we require in the asymptotically flat case that

(4.15) U = −2 log r +O(1), V = O(1), W =
√
ρO(r−1),

(4.16) |∇U | = O(r−2), |∇V | = O(r−2), |∇W | = ρ−
1
2O(r−1),

(4.17) |∇ζ1| = ρ
√

sin θO(r−8+κ), |∇ζ2| = ρ
√

cos θO(r−8+κ),

and in the asymptotically cylindrical case that

(4.18) U = − log r +O(1), V = O(1), W =
√
ρO(r−1),

(4.19) |∇U | = O(r−2), |∇V | = O(r−2), |∇W | = ρ−
1
2O(r−1),

(4.20) |∇ζ1| = ρ
√

sin θO(r−5+κ), |∇ζ2| = ρ
√

cos θO(r−5+κ).

Furthermore, the near axis asymptotics as ρ→ 0, δ ≤ r ≤ 2/δ are required to satisfy

(4.21) U = O(1), V = O(1), W = O(ρ
1
2 ),

(4.22) |∇U | = O(1), |∇V | = O(1), |∇W | = O(ρ−
1
2 ),

(4.23) |∇ζ1| =
√

sin θO(ρ), |∇ζ2| =
√

cos θO(ρ).

We will also have need of precise asymptotics for the extreme Myers-Perry data Ψ0 which are
derived in Appendix B. In the designated asymptotically flat end as r →∞ we have

(4.24) U0 = O(r−2), V0 = O(r−2), W0 = ρO(r−6),

(4.25) |∇U0| = O(r−4), |∇V0| = O(r−4), |∇W0| = O(r−6),

(4.26) |∇ζ1
0 | = ρ sin2 θO(r−4), |∇ζ2

0 | = ρ cos2 θO(r−4).

In the nondesignated end as r → 0 the following asymptotics are present

(4.27) U0 = − log r +O(1), V0 = O(1), W0 = ρO(r−2),

(4.28) |∇U0| = O(r−2), |∇V0| = O(r−2), |∇W0| = O(r−2),

(4.29) |∇ζ1
0 | = ρ sin2 θO(r−4), |∇ζ2

0 | = ρ cos2 θO(r−4).

Moreover, the near axis asymptotics as ρ→ 0, δ ≤ r ≤ 2/δ are given by

(4.30) U0 = O(1), V0 = O(1), W0 = O(ρ),

(4.31) |∇U0| = O(1), |∇V0| = O(1), |∇W0| = O(1),

(4.32) |∇ζ1
0 | = sin2 θO(ρ), |∇ζ2

0 | = cos2 θO(ρ).

The first task needed to carry out the proof of Theorem 4.1 as outlined above, is to first show
that it is possible to approximate I(Ψ) by replacing Ψ with a map that satisfies (4.6). This may be
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achieved as in [34] with a three step cut and paste argument. Define cut-off functions, which only
take values in the interval [0, 1], by

(4.33) ϕδ =


1 if r ≤ 1

δ ,

|∇ϕδ| ≤ 2δ2 if 1
δ < r < 2

δ ,

0 if r ≥ 2
δ ,

(4.34) ϕδ =


0 if r ≤ δ,
|∇ϕδ| ≤ 2

δ2
if δ < r < 2δ,

1 if r ≥ 2δ,

and

(4.35) φε =


0 if ρ ≤ ε,
log(ρ/ε)

log(
√
ε/ε)

if ε < ρ <
√
ε,

1 if ρ ≥
√
ε.

Let

(4.36) F δ(Ψ) = Ψ0 + ϕδ(Ψ−Ψ0) =: (U δ, V δ,W δ, ζ
1
δ , ζ

2
δ),

so that F δ(Ψ) = Ψ0 on R3 \B2/δ.

Lemma 4.2. limδ→0 I(F δ(Ψ)) = I(Ψ).

Proof. Write

(4.37) I(F δ(Ψ)) = Ir≤ 1
δ
(F δ(Ψ)) + I 1

δ
<r< 2

δ
(F δ(Ψ)) + Ir≥ 2

δ
(F δ(Ψ)),

and observe that Ir≤ 1
δ
(F δ(Ψ)) → I(Ψ) by the dominated convergence theorem (DCT). Moreover,

since Ψ0 has finite reduced energy Ir≥ 2
δ
(F δ(Ψ))→ 0. Now write

I 1
δ
<r< 2

δ
(F δ(Ψ)) =

∫
1
δ
<r< 2

δ

12|∇U δ|2︸ ︷︷ ︸
I1

+

∫
1
δ
<r< 2

δ

|∇V δ|2︸ ︷︷ ︸
I2

+

∫
1
δ
<r< 2

δ

|∇W δ|2︸ ︷︷ ︸
I3

+

∫
1
δ
<r< 2

δ

sinh2W δ|∇(V δ + h2)|2︸ ︷︷ ︸
I4

+

∫
1
δ
<r< 2

δ

cos θ

ρ3 sin θ

e−V δ−6Uδ

coshW δ

|∇ζ1
δ |2︸ ︷︷ ︸

I5

+

∫
1
δ
<r< 2

δ

sin θ

ρ3 cos θ
eV δ−6Uδ coshW δ|∇ζ

2
δ − e−V δ cot θ tanhW δ∇ζ

1
δ |2︸ ︷︷ ︸

I6

.

(4.38)

We have

(4.39) I1 ≤ C
∫ π

2

0

∫ 2
δ

1
δ

 |∇U |2︸ ︷︷ ︸
O(r−6−2κ)

+ |∇U0|2︸ ︷︷ ︸
O(r−8)

+ (U − U0)2︸ ︷︷ ︸
O(r−2−2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ4)

 r5 sin(2θ)drdθ → 0.

Moreover, a similar computation shows that I2 → 0 and I3 → 0.
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Next observe that since

(4.40) sinhW δ =
√
ρO(r−2−κ),

we have
(4.41)

I4 ≤
∫ π

2

0

∫ 2
δ

1
δ

ρO(r−4−2κ)

 |∇V |2︸ ︷︷ ︸
O(r−6−2κ)

+ |∇V0|2︸ ︷︷ ︸
O(r−8)

+ |∇h2|2︸ ︷︷ ︸
O(ρ−2)

+ (V − V0)2︸ ︷︷ ︸
O(r−2−2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ4)

 r5 sin(2θ)drdθ → 0.

In order to estimate the 5th integral, note that (4.14) and (4.26) combined with the fact that
(ζi − ζi0)|Γ = 0, yields the following estimate for r ∈ [1

δ ,
2
δ ] and i = 1, 2:

(4.42) |(ζi − ζi0)(ρ, z, φ)| ≤
∫ ρ

0
|∂ρ(ζi − ζi0)(ρ̃, z, φ)|dρ̃ = ρ2O(r−2−κ).

It follows that

(4.43) I5 ≤ C
∫ π

2

0

∫ 2
δ

1
δ

cos θ

ρ3 sin θ

 |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−4−2κ) sin θ

+ |∇ζ1
0 |2︸ ︷︷ ︸

ρ2O(r−8) sin4 θ

+ (ζ1 − ζ1
0 )2︸ ︷︷ ︸

ρ4O(r−4−2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ4)

 r5 sin(2θ)drdθ,

which converges to zero.
Lastly, consider the 6th integral. Use (4.40) and (4.42) to find

I6 ≤C
∫ π

2

0

∫ 2
δ

1
δ

sin θ

ρ3 cos θ

 |∇ζ2|2︸ ︷︷ ︸
ρ2O(r−4−2κ) cos θ

+ |∇ζ2
0 |2︸ ︷︷ ︸

ρ2O(r−8) cos4 θ

+ (ζ2 − ζ2
0 )2︸ ︷︷ ︸

ρ4O(r−4−2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ4)

 r5 sin(2θ)drdθ

+ C

∫ π
2

0

∫ 2
δ

1
δ

r−4−2κ cos θ

ρ2 sin θ

 |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−4−2κ) sin θ

+ |∇ζ1
0 |2︸ ︷︷ ︸

ρ2O(r−8) sin4 θ

+ (ζ1 − ζ1
0 )2︸ ︷︷ ︸

ρ4O(r−4−2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ4)

 r5 sin(2θ)drdθ.

(4.44)

This clearly also converges to zero. �

Consider now small balls centered at the origin. Let

(4.45) Fδ(Ψ) = (U, Vδ,Wδ, ζ
1
δ , ζ

2
δ ),

where

(4.46) (Vδ,Wδ, ζ
1
δ , ζ

2
δ ) = (V0,W0, ζ

1
0 , ζ

2
0 ) + ϕδ(V − V0,W −W0, ζ

1 − ζ1
0 , ζ

2 − ζ2
0 ),

so that Fδ(Ψ) = Ψ0 up to the first component on Bδ.

Lemma 4.3. limδ→0 I(Fδ(Ψ)) = I(Ψ). This also holds if Ψ ≡ Ψ0 outside of B2/δ.

Proof. Write

(4.47) I(Fδ(Ψ)) = Ir≤δ(Fδ(Ψ)) + Iδ<r<2δ(Fδ(Ψ)) + Ir≥2δ(Fδ(Ψ)),

and observe that by the dominated convergence theorem

(4.48) Ir≥2δ(Fδ(Ψ)) = Ir≥2δ(Ψ)→ I(Ψ).
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Moreover

Ir≤δ(Fδ(Ψ)) =

∫
r≤δ

12|∇U |2 + |∇V0|2 + |∇W0|2 + sinh2W0|∇(V0 + h2)|2 +
e−6h1−6U−h2−V0

coshW0
|∇ζ1

0 |2

+

∫
r≤δ

e−6h1−6U+h2+V0 coshW0

∣∣∣∇ζ2
0 − e−h2−V0 tanhW0∇ζ1

0

∣∣∣2 ,

(4.49)

where the first term on the right-hand side converges to zero again by the DCT. The remaining terms
may be estimated by the reduced energy of Ψ0 (and hence also converge to zero), since

(4.50) e−U ≤ Ce−U0

near the origin.
Now consider

Iδ<r<2δ(Fδ(Ψ)) =

∫
δ<r<2δ

12|∇U |2︸ ︷︷ ︸
I1

+

∫
δ<r<2δ

|∇Vδ|2︸ ︷︷ ︸
I2

+

∫
δ<r<2δ

|∇Wδ|2︸ ︷︷ ︸
I3

+

∫
δ<r<2δ

sinh2Wδ|∇(Vδ + h2)|2︸ ︷︷ ︸
I4

+

∫
δ<r<2δ

cos θ

ρ3 sin θ

e−Vδ−6U

coshWδ
|∇ζ1

δ |2︸ ︷︷ ︸
I5

+

∫
δ<r<2δ

sin θ

ρ3 cos θ
eVδ−6U coshWδ|∇ζ2

δ − e−Vδ cot θ tanhWδ∇ζ1
δ |2︸ ︷︷ ︸

I6

.

(4.51)

Notice that

(4.52) I1 = 24π

∫ π
2

0

∫ 2δ

δ
|∇U |2︸ ︷︷ ︸
O(r−4)

r5 sin(2θ)drdθ → 0.

Also

(4.53) I2 ≤ C
∫ π

2

0

∫ 2δ

δ

|∇V |2︸ ︷︷ ︸
O(r−4)

+ |∇V0|2︸ ︷︷ ︸
O(r−4)

+ (V − V0)2︸ ︷︷ ︸
O(1)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

 r5 sin(2θ)drdθ → 0,

and

(4.54) I3 ≤ C
∫ π

2

0

∫ 2δ

δ

 |∇W |2︸ ︷︷ ︸
ρ−1O(r−2)

+ |∇W0|2︸ ︷︷ ︸
ρ2O(r−4)

+ (W −W0)2︸ ︷︷ ︸
O(1)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

 r5 sin(2θ)drdθ → 0.

Now consider I4. Since

(4.55) sinhWδ =
√
ρO(r−1),

we have

(4.56) I4 ≤ C
∫ π

2

0

∫ 2δ

δ
ρr−2

|∇V |2︸ ︷︷ ︸
O(r−4)

+ |∇V0|2︸ ︷︷ ︸
O(r−4)

+ |∇h2|2︸ ︷︷ ︸
O(ρ−2)

+ (V − V0)2︸ ︷︷ ︸
O(1)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

 r5 sin(2θ)drdθ → 0.
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In order to estimate the 5th integral, note that (4.14) and (4.26) combined with the fact that
(ζ1 − ζ1

0 )|Γ = 0, yields the following estimate for r ∈ [δ, 2δ] and i = 1, 2:

(4.57) |(ζi − ζi0)(ρ, z, φ)| ≤
∫ ρ

0
|∂ρ(ζi − ζi0)(ρ̃, z, φ)|dρ̃ =

{
ρ2O(r−8+κ) in the AF case,

ρ2O(r−5+κ) in the AC case.

It follows that in the asymptotically flat case
(4.58)

I5 ≤ C
∫ π

2

0

∫ 2δ

δ

r12 cos θ

ρ3 sin θ

 |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−16+2κ) sin θ

+ |∇ζ1
0 |2︸ ︷︷ ︸

ρ2O(r−8) sin4 θ

+ (ζ1 − ζ1
0 )2︸ ︷︷ ︸

ρ4O(r−16+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

 r5 sin(2θ)drdθ,

and in the asymptotically cylindrical case
(4.59)

I5 ≤ C
∫ π

2

0

∫ 2δ

δ

r6 cos θ

ρ3 sin θ

 |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−10+2κ) sin θ

+ |∇ζ1
0 |2︸ ︷︷ ︸

ρ2O(r−8) sin4 θ

+ (ζ1 − ζ1
0 )2︸ ︷︷ ︸

ρ4O(r−10+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

 r5 sin(2θ)drdθ.

These both converge to zero.
Lastly consider the 6th integral. In the asymptotically flat case we have

I6 ≤C
∫ π

2

0

∫ 2δ

δ

r12 sin θ

ρ3 cos θ

 |∇ζ2|2︸ ︷︷ ︸
ρ2O(r−16+2κ) cos θ

+ |∇ζ2
0 |2︸ ︷︷ ︸

ρ2O(r−8) cos4 θ

+ (ζ2 − ζ2
0 )2︸ ︷︷ ︸

ρ4O(r−16+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

 r5 sin(2θ)drdθ

+ C

∫ π
2

0

∫ 2δ

δ

r10 cos θ

ρ2 sin θ

 |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−16+2κ) sin θ

+ |∇ζ1
0 |2︸ ︷︷ ︸

ρ2O(r−8) sin4 θ

+ (ζ1 − ζ1
0 )2︸ ︷︷ ︸

ρ4O(r−16+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

 r5 sin(2θ)drdθ,

(4.60)

and in the asymptotically cylindrical case we have

I6 ≤C
∫ π

2

0

∫ 2δ

δ

r6 sin θ

ρ3 cos θ

 |∇ζ2|2︸ ︷︷ ︸
ρ2O(r−10+2κ) cos θ

+ |∇ζ2
0 |2︸ ︷︷ ︸

ρ2O(r−8) cos4 θ

+ (ζ2 − ζ2
0 )2︸ ︷︷ ︸

ρ4O(r−10+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

 r5 sin(2θ)drdθ

+ C

∫ π
2

0

∫ 2δ

δ

r4 cos θ

ρ2 sin θ

 |∇ζ1|2︸ ︷︷ ︸
ρ2O(r−10+2κ) sin θ

+ |∇ζ1
0 |2︸ ︷︷ ︸

ρ2O(r−8) sin4 θ

+ (ζ1 − ζ1
0 )2︸ ︷︷ ︸

ρ4O(r−10+2κ)

|∇ϕδ|2︸ ︷︷ ︸
O(δ−4)

 r5 sin(2θ)drdθ.

(4.61)

Again both of these converge to zero. �

Consider now cylindrical regions around the axis Γ and away from the origin given by

(4.62) Cδ,ε = {ρ ≤ ε} ∩ {δ ≤ r ≤ 2/δ},

and

(4.63) Wδ,ε = {ε ≤ ρ ≤
√
ε} ∩ {δ ≤ r ≤ 2/δ}.
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Let

(4.64) Gε(Ψ) = (U, Vε,Wε, ζ
1
ε , ζ

2
ε )

where

(4.65) (Vε,Wε, ζ
1
ε , ζ

2
ε ) = (V0,W0, ζ

1
0 , ζ

2
0 ) + φε(V − V0,W −W0, ζ

1 − ζ1
0 , ζ

2 − ζ2
0 ),

so that Gε(Ψ) = Ψ0 up to the first component on ρ ≤ ε.

Lemma 4.4. Fix δ > 0 and suppose that Ψ ≡ Ψ0 up to the first component on Bδ, then limε→0 I(Gε(Ψ)) =
I(Ψ). This also holds if Ψ ≡ Ψ0 outside B2/δ.

Proof. Write

(4.66) I(Gε(Ψ)) = ICδ,ε(Gε(Ψ)) + IWδ,ε
(Gε(Ψ)) + IR3\(Cδ,ε∪Wδ,ε)(Gε(Ψ)).

Since Ψ ≡ Ψ0 up to the first component on Bδ, the DCT and finite energy of Ψ0 imply that

(4.67) IR3\(Cδ,ε∪Wδ,ε)(Gε(Ψ))→ I(Ψ).

Moreover

ICδ,ε(Gε(Ψ)) =

∫
Cδ,ε

12|∇U |2 + |∇V0|2 + |∇W0|2 + sinh2W0|∇(V0 + h2)|2 +
e−6h1−6U−h2−V0

coshW0
|∇ζ1

0 |2

+

∫
Cδ,ε

e−6h1−6U+h2+V0 coshW0

∣∣∣∇ζ2
0 − e−h2−V0 tanhW0∇ζ1

0

∣∣∣2 ,

(4.68)

where the first term on the right-hand side converges to zero again by the DCT. The remaining terms
may be estimated by the reduced energy of Ψ0 (and hence also converge to zero), since

(4.69) e−U ≤ Ce−U0 .

Now observe that

IWδ,ε
(Gε(Ψ)) =

∫
Wδ,ε

12|∇U |2︸ ︷︷ ︸
I1

+

∫
Wδ,ε

|∇Vε|2︸ ︷︷ ︸
I2

+

∫
Wδ,ε

|∇Wε|2︸ ︷︷ ︸
I3

+

∫
Wδ,ε

sinh2Wε|∇(Vε + h2)|2︸ ︷︷ ︸
I4

+

∫
Wδ,ε

cos θ

ρ3 sin θ

e−Vε−6U

coshWε
|∇ζ1

δ |2︸ ︷︷ ︸
I5

+

∫
Wδ,ε

sin θ

ρ3 cos θ
eVε−6U coshWε|∇ζ2

ε − e−Vε cot θ tanhWε∇ζ1
ε |2︸ ︷︷ ︸

I6

.

(4.70)

We have

(4.71) I1 ≤ C
∫ 3/δ

δ/2

∫ √ε
ε
|∇U |2︸ ︷︷ ︸
O(1)

ρdρd|z| → 0,

(4.72) I2 ≤ C
∫ 3/δ

δ/2

∫ √ε
ε

|∇V |2︸ ︷︷ ︸
O(1)

+ |∇V0|2︸ ︷︷ ︸
O(1)

+ (V − V0)2︸ ︷︷ ︸
O(1)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

 ρdρd|z| → 0,
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and

(4.73) I3 ≤ C
∫ 3/δ

δ/2

∫ √ε
ε

|∇W |2︸ ︷︷ ︸
O(ρ−1)

+ |∇W0|2︸ ︷︷ ︸
O(1)

+ (W −W0)2︸ ︷︷ ︸
O(ρ)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

 ρdρd|z| → 0,

Now consider I4. Since

(4.74) sinhWε = O(ρ
1
2 ),

we find that

(4.75) I4 ≤ C
∫ 3/δ

δ/2

∫ √ε
ε

ρ

|∇V |2︸ ︷︷ ︸
O(1)

+ |∇V0|2︸ ︷︷ ︸
O(1)

+ |∇h2|2︸ ︷︷ ︸
O(ρ−2)

+ (V − V0)2︸ ︷︷ ︸
O(1)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

 ρdρd|z| → 0.

In order to estimate the 5th integral, note that the following estimate holds near the axis and
away from the origin and for i = 1, 2:

(4.76) |(ζi − ζi0)(ρ, z, φ)| ≤
∫ ρ

0
|∂ρ(ζi − ζi0)(ρ̃, z, φ)|dρ̃ = O(ρ2).

It follows that

(4.77) I5 ≤ C
∫ 3/δ

δ/2

∫ √ε
ε

cos θ

ρ3 sin θ

 |∇ζ1|2︸ ︷︷ ︸
O(ρ2) sin θ

+ |∇ζ1
0 |2︸ ︷︷ ︸

O(ρ2) sin4 θ

+ (ζ1 − ζ1
0 )2︸ ︷︷ ︸

O(ρ4)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

 ρdρd|z| → 0.

Lastly consider the 6th integral. We have

I6 ≤C
∫ 3/δ

δ/2

∫ √ε
ε

sin θ

ρ3 cos θ

 |∇ζ2|2︸ ︷︷ ︸
O(ρ2) cos θ

+ |∇ζ2
0 |2︸ ︷︷ ︸

O(ρ2) cos4 θ

+ (ζ2 − ζ2
0 )2︸ ︷︷ ︸

O(ρ4)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

 ρdρd|z|

+ C

∫ 3/δ

δ/2

∫ √ε
ε

cos θ

ρ2 sin θ

 |∇ζ1|2︸ ︷︷ ︸
O(ρ2) sin θ

+ |∇ζ1
0 |2︸ ︷︷ ︸

O(ρ2) sin4 θ

+ (ζ1 − ζ1
0 )2︸ ︷︷ ︸

O(ρ4)

|∇φε|2︸ ︷︷ ︸
O((ρ log ε)−2)

 ρdρd|z|,

(4.78)

which converges to zero. �

By composing the three cut and paste operations defined above, we obtain the desired replacement
for Ψ which satisfies (4.6). Namely, let

(4.79) Ψδ,ε = Gε
(
Fδ
(
F δ(Ψ)

))
.

Proposition 4.5. Let ε� δ � 1 and suppose that Ψ satisfies the hypotheses of Theorem 4.1. Then
Ψδ,ε satisfies (4.6) and

(4.80) lim
δ→0

lim
ε→0
I(Ψδ,ε) = I(Ψ).

We are now in a position to establish the main result of this section.

Proof of Theorem 4.1. According to Proposition 4.5, Ψδ,ε satisfies (4.6). It follows that if Ψ̃t
δ,ε

is the geodesic connecting Ψ̃0 to Ψ̃δ,ε as described at the beginning of this section, then U tδ,ε =
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U0 + t(Uδ,ε − U0) and V t
δ,ε = V0 on Aδ,ε. Now write

(4.81)
d2

dt2
I(Ψt

δ,ε) =
d2

dt2
IΩδ,ε(Ψ

t
δ,ε)︸ ︷︷ ︸

I1

+
d2

dt2
IAδ,ε(Ψ

t
δ,ε)︸ ︷︷ ︸

I2

,

and observe that

I1 =
d2

dt2
EΩδ,ε(Ψ̃

t
δ,ε)−

d2

dt2

∫
∂Ωδ,ε∩∂Aδ,ε

12 [h1 + 2(U0 + t(Uδ,ε − U0))] ∂νh1

− d2

dt2

∫
∂Ωδ,ε∩∂Aδ,ε

(h2 + V0)∂νh2

≥2

∫
Ωδ,ε

|∇distSL(3,R)/SO(3)(Ψδ,ε,Ψ0)|2

(4.82)

where convexity of the harmonic energy was used in the last step, and

I2 =

∫
Aδ,ε

24|∇(Uδ,ε − U0)|2 + 36(Uδ,ε − U0)2 e
−6h1−6Utδ,ε−h2−V0

coshW0
|∇ζ1

0 |2

+

∫
Aδ,ε

36(Uδ,ε − U0)2e−6h1−6Utδ,ε+h2+V0 coshW0|e−h2−V0 tanhW0∇ζ1
0 −∇ζ2

0 |2

≥2

∫
Aδ,ε
|∇distSL(3,R)/SO(3)(Ψδ,ε,Ψ0)|2

(4.83)

since distSL(3,R)/SO(3)(Ψδ,ε,Ψ0) =
√

12|Uδ,ε − U0| on Aδ,ε as the geodesic is parametrized on the
interval [0, 1].

It remains to show that passing d2

dt2
into the integral in (4.83) is valid. For this it is sufficient to

show that each term on the right-hand side of the equality in (4.83) is uniformly integrable. There
is no issue with the first term since Uδ,ε, U0 ∈ H1(R3). Consider now the second and third terms,

and write Aδ,ε = Cδ,ε ∪ Bδ. Uniform integrability will follow if (Uδ,ε − U0)2e−6t(Uδ,ε−U0) is uniformly
bounded, since then these terms may be estimated by the reduced energy of Ψ0. This is clearly the
case on Cδ,ε, as U and U0 are bounded on this region. On Bδ, Uδ,ε−U0 ∼ − log r in the asymptotically
flat case and Uδ,ε−U0 ∼ 1 in the an asymptotically cylindrical case. Therefore, the desired conclusion
follows if r6t(log r)2 is uniformly bounded, which occurs for 0 < t0 < t ≤ 1. Since t0 > 0 is arbitrary,
we conclude that (4.7) holds for Ψδ,ε when t ∈ (0, 1].

We will now use the Euler-Lagrange equations for Ψ0 (Appendix B) to verify (4.8) for Ψδ,ε. Choose
ε0 < ε, δ0 < δ and write

(4.84)
d

dt
I(Ψt

δ,ε) =
d

dt
IΩδ0,ε0

(Ψt
δ,ε)︸ ︷︷ ︸

I3

+
d

dt
IAδ0,ε0 (Ψt

δ,ε)︸ ︷︷ ︸
I4

.

Observe that the justification for passing d
dt into the integrals, for t ∈ (0, 1], is similar to the arguments

of the previous paragraph. Then integrating by parts, using the Euler-Lagrange equations together
with d

dtΨ
t
δ,ε|t=0 = (Uδ,ε − U0)∂u on Aδ0,ε0 , and noting that the relevant boundary integral over

∂Ωδ0,ε0 ∩ ∂Aδ0,ε0 is equivalent to integrating over ∂Bδ0 ∪ ∂Cδ0,ε0 yields

(4.85) I3 = O(t)−
∫
∂Bδ0

24(Uδ,ε − U0)∂νU0 −
∫
∂Cδ0,ε0

24(Uδ,ε − U0)∂νU0
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for small t, where ν is the unit outer normal pointing towards the designated asymptotically flat
end. Next, using that U tδ,ε = U0 + t(Uδ,ε − U0) and d

dtV
t
δ,ε = d

dtW
t
δ,ε = d

dtζ
1,t
δ,ε = d

dtζ
2,t
δ,ε = 0 on Aδ0,ε0

produces

I4 =O(t) +

∫
Aδ0,ε0

24∇U0 · ∇(Uδ,ε − U0)− 6(Uδ,ε − U0)
e−6h1−6Utδ,ε−h2−V0

coshW0
|∇ζ1

0 |2

−
∫
Aδ0,ε0

6(Uδ,ε − U0)e−6h1−6Utδ,ε+h2+V0 coshW0|e−h2−V0 tanhW0∇ζ1
0 −∇ζ2

0 |2.
(4.86)

Since U tδ,ε = U0 +O(t), we are motivated to integrate by parts in (4.86) and use the primary Euler-
Lagrange equation for U0 to obtain only boundary terms, which should then cancel with those in I3

as Aδ0,ε0 = Bδ0 ∪ Cδ0,ε0 . In order to carry this out, it is sufficient to check that

(4.87)

∣∣∣∣∣∣∣
∫
∂Bδ0

(Uδ,ε − U)︸ ︷︷ ︸
O(| log δ0|)

∂νU0︸ ︷︷ ︸
O(δ−2

0 )

∣∣∣∣∣∣∣ ≤ C| log δ0|δ2
0 → 0 as δ0 → 0,

and

(4.88)

∣∣∣∣∣∣∣
∫
∂Cδ0,ε0

(Uδ,ε − U)︸ ︷︷ ︸
O(1)

∂νU0︸ ︷︷ ︸
O(1)

∣∣∣∣∣∣∣ ≤ Cε0 → 0 as ε0 → 0.

It follows that I3 + I4 = 0 when t = 0, and hence (4.8) holds for Ψδ,ε.
Now integrating (4.7) twice and applying a Sobolev inequality produces

I(Ψδ,ε)− I(Ψ0) ≥ 2

∫
R3

|∇distSL(3,R)/SO(3)(Ψδ,ε,Ψ0)|2dx

≥ C
(∫

R3

dist6
SL(3,R)/SO(3)(Ψδ,ε,Ψ0)dx

) 1
3

.

(4.89)

By Proposition 4.5 limδ→0 limε→0 I(Ψδ,ε) = I(Ψ), and thus in order to complete the proof it suffices
to show that the limits may be passed under the integral on the right-hand side. By the triangle
inequality, this will follow if

(4.90) lim
δ→0

lim
ε→0

∫
R3

dist6
SL(3,R)/SO(3)(Ψδ,ε,Ψ)dx = 0.

In order to establish (4.90), observe that the triangle inequality, together with the fact that the
distance between two points in SL(3,R)/SO(3) is not greater than the length of a coordinate line
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connecting them, produces

distSL(3,R)/SO(3)(Ψδ,ε,Ψ)

≤distSL(3,R)/SO(3)((Uδ,ε, Vδ,ε,Wδ,ε, ζ
1
δ,ε, ζ

2
δ,ε), (U, Vδ,ε,Wδ,ε, ζ

1
δ,ε, ζ

2
δ,ε))

+ distSL(3,R)/SO(3)((U, Vδ,ε,Wδ,ε, ζ
1
δ,ε, ζ

2
δ,ε), (U, V,Wδ,ε, ζ

1
δ,ε, ζ

2
δ,ε))

+ distSL(3,R)/SO(3)((U, V,Wδ,ε, ζ
1
δ,ε, ζ

2
δ,ε), (U, V,W, ζ

1
δ,ε, ζ

2
δ,ε))

+ distSL(3,R)/SO(3)((U, V,W, ζ
1
δ,ε, ζ

2
δ,ε), (U, V,W, ζ

1, ζ2
δ,ε))

+ distSL(3,R)/SO(3)((U, V,W, ζ
1, ζ2

δ,ε), (U, V,W, ζ
1, ζ2))

≤C (|U − Uδ,ε|+ |V − Vδ,ε|+ |W −Wδ,ε|)

+ Ce−3U−3h1

(
e−

1
2V−

1
2h2 |ζ1 − ζ1

δ,ε|+ e
1
2V+

1
2h2 |ζ2 − ζ2

δ,ε|
)
.

(4.91)

Notice that

(4.92)

∫
R3

|U − Uδ,ε|6dx ≤
∫
R3\B1/δ

|U − U0|6︸ ︷︷ ︸
O(r−6+6κ)

dx = O(δ6κ)→ 0

as δ → 0. Next we have

(4.93)

∫
R3

|V − Vδ,ε|6dx ≤ C

∫
R3\B1/δ

|V − V0|6︸ ︷︷ ︸
O(r−6−6κ)

+

∫
Cδ,√ε

|V − V0|6︸ ︷︷ ︸
O(1) as ε→0

+

∫
B2δ

|V − V0|6︸ ︷︷ ︸
O(1)

 ,

which converges to zero if ε→ 0 before δ → 0. Similarly

(4.94)

∫
R3

|W −Wδ,ε|6dx ≤ C

∫
R3\B1/δ

|W −W0|6︸ ︷︷ ︸
ρ3O(r−12−6κ)

+

∫
Cδ,√ε

|W −W0|6︸ ︷︷ ︸
O(ρ3) as ε→0

+

∫
B2δ

|W −W0|6︸ ︷︷ ︸
ρ3O(r−6)

 .

The last two terms on the right-hand side of (4.91) may each be treated in a similar fashion. Let
us consider the first of these. Using the formulas (3.20) and (4.11) yields

(4.95)

∫
R3

e−18U−18h1−3V−3h2 |ζ1 − ζ1
δ,ε|6dx ≤

∫
R3\B1/δ

+

∫
Cδ,√ε

+

∫
B2δ

e−18U−3V cos3 θ

ρ9 sin3 θ
|ζ1 − ζ1

δ,ε|6.

Furthermore

(4.96)

∫
R3\B1/δ

e−18U−3V︸ ︷︷ ︸
O(1)

cos3 θ

ρ9 sin3 θ
|ζ1 − ζ1

δ,ε|6︸ ︷︷ ︸
ρ12O(r−12−6κ) sin3 θ

= O(δ6κ)→ 0 as δ → 0,

(4.97)

∫
Cδ,√ε

e−18U−3V︸ ︷︷ ︸
O(1)

cos3 θ

ρ9 sin3 θ
|ζ1 − ζ1

δ,ε|6︸ ︷︷ ︸
ρ12 sin3 θ

= O(ε
5
2 )→ 0 as ε→ 0,

and in the asymptotically flat and asymptotically cylindrical cases respectively

(4.98)

∫
B2δ

e−18U−3V︸ ︷︷ ︸
O(r36)

cos3 θ

ρ9 sin3 θ
|ζ1 − ζ1

δ,ε|6︸ ︷︷ ︸
ρ12O(r−48+6κ) sin3 θ

= O(δ6κ)→ 0 as δ → 0,
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(4.99)

∫
B2δ

e−18U−3V︸ ︷︷ ︸
O(r18)

cos3 θ

ρ9 sin3 θ
|ζ1 − ζ1

δ,ε|6︸ ︷︷ ︸
ρ12O(r−30+6κ) sin3 θ

= O(δ6κ)→ 0 as δ → 0.

It follows that (4.90) holds. �

Proof of Theorem 1.1. By replacing η(l) with −η(l) if necessary, we may assume without loss of
generality that Jl ≥ 0, l = 1, 2, so that Jl = |Jl|. If both J1 = J2 = 0, then inequality (1.9) reduces
to the positive mass theorem which holds under the current assumptions on the initial data. If only
one angular momentum vanishes, say J1 = 0 and J2 6= 0, then we may perturb the initial data
slightly to achieve J1 6= 0 and J2 6= 0 while preserving all other hypotheses of the theorem. The
arguments below show that inequality (1.9) holds for the perturbed data, and hence also for the
unperturbed data by letting the perturbation go to zero.

It remains to consider the case when Jl > 0, l = 1, 2. In this case there is an extreme Myers-Perry
black hole solution that can serve as the model spacetime, giving rise to the harmonic map Ψ̃0 used
in the convexity arguments. The asymptotic assumptions on the initial data (M, g, k) imply that
(U, V,W, ζ1, ζ2) satisfy the asymptotics (4.12)-(4.23), see Appendix A. Thus Theorem 4.1 applies,
and the inequality (1.9) of Theorem 1.1 follows from (3.15) and (4.5), after noting that

(4.100) M(Ψ0) =

(
27π

32
(J1 + J2)2

) 1
3

.

Consider now the case of equality in (1.9) when Jl > 0, l = 1, 2. As alluded to above, only in this
case of nonvanishing angular momenta do we have a proper black hole spacetime arising from the
extreme Myers-Perry family. If only one of the angular momenta vanish, the corresponding extreme
Myers-Perry solution has a naked singularity, and such data do not satisfy the asymptotic hypotheses
of the theorem. If both angular momenta vanish, then the corresponding extreme Myers-Perry data
is isometric to Euclidean space minus a point, and such data again do not satisfy the hypotheses; in
fact, more generally, this is true for extreme Myers-Perry data with J1 + J2 = 0. Continuing with
the proof in the case of nonvanishing angular momentum, observe that equality in (1.9) together
with (3.15) and (4.5) implies that

(4.101) µ = 0, Aiρ,z = Aiz,ρ, i = 1, 2,

(4.102) k(ei, ej) = k(e3, e3) = k(e3, e4) = k(e4, e4) = 0, i, j 6= 3, 4,

and

(4.103) M(U, V,W, ζ1, ζ2) =M(U0, V0,W0, ζ
1
0 , ζ

2
0 ).

Furthermore, according to the gap bound (4.5), a map which minimizes the functional M must
coincide with the harmonic map associated with the extreme Myers-Perry spacetime, that is

(4.104) (U, V,W, ζ1, ζ2) = (U0, V0,W0, ζ
1
0 , ζ

2
0 ).
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Next notice that (3.13), (4.102), and (4.104) yield

R =16πµ+ |k|2

=16πµ+
e−8U−2α+2 log r

2ρ2
∇ζtλ−1∇ζ

=
e−8U0−2α+2 log r

2ρ2
∇ζt0λ−1

0 ∇ζ0

=e2(α0−α)R0,

(4.105)

where α0 and R0 are corresponding quantities for the extreme Myers-Perry solution. On the other
hand, using the scalar curvature formula (3.1), together with (4.101) and (4.104) implies that

e2U+2α−2 log rR =− 6∆U0 − 2∆ρ,zα− 6|∇U0|2 +
det∇λ0

2ρ2

=e2U0+2α0−2 log rR0 + 2∆ρ,z(α0 − α).

(4.106)

It then follows from (4.104) and (4.105) that ∆ρ,z(α0 − α) = 0. In light of the condition (2.13) on
the axis to avoid conical singularities, we have (α0 − α)|Γ = 0. Moreover (α0 − α) → 0 as r → ∞.
Hence the maximum principle shows that α = α0.

We are now in a position to show that (M, g) is isometric to the canonical slice of the extreme
Myers-Perry black hole. By (4.101) the 1-forms Aiρdρ+Aizdz, i = 1, 2 are closed, and so there exist

potentials such that ∂ρf
i = Aiρ and ∂zf

i = Aiz, i = 1, 2. Then under the change of coordinates

φ̃i = φi + f i(ρ, z), the metric takes the form

(4.107) g =
e2U0+2α0

2
√
ρ2 + z2

(dρ2 + dz2) + e2U0(λ0)ijdφ̃
idφ̃j ,

which yields the desired result g ∼= g0. Lastly (3.12), (4.102), (4.104), and α = α0 show that the
tensor k coincides with the extrinsic curvature of the canonical extreme Myers-Perry slice. Note that
this also shows that the linear momentum vanishes J = 0. �

5. Discussion

In this paper we have established the mass-angular momentum inequality for 4-dimensional ini-
tial data having horizons of spherical topology, and which admit a Brill coordinate representation.
There are many directions for possible generalizations. First, we strongly suspect that as in the
3-dimensional case [8], the existence of Brill coordinates always occurs for data with simple topol-
ogy and appropriate asymptotics. Therefore Theorem 1.1 should hold without the Brill coordinate
hypothesis. Second, it is natural to consider such inequalities for data with multiple horizons. In
the 3-dimensional setting such inequalities were obtain [11, 28] in both the charged and uncharged
cases, however the mass lower bound was not given explicitly. In order to carry this out in the higher
dimensional setting, one would first need to construct a harmonic map to serve in the place of the
Myers-Perry harmonic map Ψ̃0. Such an existence result for a harmonic map with ‘multiple hori-
zons’ should be possible through an application of Weinstein’s theory [35]. However, the convexity
arguments would be much more difficult to carry out, as such harmonic maps are not given explicitly.

Perhaps the most challenging and interesting generalization would be to allow horizons with
nontrivial topology. In this situation the orbit space structure would change. In general, the 2-
dimensional orbit space M4/U(1)2 is a simply connected manifold with boundaries and corners
[4, 24]. The boundary Γ = {ρ = 0} is divided into rod intervals Is = {ρ = 0, as ≤ z ≤ as+1},
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1 ≤ s ≤ s̄ + 1 where a1 < a2 < · · · < as̄+1, and on each such rod segment λ has rank 1 or 2. In
particular, on each Is a certain integral linear combination of the η(l), l = 1, 2 vanishes, that is,

there exists a vector nlsη(l), with nls ∈ Z, which lies in the kernel of λ, namely λijn
j
s = 0. One may

then give each rod a two component label (n1
s, n

2
s), indicating which linear combination vanishes.

Horizons carry the label (0, 0), and all other rods have the property that λ is of rank 1 while at
corner points λ is of rank 0. Moreover, asymptotic flatness implies the existence of two semi-infinite
intervals I1 = {−∞ < z < a2} and Is̄ = {as̄ < z < ∞} with the labels (0, 1) and (1, 0) respectively
(after perhaps choosing an appropriate coordinate basis). The collection of rod intervals Is together
with the associated labels is referred to as the orbit space data. As we have seen in this paper, the
orbit space data for the extreme Myers-Perry solution consists only of the two semi-infinite rods,
and the same is true for a non-extreme Myers-Perry in Brill coordinates while in Weyl coordinates
it has an extra rod with label (0, 0) in between that represents the horizon. Consider now the black
ring solution. The extreme version has three rods Is, s = 1, 2, 3 with corresponding labels (0, 1),
(1, 0), and (1, 0). The point between I2 and I3 represents a cylindrical end with cross-section having
topology S1×S2. The non-extreme black ring has an extra rod between I2 and I3 with label (0, 0) to
encode the horizon. When trying to establish the mass-angular momentum inequality for black holes
with S1×S2 topology, the main difficulty occurs from the fact that the orbit space structure for the
model (extreme black ring) is not compatible with the orbit space structure for manifolds with two
asymptotically flat ends. Thus it is not clear if a Brill coordinate description is possible, on which
arbitrary initial data may be compared with the model. In particular, it is not even clear if there
is a single Brill coordinate description which is compatible with both the extreme and non-extreme
black ring data. On the other hand, some positive results have been obtained in the direction of
a mass-angular momentum inequality for nontrivial topologies. Namely, a slight variation of the
the mass functional (3.16) may be derived for very general orbit space data, and it is known to be
nonnegative for special classes of rod structures which include that of the extreme black ring [2].
Ultimately, however, for nontrivial topologies it may be more appropriate to use Weyl coordinates
in which the horizon is represented as a rod, instead of Brill coordinates in which the horizon is
represented as a point.

Appendix A. Asymptotics

Here we compute the asymptotics of the harmonic map data (U, V,W, ζ1, ζ2) which are implied
by the asymptotics of the generalized Brill data in (2.4)-(2.11), and observe that they are stronger
than those (4.12)-(4.23) which are needed to carry out the convexity arguments of Section 4. The
asymptotics of U are given directly, and those of V and W may be derived from the equations (3.17).
Thus, it remains to compute the asymptotics for the potentials ζ1 and ζ2. Observe that (3.12) yields

(A.1) |∇ζi| =
(
|∂ρζi|2 + |∂zζi|2

) 1
2 ≤ Cr−1ρe4U+α (|k(e1, ei+2)|+ |k(e2, ei+2)|) .

Furthermore, asymptotics for k(el, ei+2), l = 1, 2 may be obtained from the asymptotics of |k|g and
λ through the inequality

(A.2)
∑
l=1,2

λijk(el, ei+2)k(el, ej+2) ≤ |k|2g.

In conclusion, Brill asymptotics imply the following asymptotics for the harmonic map data. In the
designated asymptotically flat end as r →∞

(A.3) U = O(r−1−κ), V = O(r−1−κ), W = ρO(r−5−κ),
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(A.4) |∇U | = O(r−3−κ), |∇V | = O(r−3−κ), |∇W | = O(r−5−κ),

(A.5) |∇ζ1| = ρ sin θO(r−2−κ), |∇ζ2| = ρ cos θO(r−2−κ).

As r → 0 in the asymptotically flat case

(A.6) U = −2 log r +O(1), V = O(r1+κ), W = ρO(r−1+κ),

(A.7) |∇U | = O(r−2), |∇V | = O(r−1+κ), |∇W | = O(r−1+κ),

(A.8) |∇ζ1| = ρ sin θO(r−6+κ), |∇ζ2| = ρ cos θO(r−6+κ),

and in the asymptotically cylindrical case

(A.9) U = − log r +O(1), V = O(r1+κ), W = ρO(r−2),

(A.10) |∇U | = O(r−2), |∇V | = O(r−1+κ), |∇W | = O(r−2),

(A.11) |∇ζ1| = ρ sin θO(r−2+κ), |∇ζ2| = ρ cos θO(r−2+κ).

Lastly, as ρ→ 0 with δ ≤ r ≤ 2/δ we have

(A.12) U = O(1), V = O(1), W = O(ρ
1
2 ),

(A.13) |∇U | = O(1), |∇V | = O(1), |∇W | = O(ρ−
1
2 ),

(A.14) |∇ζ1| = sin θO(ρ), |∇ζ2| = cos θO(ρ).

Appendix B. The Extreme Myers-Perry Harmonic Map

The Myers-Perry black holes [32] are solutions to the vacuum Einstein equations in all dimensions
greater than four, and have horizons of spherical topology. They are considered to be the natural
generalization to higher dimensions of the 4-dimensional Kerr black holes. In coordinates analogous
to those of Boyer-Lindquist used for the Kerr solution, the Myers-Perry metric takes the form

− dt2 +
m

Σ

(
dt+ a sin2 θdφ1 + b cos2 θdφ2

)2
+
r̃2Σ

∆
dr̃2

+ Σdθ2 +
(
r̃2 + a2

)
sin2 θ(dφ1)2 +

(
r̃2 + b2

)
cos2 θ(dφ2)2,

(B.1)

where

Σ = r̃2 + b2 sin2 θ + a2 cos2 θ, ∆ =
(
r̃2 + a2

) (
r̃2 + b2

)
−mr̃2.(B.2)

This family of solutions is parameterized by (m, a, b) which give rise to the mass and angular momenta
through the formulae

m =
3

8
πm, J1 =

2

3
ma, J2 =

2

3
mb;(B.3)

the black hole is referred to as extreme if m = (a+b)2. Note that this spacetime has the orthogonally
transitive isometry group R×U(1)2, where R gives the time translation symmetry and U(1)2 is the
rotational symmetry generated by ∂φ1 and ∂φ2 . Here (r̃, θ) parameterize the 2-dimensional surfaces
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orthogonal to the orbits of the isometry group. The horizons of this black hole are located at the
roots of ∆, namely

(B.4) r̃± = ±

√√√√m− a2 − b2 +

√
(m− a2 − b2)2 − 4a2b2

2
,

and the singularities of this metric for nonvanishing a and b with |a| 6= |b| are located at the roots of
Σ. We will restrict attention to the exterior region r̃ > r̃+, with the other variables having ranges
0 < θ < π/2 and 0 < φ1, φ2 < 2π.

Consider now the metric on a constant time slice. In the exterior region, this may be put into
Brill form by defining a new radial coordinate r:

(B.5) r̃2 = r2 +
1

2

(
m− a2 − b2

)
+

m
(
m− 2a2 − 2b2

)
+ (a2 − b2)2

16r2
, m 6= (a+ b)2,

(B.6) r̃2 = r2 + ab, m = (a+ b)2.

Observe that the new coordinate is defined on the interval (0,∞), and a critical point for the right-
hand side of (B.5) occurs at the horizon, so that two isometric copies of the outer region are encoded
on this interval. The coordinates (r, θ, φ1, φ2) then give a (polar) Brill coordinate system, where the
spatial metric takes the form

g =
Σ

r2
dr2 + Σdθ2 + Λijdφ

idφj ,(B.7)

with
(B.8)

Λ11 =
a2m

Σ
sin4 θ + (r̃2 + a2) sin2 θ, Λ12 =

abm

Σ
sin2 θ cos2 θ, Λ22 =

b2m

Σ
cos4 θ + (r̃2 + b2) cos2 θ.

Cylindrical Brill coordinates may be obtained via the usual transformation ρ = 1
2r

2 sin(2θ), z =
1
2r

2 cos(2θ), so that the metric is given by

(B.9) g =
e2U+2α

2
√
ρ2 + z2

(dρ2 + dz2) + e2Uλijdφ
idφj ,

where

(B.10) e2U =

√
det Λ

ρ
, e2α =

ρΣ

r2
√

det Λ
, λij =

ρ√
det Λ

Λij .

From this we may compute the harmonic map data (U, V,W ) with the help of (3.17). Moreover, the
twist potentials are given in the non-extreme case by

ζ1 =

[
C2

1 + 256r4Σ(a2 − b2) cos2 θ
] (
C1 − 16r2

(
a2 − b2

))
ma

163r6Σ(a2 − b2)2
− C2

1 − 32r4C2

256r4(a2 − b2)2
ma

ζ2 =−
[
C1

(
C1 − 32r2

(
a2 − b2

))
+ 256r4(a2 − b2)(Σ cos2 θ + (a2 − b2))

]
C1mb

4096r6Σ(a2 − b2)2

+
C2

1 − 16r2C1

(
a2 − b2

)
+ 32r4C3

256r4(a2 − b2)2
mb

(B.11)

where

(B.12) C1 = 16r4 + 8(m + a2 − b2)r2 +
(
m− (a− b)2

)(
m− (a+ b)2

)
,
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(B.13) C2 = 3(a2 − b2)2 + m
(
3m− 6b2 + 2a2

)
, C3 = (a2 − b2)2 + m

(
2a2 + 2b2 − 3m

)
,

and in the extreme case by

ζ1
0 =

a(a2 − b2)(r2 + ab+ b2) cos2 θ − r2a(2a2 + 2ab+ r2)

(a− b)2
+
a(r2 + ab+ a2)2(r2 + ab+ b2)

Σ(a− b)2

ζ2
0 =

br2((a+ b)2 + r2)− b(a2 − b2)(r2 + ab+ a2) cos2 θ

(a− b)2
− b(r2 + ab+ a2)(r2 + ab+ b2)2

Σ(a− b)2
.

(B.14)

The asymptotics of the non-extreme Myers-Perry data are then as follows. In the designated asymp-
totically flat end as r →∞ we have

(B.15) U = O(r−2), V = O(r−2), W = ρO(r−6),

(B.16) |∇U | = O(r−4), |∇V | = O(r−4), |∇W | = O(r−6),

(B.17) |∇ζ1| = ρ sin2 θO(r−4), |∇ζ2| = ρ cos2 θO(r−4).

In the nondesignated (asymptotically flat) end as r → 0 it holds that

(B.18) U = −2 log r +O(1), V = O(r2), W = ρO(r2),

(B.19) |∇U | = O(r−2), |∇V | = O(1), |∇W | = O(r2),

(B.20) |∇ζ1| = ρ sin2 θO(r−4), |∇ζ2| = ρ cos2 θO(r−4).

Furthermore, the near axis asymptotics as ρ→ 0, δ ≤ r ≤ 2/δ are given by

(B.21) U = O(1), V = O(1), W = O(ρ),

(B.22) |∇U | = O(1), |∇V | = O(1), |∇W | = O(1),

(B.23) |∇ζ1| = sin2 θO(ρ), |∇ζ2| = cos2 θO(ρ).

Asymptotics in the extreme case may be computed similarly, and are recorded in (4.24)-(4.32).

Lastly we note that the extreme Myers-Perry harmonic map Ψ̃0 = (u0, v0, w0, ζ
1
0 , ζ

2
0 ) : R3 \ Γ →

SL(3,R)/SO(3) satisfies the Euler-Lagrange equations arising from the energy (4.2), namely

4∆u+
e−6u−v

coshw
|∇ζ1|2 + e−6u+v coshw

∣∣e−v tanhw∇ζ1 −∇ζ2
∣∣2 = 0,

2 div
(
cosh2w∇v

)
+ e−6u−v coshw|∇ζ1|2 − e−6u+v coshw

∣∣∇ζ2
∣∣2 = 0,

2∆w − sinh 2w|∇v|2 − e−6u−v sinhw
∣∣∇ζ1

∣∣2 = 0,

+2e−6u coshwδ3(∇ζ1,∇ζ2)− e−6u+v sinhw
∣∣∇ζ2

∣∣2 = 0,

div
(
e−6u−v coshw∇ζ1 − e−6u sinhw∇ζ2

)
= 0,

div
(
e−6u sinhw∇ζ1 − e−6u+v coshw∇ζ2

)
= 0.

(B.24)
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