Stony Brook University
Mathematics Department
Julia Viro

This is a bonus test to get extra 5 points towards the final score of 100. A complete solution is required for each problem. You will get 1 point for a correct solution of each problem. No partial credits.

Bonus Test

1. A linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ has matrix $T_{\mathcal{A}, \mathcal{B}}=\left(\begin{array}{ccc}2 & 0 & 1 \\ 0 & 1 & -1\end{array}\right)$ with respect to the bases $\mathcal{A}=\{(3,0,1),(1,1,0),(0,-2,1)\}$ in \mathbb{R}^{3} and $\mathcal{B}=\{(0,-1),(1,4)\}$ in \mathbb{R}^{2}. Find the matrix of T with respect to the standard bases.
2. Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be a linear transformation defined by the formula $T(p)=p^{\prime \prime}-2 x p^{\prime}+4 p$.
a) Find the matrix of T with respect to the standard basis of \mathcal{P}_{2}.
b) Find the matrix of T with respect to the basis $\left\{1,2 x, 4 x^{2}-2\right\}$ in \mathcal{P}_{2}.
c) Find bases in the kernel and image of T.
d) Verify the Kernel-Image theorem for T.
e) Is T an isomorphism? Explain!
3. Show that all symmetric 2×2 matrices form a subspace of the vector space M_{2} of all square 2×2 matrices. Find a basis of this subspace. The same question for skew-symmetric matrices.
4. Let $\mathbf{u}=\left(x_{1}, y_{1}\right)$ and $\mathbf{v}=\left(x_{2}, y_{2}\right)$ be arbitrary vectors in \mathbb{R}^{2}. Show that the formula

$$
<\mathbf{u}, \mathbf{v}>=\left(x_{1}, y_{1}\right) \cdot\left(\begin{array}{ll}
1 & 2 \\
2 & 6
\end{array}\right) \cdot\binom{x_{2}}{y_{2}}
$$

defines an inner product in \mathbb{R}^{2}. In the inner product space with this inner product, for vectors $\mathbf{u}=(-1,2)$ and $\mathbf{v}=(4,2)$ do the following:
a) calculate $\langle\mathbf{u}, \mathbf{v}>$
b) find the norms of \mathbf{u} and \mathbf{v}
c) find the distance between \mathbf{u} and \mathbf{v}.
5. Let W be a subspace of \mathbb{R}^{4} which is defined by

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4} \mid x_{1}-x_{2}+x_{4}=0,2 x_{1}+x_{2}-x_{3}=0\right\} .
$$

Find the orthogonal complement W^{\perp}.

