Exercises for Midterm I

1. Solve the system and verify (check) your solution.

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}-x_{3}+x_{4}=1 \\
-2 x_{1}+x_{2}+2 x_{3}-x_{4}=2 \\
4 x_{1}+3 x_{2}-4 x_{3}+3 x_{4}=0 .
\end{array}\right.
$$

2. For each value of a constant a, find the solution of the system
3. Find the matrix (with respect to the standard basis) of the reflection about the line $x+2 y=0$ in \mathbb{R}^{2}.
4. Find the matrix (with respect to the standard basis) of the projection onto the plane $x+$ $y-z=0$ in \mathbb{R}^{3}.
5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the clockwise rotation by 30° followed by the projection onto the line $2 x-3 y=0$. Is T invertible? Find the matrix of T (with respect to the standard basis).
6. For which values of a constant k is the matrix

$$
A=\left(\begin{array}{lll}
k & 1 & 1 \\
1 & k & 1 \\
1 & 1 & k
\end{array}\right)
$$

invertible? Find the inverse.
7. Show that the vectors $(2,0,1,3),(0,0,2,2),(4,1,0,1)$ and $(6,1,1,4)$ are linearly dependent. Express vector $(2,0,1,3)$ as a linear combination of the other vectors. Can vector $(0,0,2,2)$, be presented as a linear combination of the other vectors?
8. Let V be a subspace of \mathbb{R}^{4} spanned by vectors $v_{1}=(1,0,1,-1), v_{2}=(2,1,1,1)$, and $v_{3}=(1,-1,2,1)$.
a) Does the vector $v=(0,-2,2,-11)$ belong to V ?
b) For which values of a constant a does the vector $u=(2-a, 1-2 a, 2,1)$ belong to V ?
9. Let V be a subspace of \mathbb{R}^{4} given by

$$
V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}-x_{3}+2 x_{4}=0 \text { and } x_{1}-x_{2}+x_{3}-x_{4}=0\right\} .
$$

Find a basis in V.
10. A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is defined by the following: $T(1,1,0)=(2,1,0)$, $T(0,1,0)=(-1,2,1), T(0,1,1)=(2,1,5)$. Find the matrix of T (with respect to the standard basis).
11. A linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is defined by

$$
T\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+x_{2}-x_{4}, x_{2}+x_{3}+x_{4}, x_{1}-x_{3}-2 x_{4}\right) .
$$

a) Find the matrix of T with respect to the standard basis.
b) Find a basis in the kernel of T and a basis in the image of T.
c) Find the dimensions of the kernel and the image.
d) Find the rank of T.
e) Verify the Kernel -Image (Rank-Nullity) theorem for T.

