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Abstract

In this thesis, I consider hyper-Kähler manifolds of complex dimension 4 which are
fibrations. It is known that the fibers are abelian varieties and the base is P2. We
assume that the general fiber is isomorphic to a product of two elliptic curves. We
are able to relate this class of hyper-Kähler fibrations to already known examples.
We prove that such a hyper-Kähler manifold is deformation equivalent to a Hilbert
scheme of two points on a K3 surface.
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Chapter 1

Introduction

Compact hyperkähler manifolds, or irreducible symplectic manifolds, are higher-

dimensional analogues of K3 surfaces. They indeed share many of the well-known

properties of K3 surfaces.

Irreducible symplectic manifolds occupy a distinguished place in the list of higher

dimensional Kähler manifolds. Together with Calabi-Yau manifolds they are the only

irreducible simply connected Kähler manifolds with c1(X) = 0 (cf. [2]).

We study holomorphic symplectic manifolds which are fibred by abelian varieties.

This structure is a higher dimensional analogue of an elliptic fibration on a K3 sur-

face. We investigate when a holomorphic symplectic manifold is fibred in this way,

and we study the geometry of these fibrations. We consider hyper-Kähler manifolds

of complex diminsion 4. We prove that if the abelian varieties are products of elliptic

curves, then the hyper-Kähler fibration is deformation equivalent to a Hilbert scheme

of points on a K3 surface.

According to Matsushita ([12]), if X is a 4-dimensional hyper-Kähler manifold

which admits a fibration, then the generic fiber is an abelian surface and the base is

P2.
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Chapter two introduces the main definitions and examples which we are going to

use in our work.

Chapter three describes the isolated singularities which a fibration with trivial

canonical sheaf can have if the fibers are abelian varieties.

Chapter four answers a question by Gang Tian about deformations of Hilbert

schemes. If we start with a Hilbert scheme of a K3 surface which is a fibration and

we deform it so that we preserve the fiber structure, the question is whether it is still

isomorphic to a Hilber scheme of a K3 surface. The answer is negative: in general

this is not the case.

Chapter five describes a special class of hyper-Kähler manifolds. We prove that

a hyper-Kähler fibration with general fiber a product of two elliptic curves is de-

formation equivalent to a Hilbert scheme of points on a K3 surface. We make the

assumptions that the fibration admits a section and that the general singular fiber

is semi-stable. This is a step towards a classification of hyper-Kähler manifolds of

complex dimension 4.
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Chapter 2

Preliminaries

2.1 Hilbert Schemes of Points on a Surface

First, we recall the definition of the Hilbert scheme in general. Let X be a projective

scheme over C and OX(1) an ample line bundle on X. We consider the contravariant

finctor HilbX from the category of schemes to the category of sets:

HilbX : [Schemes] → [Sets]

It associates a scheme U with a set of families of closed subschemes in X parametrized

by U . For each polynomial P , let HilbPX be the subfunctor of HilbX which associates

a scheme U with a set of families of closed subschemes in X parametrized by U which

have P as their Hilbert polynomial. The following theorem is due to Grothendieck:

Theorem 2.1. The functor HilbPX is representable by a projective scheme HilbP
X .

This means that there exists a universal family Z on HilbP
X , and that every family

on U is induced by a unique morphism φ : U → HilbP
X .

Definition 2.1. Let P be the constant polynomial given by P (m) = n for all m ∈ Z.

We denote by Hilbn(X) = HilbP
X the corresponding Hilbert scheme and call it the

Hilber scheme of n point in X.

11



Let x1, x2, . . . , xn ∈ X be n distinct points and consider Z = {x1, x2, . . . , xn} ⊂ X

as a closed subscheme. Since the structure sheaf of Z is given by

OZ =
n

⊕

i=1

skyscraper sheaf at xi,

we have OZ ⊗ OX(m) = OZ , for all m ∈ Z, and hence Z ∈ Hilbn(X). This is the

reason why Hilbn(X) is called Hilbert scheme of n points in X.

In the case when X is a complex surface, we have a nice desription of its Hilbert

scheme.

Theorem 2.2. (Fogarty [4]) Suppose X is non-singular and dim X = 2, then the

following hold:

(1) Hilbn(X) is non-singular of dimension 2n;

(2) π : Hilbn(X) → SnX is a resolution of singularities, where SnX is the n-th

symmetric product of X.

2.2 Hyper-Kähler manifolds

2.2.1 Basic Facts

Definition 2.2. A complex manifold X is called irreducible symplectic if it satisfies

the following conditions:

(1) X is compact and Kähler;

(2) X is simply connected;

(3) H0(X,Ω2
X) is spanned by an everywhere non-degenerate 2-form ω.

Any holomorphic two-form σ induces a homomorphism TX → ΩX , which we also

denote by σ. The two-form is everywhere non-degenerate if and only if σ : TX → ΩX

is bijective. Note that (3) implies h2,0(X) = h0,2(X) = 1 and KX
∼= OX . In particu-

lar, c1(X) = 0. Any irreducible symplectic manifold X has even complex dimension
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which we will fix to be 2n.

Definition 2.3. A compact connected 4n-dimensional Riemannian manifold (M, g)

is called hyperkähler (irreducible hyperkähler) if its holonomy is contained in (equals)

Sp(n).

If (M, g) is hyperkähler, then the quaternions H act as parallel endomorphisms

on the tangent bundle of M . This is a consequence of the holonomy principle: Every

tensor at a point in M that is invariant under the holonomy action can be extended

to a parallel tensor over M . In particular, any λ ∈ H with λ2 = −1 gives rise to an

almost complex structure on M . These almost complex structures are all integrable

[16]. After fixing a standard basis I, J , and K := IJ of H any λ ∈ H with λ2 = −1

can be written as λ = aI + bJ + cK with a2 + b2 + c2 = 1. The metric g is Kähler

with respect to every such λ ∈ S2. The corresponding Kähler form is denoted by

ωλ := g(λ . , . ).

Thus, a hyperkähler metric g on a manifold M defines a family of complex Kähler

manifolds (M,λ, ωλ), where λ ∈ S2 ∼= P1.

If X is irreducible symplectic and α ∈ H2(X,R) is a Kähler class on X, then

there exists a unique Ricci-flat Kähler metric g with Kähler class α. This follows

from Yau’s solution of the Calabi-conjecture. Let ω be the holomorphic symplectic

form. Bochner-Weitzenböck formula gives:

∆ | ω |2=| ∇ω |2,

where ∆ is the Laplacian and ∇ is the Levi-Civita connection. Integrating both sides

over X, we have ∇ω = 0, which means that ω is parallel. This shows that the holon-

omy group is contained in SU(2n) ∩ Sp(n,C) = Sp(n), where n = 1
2

dimCX. Then

g is an irreducible hyperkähler metric on the underlying real manifold M . Moreover,

for one of the complex structures, say I, one has X = (M, I).

13



Conversely, if (M, g) is hyper-Kähler and I, J,K are complex structures as above,

then σ := ωJ + iωK is a holomorphic everywhere non-degenerate two-form on X =

(M, I). If M is compact and g is irreducible hyperkähler, then M is simply connected

and H0((M, I),Ω2
(M,I)) = σ · C, i.e. X is irreducible symplectic.

Thus, irreducible symplectic manifolds with a fixed Kähler class and compact ir-

reducible hyperkähler manifolds are the same object. We will use the two names

accordingly.

Let X be an irreducible symplectic manifold and let 0 6= σ ∈ H0(X,Ω2
X) be fixed.

By the holonomy principle one easily obtains (cf. [2]):

H0(X,Ωp
X) ∼=







0 p ≡ 1(mod 2)

Λp/2σ · C p ≡ 0(mod 2).

Due to work of Beauville [2] there exists a natural quadratic form qX on the sec-

ond cohomology of an irreducible symplectic manifold generalizing the intersection

pairing on a K3 surface. It is a primitive integral quadratic form on H2(X,Z) of

index (3, b2(X) − 3). Also, qX(σ) = 0 and qX(σ + σ̄) > 0.

Fujiki [5] shows the following relation: For any integral class α ∈ H2j(X,Z) one

has the form of degree 2n− j that sends β ∈ H2(X,Z) to
∫

αβ2n−j ∈ Z. Fujiki shows

that for any α ∈ H4j(X,Z) contained in the subalgebra generated by the Chern

classes of X there exists a constant c ∈ Q such that

∫

αβ2(n−j) = cqX(β)n−j for any β ∈ H2(X,Q). (2.1)

As an application of (2.1) one has that the Hirzebruch-Riemann-Roch formula on

an irreducible symplectic manifold takes the following form: If L is a line bundle on
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X, then

χ(L) =
∑ ai

(2i)!
qX(c1(L))i,

where the ai’s are constants only depending on X.

A deformation of a compact manifold X is a smooth proper holomorphic map

X → S, where S is an analytic space and the fibre over a distinguished point 0 ∈ S

is isomorphic to X. We will say that a certain property holds for the generic fibre,

if for an open (in the analytic topology) dense set U ⊂ S and all t ∈ U the fibre

Xt has this property. The property holds for the general fibre if such a set U exists

that is the complement of the union of countably many nowhere dense closed (in the

analytic topology) subsets.

One knows that for any compact Kähler manifold X there exists a semi-universal

deformation X → Def (X ), where Def (X ) is a germ of an analytic space and the

fibre X0 over 0 ∈ Def (X ) is isomorphic to X. The Zariski tangent space of Def (X )

is naturally isomorphic to H1(X, TX). If H0(X, TX) = 0, i.e. if X does not allow

infinitesimal automorphisms, then X → Def (X ) is universal, i.e. for any deformation

XS → S of X there exists a uniquely determined holomorphic map S → Def (X ) such

that XS
∼= X ×Def (X ) S. By a result of Tian [18] the base space Def (X ) is smooth if

KX
∼= OX . In this case one says that X deforms unobstructed.

Let Γ be a lattice of index (3, b − 3). By qΓ we denote its quadratic form. A

marked irreducible symplectic manifold is a tuple (X,ϕ) consisting of an irreducible

symplectic manifold X and an isomorphism ϕ : H2(X,Z) ∼= Γ compatible with qX and

qΓ. The period of (X,ϕ) is by definition the one-dimensional subspace ϕ(H2,0(X)) ⊂

ΓC considered as a point in the projective space P(ΓC). If X → Def (X ) is the

universal deformation of X0 = X, then a marking ϕ of X naturally defines markings

ϕt of all the fibres Xt. Thus we can define the period map

P : Def (X ) → P(ΓC)
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as the map that takes t to the period of (Xt, ϕt). Note P is holomorphic. Its tangent

map is given by the contraction

H1(X, TX) → Hom(H2,0(X), H1,1(X)) ⊂ Hom(H2,0(X), H2(X,C)/H2,0(X)).

The holomorphic two-form σ on X satisfies qX(σ) = 0 and qX(σ + σ̄) > 0. Hence

the image of P is contained in the period domain Q ⊂ P(ΓC) defined as {x ∈

P(ΓC)|qΓ(x) = 0, qΓ(x + x̄) > 0}, which is an open (in the analytic topology)

subset of the non-singular quadric defined by qΓ.

Beauville proved in [2] the Local Torelli Theorem: For any marked irreducible

symplectic manifold (X,ϕ) the period map P : Def (X) → Q is a local isomorphism.

2.2.2 Examples

Hilbert schemes of K3 surfaces. If S is a K3 surface, then Hilbn(S) is irreducible

symplectic (cf. [2])

Strictly speaking, Hilbn(S) is a scheme only if S is algebraic. In general, it is just

a complex space. Using that S is smooth, compact, connected, and of dimension two,

one shows that Hilbn(S) is a smooth compact connected manifold of dimension 2n.

By results of Varouchas [21] the Hilbert scheme is Kähler if the underlying surface

is Kähler which is the case for K3 surfaces. Beauville then concludes that for any

K3 surface S the Hilbert scheme Hilbn(S) is irreducible symplectic by showing that

Hilbn(S) admits a unique (up to scalars) everywhere non-degenerate holomorphic

two-form and that it is simply connected.

It is interesting to note that for n > 1 one has b2(Hilbn(S)) = 23. Moreover, the

second cohomology H2(Hilbn(S),Z) endowed with the natural quadratic form qX is

isomorphic to the lattice H2(S,Z) ⊕ (−2(n− 1) · Z).

Generalized Kummer varieties. If A is a two-dimensional torus, then Kn+1(A)

is irreducible symplectic (cf. [2]).

The generalized Kummer variety Kn+1(A) is by definition the fibre over 0 ∈ A of

16



the natural morphism Hilbn+1(A) → Sn+1(A)
Σ

−→ A, where Σ is the summation and

0 ∈ A is the zero-point of the torus. Hilbn+1(A) itself also admits an everywhere non-

degenerate two-form, but neither is this two-form unique nor is Hilbn+1(A) simply

connected. Both conditions are satisfied for Kn+1(A). The second Betti number of

Kn+1(A) is 7 (cf. [2]).

The examples provided by the Hilbert schemes of K3 surfaces and by the gen-

eralized Kummer varieties are the two standard series of examples of irreducible

symplectic manifolds. Thus in any real dimension 4n we have at least two different

compact real manifolds admitting irreducible hyper-Kähler metrics. They are not

diffeomorphic (in fact, not even homeomorphic), because their second Betti numbers

are different.

2.3 Fibrations

Definition 2.4. By abelian fibration on a 2n-dimensional irreducible holomorphic

symplectic manifold X we mean the structure of a fibration over Pn whose generic

fibre is a smooth abelian variety of dimension n.

This is a higher dimensional analogue of elliptic fibrations on K3 surfaces. At

first sight, this definition may appear to be unnecessarily restrictive. For example,

maybe we should allow the base to be a more general n-fold than Pn, or to have

dimension different to n. However, this is the only fibration structure that can exist

on an irreducible holomorphic symplectic manifold, because of the following result by

Matsushita [12]:

Theorem 2.3. For projective symplectic manifold X, let f : X → B be a proper

surjective morphism such that the generic fibre F is connected. Assume that B is

smooth and 0 < dimB < dimX. Then

(1) F is an abelian variety up to a finite unramified cover,

(2) B is n-dimensional and has the same Hodge numbers as Pn,

(3) the fibration is Lagrangian with respect to the holomorphic symplectic form.

17



In particular, if X is 4-dimensional, we can use the Castelnuovo-Enriques classifi-

cation of surfaces to deduce that the generic fibre is an abelian surface and the base

is P2.

Both Examples Hilbn(S) and Kn+1(A), the Hilbert scheme of points on a K3 sur-

face and the generalized Kummer variety, are abelian fibrations when the underlying

K3 surface S or complex tori A, respectively, is an elliptic surface. For example, if

f : S → P1 is the fibration on S, we get an induced fibration

f [n] : Hilbn(S) → SymnP1 ∼= Pn

on Hilbn(S). The fibres in this case are products of n elliptic curves: special n-

dimensional abelian varieties. A similar thing happens for the generalized Kummer

variety.

In Chapter 5 we prove that the opposite also holds: if a hyper-Kähler manifold of

dimension 4 admits a fibration with fibers that are products of elliptic curves, then

it is deformation equivalent to a Hilbert scheme of points on a K3 surface.

18



Chapter 3

Degenerations of 2-dimensional

Tori

In this section we classify the possible degenerate fibers which can occur in a semistable

degeneration of two-dimensional tori under the assumption that the canonical bundle

of the total space of the family is trivial.

3.1 Basic Tools

Let π : X → ∆ be a proper map of a Kähler manifold X onto the unit disk

∆ = {t ∈ C :| t |< 1}, such that the fibers Xt are nonsingular compact complex

manifolds for every t 6= 0. We call π a degeneration and the fiber X0 = π−1(0) - the

degenerate fiber.

Definition 3.1. A map ψ : Y → ∆ is called a modification of a degeneration π if

there exists a birational map f : X → Y such that ψ = π ◦f and ψ is an isomorphism

outside of the degenerate fiber.

A degeneration is called semistable if the degenerate fiber is a reduced divisor

with normal crossings. Not every degeneration can be modified to a semistable one.
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Nonetheless, it is possible to reduce any degeneration to a semistable one after a base

change according to Mumford’s theorem ([9]).

Definition 3.2. The polyhedron Π(V ) of a variety with normal crossings V = V1 +

· · ·+Vn, dimVi = d is the polyhedron whose vertices correspond to the irreducible com-

ponents Vi and the vertices Vi1 , · · · , Vik form a (k− 1)−simplex if Vi1 ∩ · · · ∩ Vik 6= 0.

Let π : X → ∆ be a semistable degeneration of surfaces whose degenerate fiber is

X0 = V1 + V2 + · · ·+ Vn. If D ∈ Pic(X) and V is a component of the fiber, then let

DV = i∗(D) = D ·V, where i : V ↪→ X is the inclusion. For D,D′ ∈ Pic(X) the inter-

section index on V is defined: D·D′·V = DV ·D
′
V . We will state some results from [10].

Lemma 3.1. ([10]) Let C = Vi ∩ Vj be a double curve of a semistable degeneration

of surfaces. Then (C2)Vi
+ (C2)Vj

= −TC , where TC is the number of triple points of

the fiber X0 on C.

Proof. Note that C is a union of non-singular curves since X0 is a divisor with normal

crossings. We have Vi · Vj ·X0 = 0, because X0 ∼ Xt. On the other hand,

Vi ·Vj ·X0 = Vi ·Vj · (Vi +Vj +
∑

k 6=i,j

Vk) = ViVjVi +ViVjVj +TC = (C2)Vj
+(C2)Vi

+TC .

Let χ(V ) = h0(OV ) − h1(OV ) + h2(OV ) = pg − q + 1 be the Euler characteristic

of the structure sheaf OV of the algebraic surface V .

Lemma 3.2. ([10]) Let T be the number of all triple points of π, then

χ(Xt) =

n
∑

i=1

χ(Vi) −
∑

i<j

χ(Ci,j) + T,

where Ci,j = Vi ∩ Vj

20



Remark 3.1. ([10]) For a variety with normal crossing X0 there is a natural mixed

Hodge structure with weight filtration W and W0H
m(X0) ∼= Hm(Π(X0)).

Theorem 3.1. (Kulikov [10], Persson [15]) Let π : X → ∆ be a semistable Kähler

degeneration of surfaces, then

h1(Xt) =
n

∑

i=1

h1(Vi) −
∑

i<j

h1(Ci,j) + 2h1(Π) + ckh1,

pg(Xt) =
n

∑

i=1

pg(Vi) + h2(Π) +
1

2
ckh1,

where ckh1 = dim Coker (⊕H1(Vi) → ⊕H1(Ci,j)), d is the number of double curves

of the fiber X0 and Π is its polyhedron.

Lemma 3.3. A surface V is ruled or CP2 if and only if H0(V, nKV ) = 0 for every

n > 0.

3.2 Main Theorem

In [19, 20] K. Ueno studies degenerations of normally polarized abelian surfaces which

are of the first kind. A degeneration is said to be of the first kind if it corresponds

to an inner point of the Siegel upper half plane. Ueno doesn’t impose any condition

on the total space of the fibration. Here we assume that the total space has a trivial

canonical bundle and we consider general degenerations. In order to classify the

possible degenerations, we don’t refer to Ueno’s list.

We prove the following theorem which is analogous to the classification theorems

in [10] which Kulikov gives for K3-surfaces and Enriques surfaces.

Theorem 3.2. Let π : X → ∆ be a semistable Kähler degeneration of two-dimensional
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tori such that KX is trivial. Then the degenerate fiber X0 is one of the following four

types:

(i) X0 = V1 is a nonsingular torus;

(ii) X0 = V1 + V2 + · · · + Vn, n > 1, all Vi are elliptic ruled surfaces, the double

curves C1,2, · · · , Cn−1,n are elliptic curves and the polyhedron Π is a simple path.

� � � �

(iii) X0 = V1 + V2 + · · · + Vn, n > 1, all Vi are elliptic ruled surfaces, the double

curves C1,2, · · · , Cn−1,n, Cn,1 are elliptic curves and the polyhedron Π is a cycle.

� �

�

�

�

(iv) X0 = V1 +V2 + · · ·+Vn, n > 1, all Vi are rational surfaces, and all the double

curves Ci,j are rational. The polyhedron Π is a triangulation of the real 2-dimensional

torus T 2.

In the first case the monodromy M is trivial, i.e. N = logM = 0. In the second

and the third cases N 2 = 0. And, in the fourth case the monodromy is of maximal

rank.

Proof. Case (i) is when X0 has a single component.

Let n > 1. The fibers Xt and X0 are linearly equivalent and in addition X0 =

V1 + · · · + Vn ∼ 0, hence by the adjunction formula,

KVi
= KX ⊗ [Vi] |Vi

= OVi
(
∑

j 6=i

−Vj) = −
∑

j 6=i

Ci,j

because KX is trivial. Then KVi
is anti-effective, and thus all of Vi are ruled surfaces
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(Lemma 3.3). Consider a double curve Ci,j on Vi. We have:

2g(Ci,j) − 2 = (KVi
+ Ci,j, Ci,j)Vi

= −
∑

k 6=i,j

(Ci,k, Ci,j)Vi
= −TCi,j

,

where TCi,j
is the number of triple points ofX0 on Ci,j. Since TCi,j

≥ 0 and g(Ci,j) ≥ 0,

there are two possibilities:

(A) g(Ci,j) = 0 and TCi,j
= 2, so Ci,j is a rational curve and there are exactly two

triple points on Ci,j.

(B) g(Ci,j) = 1 and TCi,j
= 0, so Ci,j is an elliptic curve and Ci,j does not intersect

any other double curve.

In the case (A) we see that Ci,j intersects some other double curves which must be

rational as well and also contains two triple points. Thus every Vi is a ruled surface

and the set of double curves on Vi consists of a disjoint union of a finite union of

elliptic curves and a finite number of cycles of rational curves.

Let V = Vi0 be one of the components, let φ : V → V̄ be a morphism onto the

minimal model V̄ (φ is a composition of monoidal transforms) and let L be an ex-

ceptional curve on V such that L ∼= P1, (L2)V = −1 and L is blown down to a point

by the morphism φ. Then (L,KV )V = −1, so (L,
∑

j 6=i0
Ci0,j)V = 1. Thus, either

L intersects only one of the connected components of the divisor
∑

j 6=i0
Ci0,j or L

coincides with one of Ci0,j. It follows that the number of connected components of

the divisor
∑

j 6=i0
φ∗Ci0,j equals the number of connected components of the divisor

∑

j 6=i0
Ci0,j since KV̄ = φ∗KV .

In Lemma 2.18 from [10] Kulikov gives a list of possible components of an effective

divisor linearly equivalent to −KV̄ , where V̄ is either a minimal ruled surface or CP2.
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Since the reduced divisor
∑

j 6=i0

φ∗Ci0,j ∼ −KV̄ ,

we have the following possibilities for V :

(a) V is a rational surface and
∑

j 6=i0
Ci0,j is a cycle of rational curves;

(b) V is a rational or an elliptic ruled surface and
∑

j 6=i0
Ci0,j = C is a single

elliptic curve;

(c) V is a ruled elliptic surface and
∑

j 6=i0
Ci0,j = C1 + C2 consists of two disjoint

elliptic curves.

Case 1: One of Vi is of type (a). Then the double curves on the components

adjacent to Vi also form a cycle, hence the components adjasent to Vi are also of type

(a). Since X0 is connected, it follows that all Vi are rational surfaces and their double

curves form cycles. Therefore, the polyhedron Π is a triangulation of a compact real

surface without a boundary. There is no boundary, because there are exactly two

triple points on each double curve.

Since Vi and Ci,j are rational, pg(Vi) = 0, h1(Vi) = 0, h1(Ci,j) = 0 and from the

second equality, ckh1 = 0 (see [15]). Then the first formula in Theorem 3.1 says that

h1(Π) = 2 and the second formula says that h2(Π) = pg(Xt) = 1. We also know that

h0(Π) = 1 (from Remark 3.1). There is only one real surface without boundary with

these cohomology numbers, namely the torus T 2. In this case the degenerate fiber

falls into type (iv) in the statement of the theorem.

Case 2: All of the Vi have types (b) or (c). Then X0 has no triple points (T = 0)

and thus Π is 1-dimensional, so h2(Π) = 0.
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Let the number of rational surfaces be r. For a ruled elliptic surface Vi the Euler

characteristic χ(Vi) is 0, while for a rational surface χ(Vi) = 1. Also, χ(Ci,j) = 0 for

an elliptic curve Ci,j. Therefore, after we apply Lemma 3.2, we get r = χ(Xt) = 0.

In other words, there are no rational surfaces in the fiber X0.

Since for an elliptic ruled surface Vi we have pg(Vi) = 0, then from the second

formula in Theorem 3.1 we get ckh1 = 2. Now we substitute it in the first formula in

this theorem and use that h1(Vi) = 2, h1(Ci,j) = 2 to obtain that

n = 1 + d− h1(Π),

where n is the number of components and d is the number of double curves.

If h1(Π) = 0, then n = d + 1 and Π is a tree. Moreover, on each component Vi

there are at most two double curves, therefore Π is the simple path described in case

(ii) of the theorem.

If h1(Π) = 1, then n = d and there is one loop in the graph, hence Π is the simple

cycle from case (iii) (because there are at most two edges coming out of every vertex).

If h1(Π) ≥ 2, then there will be at least one vertex in which there are at least

three edges meeting, which is a contradiction.

The claims about the monodromy follow from the fact that N = 0 if and only if

h2(Π) = 0 and ckh1 = 0; and N2 = 0 if and only if h2(Π) = 0 (see Theorem 2.7 in

the paper [10]).
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Chapter 4

Deformation of Hilbert Schemes

In this chapter we answer the following question:

Question 1. Let X = Hilb2(S) for a K3 sufrace S. Assume that there is a fibration

structure f : X → P2 of X. Does a general deformation of X preserving the fiber

structure still remain isomorphic to Hilb2(S ′) for a K3 surface S ′ ?

The answer to the question above is negative. In general, a deformation of X

preserving the fiber structure is no longer Hilb2(S ′) for a K3 surface S ′.

Proof. Let D = f ∗c1(OP2(1)) ∈ H1,1(Hilb2(S))Z be the pull-back of the hyperplane

class and E ∈ H2(Hilb2(S),Z) be the exceptional divisor.

Lemma 4.1. Denote the Kuranishi space of Hilbert schemes of two points on K3

surfaces by KH . The analytic subvariety of KH for which D ∈ H1,1(Hilb2(S))Z is of

type (1, 1) is of complex codimension at most 1.

Proof. H2(Hilb2(S),Z) = H2(S,Z) ⊕ E.

The Hodge numbers of H2(Hilb2(S),Z) are (1, 21, 1), and let σ ∈ H2,0(Hilb2(S)).

The only condition on a first order deformation of Hilb2(S) that D remains in H1,1

is that the “deformation” of σ has intersection zero with D.

Therefore, inside the 21-dimensional space KH there is at least a 20-dimensional

space of deformations which are fibrations over P2.
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Lemma 4.2. For every K3 surface S, the analytic subvariety of the moduli space of

Kähler K3 surfaces S ′ such that Hilb2(S ′) ∼= Hilb2(S), is discrete.

Proof. Since E is an integral class, there are countably many possibilities for E. From

E we can reconstruct its orthogonal complement H2(S,Z) and by Torelli’s theorem,

we can reconstruct S, ([1]). Hence, we get countably many possibilities for S.

Denote the Kuranishi space of K3 surfaces by K. Consider the analytic subva-

riety I = {([S ′], [X ′]) ∈ K × KH |S
′ is a deformation of S, X ′ is a deformation of

X = Hilb2(S), X ′ is a fibration over P2 and X ′ ∼= Hilb2(S ′)}.

There are two maps: π1 : I → K and π2 : I → KH . The map π2 has 0-dimensional

fibers by Lemma 2.

Proposition 4.1. The map π1 : I → K is nowhere submersive. More precisely, if S ′

is a K3 surface with H1,1(S ′)Z = (0), then S ′ is not in the image of π1, i.e., Hilb2(S ′)

is not a fibration over P2.

Proof. A general K3 surface S ′ doesn’t have any divisors, i.e., H1,1(S ′)Z = (0). We

are going to prove the proposition by way of contradiction. Assume there exists a

surjective holomorphic map g : Hilb2(S ′) → P2. Then the divisors D and E are

proportional, because H1,1(Hilb2(S ′))Z = H1,1(S ′)Z ⊕ E = (0) ⊕ E = E.

In particular, D ∪D ∪D ∈ H (3,3)(Hilb2(S ′))Z) is proportional to E ∪ E ∪ E.

Consider the inclusion ı : E ↪→ Hilb2(S ′), then E∪4 = ı∗(c1(NE/Hilb2(S′))
∪3). We

want to compute this cup-product.

Take the commutative diagram:

E ↪→ S̃ ′ × S ′

↓ ↓

S ′ ∼= ∆ ↪→ S ′ × S ′
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By the properties of blow-up, E = P(TS ′), N
E/S̃′×S′

∼= O(−1) and NE/Hilb2(S′)
∼=

O(−2).

Then, H∗(P(TS ′)) = H∗(S ′)[ζ]/(ζ2 + a1ζ + a2), where ζ = c1(OE(1)).

Now we want to determine a1 and a2. There is an exact sequence:

0 → O(−1) → π∗TS ′ → Q→ 0,

where Q is a line bundle and π : E → S ′.

Applying Whitney sum gives us:

c(Q) =
π∗c(TS ′)

c(O(−1))
=

1 + π∗c1(S
′) + π∗c2(S

′)

1 − ζ
= (1+π∗c1(S

′)+π∗c2(S
′))(1+ζ+ζ2+. . . )

Since Q is a line bundle, c2(Q) = 0, therefore ζ2 + π∗c1(S
′)ζ + π∗c2(S

′) = 0. For

a K3-surface S ′, c1(S
′) = 0, c2(S

′) = 24, hence ζ2 = −24[f ], where [f ] is the class of

a fiber of π.

We get ı∗E
∪4 = (c1(NE/Hilb2(S′))

∪3) = (−2ζ)3 = (−8)ζ(−24[f ]) = 192[p], where

[p] is the class of a point.

However, D∪3 = 0, but E∪4 6= 0, hence E∪3 6= 0 as well and D and E cannot be

proportional - a contradiction.

Since S ′ determines X ′ = Hilb2(S ′), the map π1 is injective. The dimension

of K is 20 and since π1 is not submersive, we get that dim(I) ≤ 19. Therefore,

dim(π2(I)) ≤ dim(I) ≤ 19.

The locus of deformations of X that are fibrations over P2 has dimension at least

20 (by Lemma 1). So, a generic such deformation is not in the image of I, i.e., it is
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not isomorphic to Hilb2(S ′) for any K3 surface S ′.
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Chapter 5

A Special class of hyper-Kähler

manifolds

5.1 Four-folds fibred by Jacobians

Here we assume that the irreducible holomorphic symplectic manifold X is fibred

by abelian varieties, and that this fibration has a section. Ultimately, our goal is to

relate X to the examples due to Beauville. Markushevich considers a special class of

such fibrations and proves the following theorem:

Theorem 5.1. [11] Suppose the irreducible holomorphic symplectic four-fold π : X →

P2 is fibred by Jacobians of genus-two curves, and that the fibration admits a section.

Then X is birational to Hilb2(S) for some K3 surface S.

Here we outline how the K3 surface S is constructed: it is actually the double

cover of the dual plane (P2)∨ branched over a sextic B.

Let Y → P2 be the family of genus-two curves. Each curve Yt, for t ∈ P2, is

hyperelliptic, being a double cover of P1
t := P(H0(Yt,KYt

)) branched over six points.

Each of these lines P1
t is canonically embedded in the dual plane (P2)∨.

The fibre Xt is the Jacobian of Yt, and therefore its tangent space TpXt at any

point p ∈ Xt is H0(Yt,KYt
). Using the holomorphic symplectic form, and the fact
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that the fibres of X are Lagrangian, we can identify TpXt with

(π∗Ω1
P2)p = (Ω1

P2
)t.

The Euler sequence on P2 gives

0 → Ω1
P2 → H0(P2,O(1)) ⊗O(−1) → OP2 → 0

and projectivizing we get the inclusion

P(Ω1
P2) ↪→ P(H0(P2,O(1))) = (P2)∨

where the right hand side is the trivial bundle over P2 with fibre (P2)∨. Taking the

fibre over t ∈ P2 proves the claim.

The six branch points on P1
t will vary holomorphically with t, so for a pencil of

these lines in (P2)∨ it will cut out a sextic. A priori, different pencils could give

different sextics; however, the six branch points on P1
t will actually be the points of

intersection of P1
t with the curve B dual to the the degeneracy locus of the fibration

X. This establishes that B is a sextic, and the double cover of (P2)∨ branched over

B is therefore a K3 surface S. Moreover, pulling-back the line P1
t from (P2)∨ will give

us a curve in S isomorphic to Yt, as both curves are double covers of P1
t branched

over the same six points.

We have thus realized the base P2 as a linear system of curves on a K3 surface.

Indeed X is isomorphic to the moduli space of rank-one torsion sheaves on S, which

moreover is birational to Hilb2(S) (see [17]).

5.2 Main Theorem

We consider hyper-Kähler manifolds of complex dimension 4. The special kind of

fibrations we consider are the ones fibred by elliptic abelian varieties. We use tech-

niques which are different from the ones that Markushevich uses and we obtain the
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following result:

Theorem 5.2. Let p : X → P2 be a hyper-Kähler fibration with general fiber a

product of two elliptic curves. Assume that the fibration admits a section τ and that

the general singular fiber is semi-stable. Then X is deformation equivalent to Hilb2(S)

for a K3 sufrace S.

Proof. Take the open subset U ⊂ P2 over which the fibers of p are smooth. U is al-

gebraic. Indeed, p is a proper morphism, the singular locus of the morphism is closed

and the image of a Zariski closed subset of X is Zariski closed subset in P2. Therefore,

the complement of the image of the singular locus, which is U , is an algebraic open set.

The fibers over U are of the form E1
t ×E

2
t . We can form the fibration Ỹ → U with

fibers of the form E1
t ∪E

2
t , where the two elliptic curves are glued along the section τ .

Since Ỹ is not normal, we can take the normalization Ỹ nor → Ỹ → U . Using Stein

factorization, the morphism Ỹ nor → U factors through a smooth proper morphism

with connected fibers and an étale morphism of degree 2: Ỹ nor → V → U .

According to [6], Section 6.3., there is a unique normal variety V̄ , a finite degree-2

morphism f : V̄ → P2 and a fiber diagram:

V
2:1
−→ U

y y

V̄
2:1
−→ P2

Indeed, let’s cover P2 =
⋃

Ei with open affine sets. Then we have the following maps

between the rings of functions: C(Ei) → C(U) → C(V ). Take the integral closure

of C(Ei) inside the fraction field of C(V ). It corresponds to Ēi. We can glue all of

them together to get a variety V̄ ([7]) which is normal by construction. V̄ is unique,

because it is such that for every normal T and dominant morphism T → P2, the

set of lifts: T 99K V̄ → P2 is naturally in bijection with the set of factorizations:

C(P2) → C(V̄ ) 99K C(T ).
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Since the general fiber of X is semi-stable, the fibration Ỹ nor → V extends to a

minimal family of elliptic curves π : E → V̄ with a general fiber being semi-stable.

The singular fibers are from Kodaira’s list of degenerations of elliptic curves. In codi-

mension one there are no multiple fibers. However, in codimension two there might

be multiple fibers, the fiber dimension can jump or E might not be even defined. We

are only interested in codimension one. Notice that E is a Néron model [3] (the fibers

are abelian varieties). There is an induced section σ of the fibration.

Since the map f : V̄ → P2 is 2:1, there is an involution i acting on V̄ which

interchanges the sheets of the fibers. The involution is well defined on V and from

the fiber diagram above it is well defined on V̄ as well, because with i−1V we can

construct the same fiber diagram since the maps to P2 are the same. Therefore there

will be an involution on V̄ compatible with the involution on V . Denote the branched

locus of f by D and f−1(D) = D̃. Let G be the discriminant locus of π : E → V̄ .

Note that the intersection G∩ D̃ consists of finitely many points. Indeed, if it wasn’t

true, then G and D̃ would have a whole component in common. The fibers above

this component would be very degenerate (they will be products of two degenerate

elliptic curves). However, we assumed that in codimension one the fibers of the origi-

nal fibration have at worst simple normal crossing singularities, so this cannot happen.

The section σ induces a section (σ, σ ◦ i) of the map:

prV̄ : E ×V̄ i
∗E → V̄

and the involution i :	 V̄ induces an involution iE on E ×V̄ i
∗E .

Consider the non-branched locus P2 −D and its pre-image X0 in X. Denote the
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induced fibration by p0 : X0 → P2 −D. By construction,

X0 = E ×V̄ i
∗E|V /iE (5.1)

Let L ⊂ P2 be a line intersecting D transversally at general points of D. Denote

the pre-image of L in V̄ by LV . The map fV : LV → L is 2:1. We choose L general

so that L doesn’t intersect D̃ ∩G, so every fiber of ELV
×LV

i∗ELV
→ LV over a point

of L∩ D̃ is smooth. Now we pull back our construction to LV and we have a rational

morphism:

LV ×P2 X 99K ELV
×LV

i∗ELV

which by Weil’s extension theorem [3] is regular on the smooth locus of LV ×P2X → LV

(the fibers are abelian varieties).

Every section of p : X → P2 is contained in the smooth locus of X → P2, so it

pulls-back to a curve in the smooth locus of LV ×P2 X → LV (via the section fV τ).

Since KX = OX , the relative sheaf ωX/P2 = p∗OP2(3) and therefore τ ∗ωX/P2 =

OP2(3).

Consider the relative tangent bundle with the natural isomorphism:

(fV τ)
∗NfV τ(LV )/LV ×

P2X = f ∗
V (τ ∗TX/P2)

∼
→ (σ, σ ◦ i)∗TE×i∗E/V̄ |LV

For every point p ∈ LV ∩ D̃, the map is L1 ⊕ L2 → L1 ⊕ L2(p), where L1 ∈ T∆E
|p

and L2 ∈ N∆E/E×E
∼= TE . Outside the branched locus, the map is the identity.

From the above we get:

f ∗
V (τ ∗Λ2TX/P2) → (σ, σ ◦ i)∗Λ2TE×i∗E/V̄ |LV

,
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or equivalently,

f ∗
V ωX/P2̌ → (σ, σ ◦ i)∗ωE×i∗E/V̄ˇ|LV

Also, we have:

ωE×i∗E/V̄ |LV
∼= f ∗

V ωX/P2(−LV ∩ D̃) ∼= f ∗[OP2(3)(−
1

2
D)]|LV

, (5.2)

because D̃ → D is 2:1.

However, ωE×i∗E/V̄ = ωE/V̄ ⊗ ωi∗E/V̄ . Denote by M̄1,1 the coarse moduli space of

marked elliptic curves. The singular locus of a family of elliptic curves maps to the

boundary of M̄1,1. If we denote the pull-back of the boundary of M̄1,1 by δ, then

ωE/V̄ = δ
12

and similarly, ωi∗E/V̄ = δ
12

.

Therefore,

(σ, σ ◦ i)∗ωE×i∗E/V̄
∼= OV̄

(G+ i−1G

12

)

= OV̄

(f−1(f(G))

12

)

= f ∗OP2

(f(G)

12

)

(5.3)

When we compare the isomorphisms (5.2) and (5.3), we get:

f ∗OP2

(f(G)

12

)

|LV
∼= f ∗[OP2(3)(−

1

2
D)]|LV

,

or equivalently,

f ∗OP2

(D

2
+
f(G)

12

)

|LV
∼= f ∗OP2(3)|LV

Comparing the degrees, we obtain the relation:

1

2
deg(D) +

1

12
deg(G) = 3

The degrees of D and G are positive integers (otherwise we would have trivial fibra-

tions), hence there are two possibilities: (deg(D), deg(G)) = (2, 24) or (4, 12).
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Case 1: (deg(D), deg(G)) = (4, 12)

Since deg(D) = 4, V̄ is a del Pezzo surface (i.e., KV̄ < 0). We want to show that

E is rationally connected. Take two general points p, q ∈ E . Then f(π(p)), f(π(q))

are two general points in P2. Then f(π(p)) ∈ Lp, where Lp is a tangent line to D at

f(π(p)) and f(π(q)) ∈ Lq, where Lq is again a tangent line. Let Lp ∩ Lq = {r}.

Take a tangent line L to D and pull it back to V̄ : LV̄
.
= L×P2 V̄ . Its normalization

is L̃V̄ and E|L̃V̄
is an elliptic fibration over P1 with 12 nodal fibers. The surface is

rational, because it is deformation equivalent to P2 blown-up at 9 points in the base

locus of a pencil of plane cubics ([1], section 5.12).

We can lift the lines Lp and Lq to E and get E|L̃p,V̄
and E|L̃p,V̄

which are rational

surfaces. We can connect any two points on a rational surface with a rational curve.

Connect p to r̃ and q to r̃, where r̃ ∈ (fπ)−1(r), so p is rationally chain connected to q.

The point r̃ is a smooth point of E . In characteristic 0, we can smooth the nodal

rational curve if we have a general pair p, q and if r̃ is smooth. Therefore, E is ratio-

nally connected.

Fix a section s of i∗E → V̄ . Then we get a section s̃ of E ×V̄ i∗E → E . Since we

have a finite morphism E ×V̄ i
∗E → X, we get a finite morphism E → X.

The image of a finite morphism from a rationally connected variety to a hyper-

Kähler manifold is of dimension at most 1
2
dim(X), because we have a (2, 0) form on

X and there are no holomorphic (2, 0) or (1, 0) forms on a rational variety. However,

dim(E) = 3 and it is bigger than 1
2
dim(X) = 2 - a contradiction.

We ruled out the first case and the only remaining case is:
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Case 2: (deg(D), deg(G)) = (2, 24)

Then V̄ ∼= P1 × P1.

Take a tangent line L to the conic and pull it back to V̄ : LV̄
.
= L ×P2 V̄ . Its

normalization L̃V̄ is reducible and consists of two copies of P1, say L̃V̄ ,1 and L̃V̄ ,2.

Case 2.1:

E|L̃V̄ ,k
is an elliptic fibration over P1 with 12 nodal fibers, k = 1, 2. Then we repeat

the same argument as in Case 1 in order to exclude this case.

Case 2.2:

E|L̃V̄ ,1
is an elliptic fibration over P1 with 24 nodal fibers and E|L̃V̄ ,2

is an elliptic fibra-

tion over P1 with no singular fibers. Then E|L̃V̄ ,2
is the trivial fibration and therefore,

E is the pull back of an elliptic fibration on P1 through the projection on this factor.

And, since the elliptic fibration on P1 has 24 nodal fibers, it is an elliptic K3 surface

S → P1.

After considering all the cases, we see that:

E ×(P1×P1) i
∗E = (S × P1) ×(P1×P1) (P1 × S).

We want to prove that (S × P1) ×(P1×P1) (P1 × S) ∼= S × S. Indeed, we have the

following commutative fiber diagram:

S × S −→ P1 × S

↓ ↘ ↓

S × P1 −→ P1 × P1
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Therefore,

E ×(P1×P1) i
∗E = (S × P1) ×(P1×P1) (P1 × S) ∼= S × S.

But X is birational to the desingularization of E ×(P1×P1) i
∗E /̃i (by (5.1)) which is

deformation equivalent to S × S/Z2. Therefore, X is deformation equivalent to the

desingularization of S × S/Z2 which is Hilb2(S) by Fogarty’s theorem (see Chapter

2, Section 2.1). With this we finish the proof of our main theorem.
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