Stony Brook University Mathematics Department Julia Viro

This is a bonus test to get extra 5 points towards the final score of 100. A complete solution is required for each problem. You will get 1 point for a correct solution of each problem. No partial credits.

Bonus Test

1. A linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^2$ has matrix $T_{\mathcal{A},\mathcal{B}} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$ with respect to the bases $\mathcal{A} = \{(3,0,1), (1,1,0), (0,-2,1)\}$ in \mathbb{R}^3 and $\mathcal{B} = \{(0,-1), (1,4)\}$ in \mathbb{R}^2 . Find the matrix of T with respect to the standard bases.

- **2.** Let $T: \mathcal{P}_2 \to \mathcal{P}_2$ be a linear transformation defined by the formula T(p) = p'' 2xp' + 4p. a) Find the matrix of T with respect to the standard basis of \mathcal{P}_2 .
- b) Find the matrix of T with respect to the basis $\{1, 2x, 4x^2 2\}$ in \mathcal{P}_2 .
- c) Find bases in the kernel and image of T.
- d) Verify the Kernel-Image theorem for T.
- e) Is T an isomorphism? Explain!

3. Show that all symmetric 2×2 matrices form a subspace of the vector space M_2 of all square 2×2 matrices. Find a basis of this subspace. The same question for skew-symmetric matrices.

4. Let $\mathbf{u} = (x_1, y_1)$ and $\mathbf{v} = (x_2, y_2)$ be arbitrary vectors in \mathbb{R}^2 . Show that the formula

$$<\mathbf{u},\mathbf{v}>=(x_1,y_1)\cdot \begin{pmatrix} 1 & 2\\ 2 & 6 \end{pmatrix}\cdot \begin{pmatrix} x_2\\ y_2 \end{pmatrix}$$

defines an inner product in \mathbb{R}^2 . In the inner product space with this inner product, for vectors $\mathbf{u} = (-1, 2)$ and $\mathbf{v} = (4, 2)$ do the following:

- a) calculate $< \mathbf{u}, \mathbf{v} >$
- b) find the norms of \mathbf{u} and \mathbf{v}
- c) find the distance between \mathbf{u} and \mathbf{v} .

5. Let W be a subspace of \mathbb{R}^4 which is defined by

$$W = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 + x_4 = 0, \ 2x_1 + x_2 - x_3 = 0 \}.$$

Find the orthogonal complement W^{\perp} .