Exercises for Midterm 2

1. A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given by $T(x, y)=(x, x+y, 2 y)$. Find the matrix of T with respect to the bases $\mathcal{A}=\{(1,3),(4,-1)\}$ in \mathbb{R}^{2} and $\mathcal{B}=\{(1,0,0),(0,2,0),(0,0,-1)\}$ in \mathbb{R}^{3}.
Answer: $T_{\mathcal{A}, \mathcal{B}}=\left(\begin{array}{cc}1 & 4 \\ 2 & 2 / 3 \\ -6 & -2\end{array}\right)$
2. Consider the linear subspace $V=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$ with the two bases:

$$
\mathcal{A}=\left\{\bar{v}_{1}=(1,-1,0), \bar{v}_{2}=(1,1,-2)\right\} \quad \text { and } \quad \mathcal{B}=\left\{\bar{w}_{1}=(1,0,-1), \bar{w}_{2}=(0,1,-1)\right\} .
$$

a) Find coordinates of \bar{w}_{1} and \bar{w}_{2} with respect to the basis \mathcal{A}.
b) Find coordinates of \bar{v}_{1} and \bar{v}_{2} with respect to the basis \mathcal{B}.
c) Find the matrices of the base change $\mathcal{B} \rightarrow \mathcal{A}$ and $\mathcal{A} \rightarrow \mathcal{B}$.

Answer: a) $(1 / 2,1 / 2)$ and ($-1 / 2,1 / 2$)
b) $(1,-1)$ and $(1,1)$
c) $S_{\mathcal{B} \rightarrow \mathcal{A}}=\left(\begin{array}{cc}1 / 2 & -1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right), S_{\mathcal{A} \rightarrow \mathcal{B}}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$.
3. Let $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{2}$ be a transformation defined by the formula $p(x) \mapsto x p^{\prime \prime}(x)+p^{\prime}(x)$.
a) Show that T is linear.
b) Find the matrix of T with respect to the standard bases in \mathcal{P}_{3} and \mathcal{P}_{2}.
c) Find the matrix of T with respect to the basis $\left\{1, x+1,(x+1)^{2},(x+1)^{3}\right\}$ in \mathcal{P}_{3} and $\left\{1, x+1,(x+1)^{2}\right\}$ in \mathcal{P}_{2}.
d) Find bases in the kernel and image of T.

Answer: a) use the definition of a linear transformation
b) $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 9\end{array}\right)$
c) $\left(\begin{array}{cccc}0 & 1 & -2 & 0 \\ 0 & 0 & 4 & -6 \\ 0 & 0 & 0 & 9\end{array}\right)$
d) $\operatorname{Im} T=\mathcal{P}_{2}, \operatorname{Ker} T=\operatorname{span}\{1\}$
4. Show that all upper triangular 2×2 matrices form a subspace of the vector space M_{2} of all square 2×2 matrices. Find a basis of this subspace.

Answer: The sum of two upper triangular matrices is obviously an upper triangular matrix and the product of an upper triangular matrix by a real number is an upper triangular matrix. It means that the set of upper triangular matrices is closed with respect to linear operations and is a subspace.
A basis is $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$.
5. Let $T: U_{2} \rightarrow U_{2}$ be the linear transformation in the space of upper triangular 2×2 matrices defined by the formula

$$
T: M \mapsto\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)^{-1} M\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right) .
$$

Find the matrix of T with respect to the basis

$$
\mathcal{B}=\left\{\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right\}
$$

of U_{2}. Is T an isomorphism?
Answer: The matrix is $T_{\mathcal{B}}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right) \cdot T$ is an isomorphism.
6. Let $W=\operatorname{span}\{(1,1,0,0),(0,0,1,1)\} \subset \mathbb{R}^{4}$. Find a basis in the orthogonal complement W^{\perp}.

Answer: $\{(1,-1,0,0),(0,0,1,-1)\}$
7. Find the orthogonal projection of the vector $\bar{v}=(1,1,1) \in \mathbb{R}^{3}$ onto the subspace of \mathbb{R}^{3} which is spanned by the vectors $\bar{u}_{1}=(1,-1,0)$ and $\bar{u}_{2}=(1,1,-2)$.

Answer: $\overline{0}$
8. Let W be a subspace of \mathbb{R}^{4} which is defined by

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}+x_{3}+x_{4}=0, x_{2}-x_{3}=0\right\} .
$$

Find an orthonormal basis in W and an orthonormal basis in W^{\perp}. Find the orthogonal projection of the vector $\bar{v}=(3,-2,0,3)$ onto W.

Answer: $\left\{\frac{1}{\sqrt{2}}(1,0,0,-1), \frac{1}{\sqrt{10}}(1,0,0,-1)\right\},\left\{\frac{1}{\sqrt{3}}(1,0,0,1), \frac{1}{\sqrt{15}}(1,3,-2,1)\right\}, \sqrt{10}(1,-2,-2,1)$
9. Let \mathcal{P}_{2} be a vector space of polynomials of degree ≤ 2 with the inner product defined by the formula $<p, q>=\int_{-1}^{1} p(x) q(x) d x$.
a) Find an orthogonal basis of \mathcal{P}_{2} applying the Gram-Schmidt orthogonalization to the standard basis $\left\{1, x, x^{2}\right\}$ of \mathcal{P}_{2}.
b) Verify the Cauchy-Schwarz inequality for $p(x)=1-2 x$ and $q(x)=x^{2}$.
c) Verify the triangle inequality for $p(x)=1-2 x$ and $q(x)=x^{2}$.
d) Find a polynomial $r(x)$ of degree 1 which is orthogonal to $p(x)=1-2 x$. Verify the Pythagorean theorem for p and r.
Answer: a) $\left\{1, x, x^{2}-1 / 3\right\}$
b) $\frac{2}{3} \leq \sqrt{\frac{14}{3}} \sqrt{\frac{2}{5}}$
c) $\sqrt{\frac{8}{3}} \leq \sqrt{\frac{14}{3}}+\sqrt{\frac{2}{5}}$
d) $r(x)=x+2 / 3$ (for example). $\frac{56}{9}=\frac{14}{3}+\frac{14}{9}$
10. Show that the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by the formula

$$
T(x, y, z)=\frac{1}{3}(x-2 y-2 z,-2 x+y-2 z,-2 x-2 y+z)
$$

is orthogonal. Is T invertible? If so, find the inverse.
Answer: The standard matrix of T is $A=\left(\begin{array}{ccc}1 / 3 & -2 / 3 & -2 / 3 \\ -2 / 3 & 1 / 3 & -2 / 3 \\ -2 / 3 & -2 / 3 & 1 / 3\end{array}\right)$. This matrix is orthogonal since its columns (rows) are orthonormal. T is invertible, the inverse is a transformation given by A^{T}.

