Stony Brook University Mathematics Department Julia Viro Introduction to Linear Algebra MAT 211 April 21, 2009

Solutions for Midterm 2

Problem 1. A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by

$$T(x,y) = (-x + 2y, \, 3x - y).$$

Find a matrix of T with respect to the basis $\mathcal{B} = \{(2, 1), (1, 1)\}$ in \mathbb{R}^2 . Is T an isomorphism? Explain!

Solution. A matrix of T with respect to the basis $\mathcal{B} = \{(2, 1), (1, 1)\}$ is

$$T_{\mathcal{B}} = \begin{pmatrix} | & | \\ T(2,1) & T(1,1) \\ | & | \end{pmatrix},$$

where the coordinates of the column vectors are given in the basis \mathcal{B} . We calculate

$$T(2,1) = (0,5) = -5 \cdot (2,1) + 10 \cdot (1,1)$$

$$T(1,1) = (1,2) = -1 \cdot (2,1) + 3 \cdot (1,1)$$

and get the matrix:

$$T_{\mathcal{B}} = \begin{pmatrix} -5 & -1\\ 10 & 3 \end{pmatrix}.$$

Another way to solve the problem is to consider the composition

$$\mathbb{R}^2 \xrightarrow[S_{\mathcal{B} \to St}]{id} \mathbb{R}^2 \xrightarrow[T_{St}]{T} \mathbb{R}^2 \xrightarrow[S_{St \to \mathcal{B}}]{id} \mathbb{R}^2$$

of T and the identity transformations of \mathbb{R}^2 . The matrix of the composition is the product of three matrices:

$$T_{\mathcal{B}} = S_{St \to \mathcal{B}} \cdot T_{St} \cdot S_{\mathcal{B} \to St} = S^{-1} T_{\mathcal{B}} S_{St}$$

where $S = S_{\mathcal{B}\to St}$ is the transition matrix from basis \mathcal{B} to the standard basis and $T_{St} = \begin{pmatrix} -1 & 2 \\ 3 & -1 \end{pmatrix}$ is the standard matrix of T. So

$$T_{\mathcal{B}} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} -1 & 2 \\ 3 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} -5 & -1 \\ 10 & 3 \end{pmatrix}$$

T is an isomorphism since det $T = -5 \neq 0$.

Answer: $\begin{pmatrix} -5 & -1 \\ 10 & 3 \end{pmatrix}$, *T* is an isomorphism.

Problem 2. Show that the set of traceless 2×2 matrices $U = \{A \in M_2 | trA = 0\}$ is a subspace of the space of 2×2 matrices M_2 . Find a basis of U.

Solution. Let A and B be two arbitrary matrices from U and k be a real number. Then $\operatorname{tr}(A+B) = \operatorname{tr} A + \operatorname{tr} B = 0 + 0 = 0$ and $\operatorname{tr}(kA) = k \operatorname{tr} A = 0 \cdot 0 = 0$. This shows that U is closed under matrix addition and multiplication by a scalar. Hence U is a subspace of M_2 .

Any traceless matrix A can be written (in a unique way) as

$$A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix},$$

where a, b and c are arbitrary real numbers. So

$$A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

and a basis of U is
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}.$$

Answer: $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}$

Problem 3. Let \mathcal{P}_2 be the vector space of polynomials of degree ≤ 2 equipped with the inner product

$$< p, q > = \int_{-1}^{1} p(x)q(x) \, dx.$$

Let W be a subspace of \mathcal{P}_2 generated by the polynomial x - 1. Find an **orthogonal** basis of the orthogonal complement of W.

Solution. Let $W = \text{span}\{x-1\}$. Then $W^{\perp} = \{p(x) = a + bx + cx^2 \in \mathcal{P}_2 \mid \langle p(x), x-1 \rangle = 0\}$. Since

$$< p(x), x-1 > = \int_{-1}^{1} (a+bx+cx^2)(x-1) dx = 2 \int_{0}^{1} -a+(b-c)x^2 dx = 2\left(-a+\frac{b-c}{3}\right),$$

the condition $\langle p(x), x - 1 \rangle = 0$ implies $a = \frac{b-c}{3}$ and the orthogonal complement W^{\perp} consists of polynomials of form

$$p(x) = \frac{b-c}{3} + bx + cx^{2} = b\left(\frac{1}{3} + x\right) + c\left(-\frac{1}{3} + x^{2}\right).$$

So $W^{\perp} = \operatorname{span}\left\{\frac{1}{3} + x, -\frac{1}{3} + x^2\right\} = \operatorname{span}\left\{1 + 3x, -1 + 3x^2\right\}$. Since $< 1 + 3x, -1 + 3x^2 > = \int_{-1}^{1} (1 + 3x)(-1 + 3x^2) = 2\int_{0}^{1} -1 + 3x^2 = 0,$

the polynomials 1 + 3x and $-1 + 3x^2$ are orthogonal, and an orthogonal basis of W^{\perp} is $\{1 + 3x, -1 + 3x^2\}$.

Answer: $\{1+3x, -1+3x^2\}$

Problem 4.

The former secret agent is now a contractor. His company works in the Euclidean space \mathbb{R}^3 . He has got a tool called the Gram-Schmidt orthogonalization and a basis $\{(-1, 0, 1), (1, 1, 3), (1, 3, -1)\}$ of \mathbb{R}^3 . Help him to construct an **orthonormal** basis of \mathbb{R}^3 out of the given basis!

We use Gram-Schmidt orthogonalization to make an orthogonal basis $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Here are formulae:

$$\begin{split} \mathbf{u}_1 &= \mathbf{v}_1 \\ \mathbf{u}_2 &= \mathbf{v}_2 - \mathrm{pr}_{\mathbf{u}_1} \mathbf{v}_2 = \mathbf{v}_2 - \frac{\langle \mathbf{u}_1, \mathbf{v}_2 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 \\ \mathbf{u}_3 &= \mathbf{v}_3 - \mathrm{pr}_{\mathbf{u}_1} \mathbf{v}_3 - \mathrm{pr}_{\mathbf{u}_2} \mathbf{v}_3 = \mathbf{v}_3 - \frac{\langle \mathbf{u}_1, \mathbf{v}_3 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 - \frac{\langle \mathbf{u}_2, \mathbf{v}_3 \rangle}{\langle \mathbf{u}_2, \mathbf{u}_2 \rangle} \mathbf{u}_2. \end{split}$$

In our case, $\mathbf{v}_1 = (-1, 0, 1)$, $\mathbf{v}_2 = (1, 1, 3)$, $\mathbf{v}_3 = (1, 3, -1)$. We substitute the given data: $\mathbf{u}_1 = (-1, 0, 1)$

$$\mathbf{u}_{2} = (1,1,3) - \frac{(-1,0,1) \cdot (1,1,3)}{(-1,0,1) \cdot (-1,0,1)} (-1,0,1) = (1,1,3) - \frac{2}{2} (-1,0,1) = (2,1,2)$$

$$\mathbf{u}_{3} = (1,3,-1) - \frac{(-1,0,1) \cdot (1,3,-1)}{(-1,0,1) \cdot (-1,0,1)} (-1,0,1) - \frac{(2,1,2) \cdot (1,3,-1)}{(2,1,2) \cdot (2,1,2)} (2,1,2)$$

$$= (1,3,-1) + (-1,0,1) - \frac{1}{3} (2,1,2) = (-\frac{2}{3}, \frac{8}{3}, -\frac{2}{3}) = -\frac{2}{3} (1,-4,1).$$

The constructed basis $\{\mathbf{u}_1 = (-1, 0, 1), \mathbf{u}_2 = (2, 1, 2), \mathbf{u}_3 = -\frac{2}{3}(1, -4, 1)\}$ is orthogonal. Let us normalize it.

$$\mathbf{e}_{1} = \frac{\mathbf{u}_{1}}{||\mathbf{u}_{1}||} = \frac{\mathbf{u}_{1}}{\sqrt{\langle \mathbf{u}_{1}, \mathbf{u}_{1} \rangle}} = \frac{(-1, 0, 1)}{\sqrt{(-1, 0, 1) \cdot (-1, 0, 1)}} = \frac{1}{\sqrt{2}}(-1, 0, 1)$$

$$\mathbf{e}_{2} = \frac{\mathbf{u}_{2}}{||\mathbf{u}_{2}||} = \frac{\mathbf{u}_{2}}{\sqrt{\langle \mathbf{u}_{2}, \mathbf{u}_{2} \rangle}} = \frac{(2, 1, 2)}{\sqrt{(2, 1, 2) \cdot (2, 1, 2)}} = \frac{1}{3}(2, 1, 2)$$

$$\mathbf{e}_{3} = \frac{\mathbf{u}_{3}}{||\mathbf{u}_{3}||} = \frac{\mathbf{u}_{3}}{\sqrt{\langle \mathbf{u}_{3}, \mathbf{u}_{3} \rangle}} = \frac{-\frac{2}{3}(1, -4, 1)}{\sqrt{-\frac{2}{3}(1, -4, 1) \cdot (-\frac{2}{3})(1, -4, 1)}} = -\frac{1}{3\sqrt{2}}(1, -4, 1).$$

Finally, the basis $\{\mathbf{e}_1 = \frac{1}{\sqrt{2}}(-1,0,1), \mathbf{e}_2 = \frac{1}{3}(2,1,2), \mathbf{e}_3 = -\frac{1}{3\sqrt{2}}(1,-4,1)\}$ is orthonormal. **Answer:** $\left\{\frac{1}{\sqrt{2}}(-1,0,1), \frac{1}{3}(2,1,2), -\frac{1}{3\sqrt{2}}(1,-4,1)\right\}$