Stony Brook University Mathematics Department Julia Viro Introduction to Linear Algebra MAT 211, Spring 2009

Exercises for Midterm 2

1. A linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ is given by T(x, y) = (x, x + y, 2y). Find the matrix of T with respect to the bases $\mathcal{A} = \{(1,3), (4,-1)\}$ in \mathbb{R}^2 and $\mathcal{B} = \{(1,0,0), (0,2,0), (0,0,-1)\}$ in \mathbb{R}^3 .

Answer: $T_{\mathcal{A},\mathcal{B}} = \begin{pmatrix} 1 & 4 \\ 2 & 2/3 \\ -6 & -2 \end{pmatrix}$

2. Consider the linear subspace $V = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ with the two bases:

$$\mathcal{A} = \{ \overline{v}_1 = (1, -1, 0), \ \overline{v}_2 = (1, 1, -2) \} \text{ and } \mathcal{B} = \{ \overline{w}_1 = (1, 0, -1), \ \overline{w}_2 = (0, 1, -1) \}.$$

- a) Find coordinates of \overline{w}_1 and \overline{w}_2 with respect to the basis \mathcal{A} .
- b) Find coordinates of \overline{v}_1 and \overline{v}_2 with respect to the basis \mathcal{B} .
- c) Find the matrices of the base change $\mathcal{B} \to \mathcal{A}$ and $\mathcal{A} \to \mathcal{B}$.

Answer: a)
$$(1/2, 1/2)$$
 and $(-1/2, 1/2)$
b) $(1, -1)$ and $(1, 1)$
c) $S_{\mathcal{B}\to\mathcal{A}} = \begin{pmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{pmatrix}$, $S_{\mathcal{A}\to\mathcal{B}} = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$

3. Let $T: \mathcal{P}_3 \to \mathcal{P}_2$ be a transformation defined by the formula $p(x) \mapsto xp''(x) + p'(x)$. a) Show that T is linear.

b) Find the matrix of T with respect to the standard bases in \mathcal{P}_3 and \mathcal{P}_2 .

c) Find the matrix of T with respect to the basis $\{1, x + 1, (x + 1)^2, (x + 1)^3\}$ in \mathcal{P}_3 and $\{1, x + 1, (x + 1)^2\}$ in \mathcal{P}_2 .

d) Find bases in the kernel and image of T.

Answer: a) use the definition of a linear transformation

$$\mathbf{b}) \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 9 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0 & 1 & -2 & 0 \\ 0 & 0 & 4 & -6 \\ 0 & 0 & 0 & 9 \end{pmatrix}$$

d) Im $T = \mathcal{P}_2$, Ker $T = \text{span}\{1\}$

4. Show that all upper triangular 2×2 matrices form a subspace of the vector space M_2 of all square 2×2 matrices. Find a basis of this subspace.

Answer: The sum of two upper triangular matrices is obviously an upper triangular matrix and the product of an upper triangular matrix by a real number is an upper triangular matrix. It means that the set of upper triangular matrices is closed with respect to linear operations and is a subspace.

A basis is
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

5. Let $T: U_2 \to U_2$ be the linear transformation in the space of upper triangular 2×2 matrices defined by the formula

$$T: M \mapsto \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}^{-1} M \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}.$$

Find the matrix of T with respect to the basis

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right\}$$

of U_2 . Is T an isomorphism?

Answer: The matrix is $T_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. *T* is an isomorphism.

6. Let $W = \text{span}\{(1, 1, 0, 0), (0, 0, 1, 1)\} \subset \mathbb{R}^4$. Find a basis in the orthogonal complement W^{\perp} . Answer: $\{(1, -1, 0, 0), (0, 0, 1, -1)\}$

7. Find the orthogonal projection of the vector $\overline{v} = (1, 1, 1) \in \mathbb{R}^3$ onto the subspace of \mathbb{R}^3 which is spanned by the vectors $\overline{u}_1 = (1, -1, 0)$ and $\overline{u}_2 = (1, 1, -2)$.

Answer: $\overline{0}$

8. Let W be a subspace of \mathbb{R}^4 which is defined by

$$W = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_3 + x_4 = 0, \ x_2 - x_3 = 0 \}.$$

Find an orthonormal basis in W and an orthonormal basis in W^{\perp} . Find the orthogonal projection of the vector $\overline{v} = (3, -2, 0, 3)$ onto W.

Answer:
$$\{\frac{1}{\sqrt{2}}(1,0,0,-1), \frac{1}{\sqrt{10}}(1,0,0,-1)\}, \{\frac{1}{\sqrt{3}}(1,0,0,1), \frac{1}{\sqrt{15}}(1,3,-2,1)\}, \sqrt{10}(1,-2,-2,1)\}$$

9. Let \mathcal{P}_2 be a vector space of polynomials of degree ≤ 2 with the inner product defined by the formula $\langle p,q \rangle = \int_{-1}^{1} p(x)q(x) dx$.

a) Find an orthogonal basis of \mathcal{P}_2 applying the Gram-Schmidt orthogonalization to the standard basis $\{1, x, x^2\}$ of \mathcal{P}_2 .

b) Verify the Cauchy-Schwarz inequality for p(x) = 1 - 2x and $q(x) = x^2$.

c) Verify the triangle inequality for p(x) = 1 - 2x and $q(x) = x^2$.

d) Find a polynomial r(x) of degree 1 which is orthogonal to p(x) = 1 - 2x. Verify the Pythagorean theorem for p and r.

Answer: a) {1, x,
$$x^2 - 1/3$$
}
b) $\frac{2}{3} \le \sqrt{\frac{14}{3}}\sqrt{\frac{2}{5}}$
c) $\sqrt{\frac{8}{3}} \le \sqrt{\frac{14}{3}} + \sqrt{\frac{2}{5}}$
d) $r(x) = x + 2/3$ (for example). $\frac{56}{9} = \frac{14}{3} + \frac{14}{9}$

10. Show that the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by the formula

$$T(x, y, z) = \frac{1}{3}(x - 2y - 2z, -2x + y - 2z, -2x - 2y + z)$$

is orthogonal. Is T invertible? If so, find the inverse.

Answer: The standard matrix of *T* is $A = \begin{pmatrix} 1/3 & -2/3 & -2/3 \\ -2/3 & 1/3 & -2/3 \\ -2/3 & -2/3 & 1/3 \end{pmatrix}$. This matrix is orthogonal

since its columns (rows) are orthonormal. T is invertible, the inverse is a transformation given by A^{T} .