Solutions for Midterm 2

Problem 1. A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by

$$
T(x, y)=(-x+2 y, 3 x-y)
$$

Find a matrix of T with respect to the basis $\mathcal{B}=\{(2,1),(1,1)\}$ in \mathbb{R}^{2}. Is T an isomorphism? Explain!

Solution. A matrix of T with respect to the basis $\mathcal{B}=\{(2,1),(1,1)\}$ is

$$
T_{\mathcal{B}}=\left(\begin{array}{cc}
\mid & \mid \\
T(2,1) & T(1,1) \\
\mid & \mid
\end{array}\right)
$$

where the coordinates of the column vectors are given in the basis \mathcal{B}. We calculate

$$
\begin{array}{r}
T(2,1)=(0,5)=-5 \cdot(2,1)+10 \cdot(1,1) \\
T(1,1)=(1,2)=-1 \cdot(2,1)+3 \cdot(1,1)
\end{array}
$$

and get the matrix:

$$
T_{\mathcal{B}}=\left(\begin{array}{cc}
-5 & -1 \\
10 & 3
\end{array}\right)
$$

Another way to solve the problem is to consider the composition

$$
\mathbb{R}^{2} \xrightarrow[S_{\mathcal{B} \rightarrow S t}]{\stackrel{i d}{\longrightarrow}} \mathbb{R}^{2} \xrightarrow[T_{S t}]{T} \mathbb{R}^{2} \xrightarrow[S_{S t \rightarrow \mathcal{B}}]{\stackrel{i d}{\longrightarrow}} \mathbb{R}^{2}
$$

of T and the identity transformations of \mathbb{R}^{2}. The matrix of the composition is the product of three matrices:

$$
T_{\mathcal{B}}=S_{S t \rightarrow \mathcal{B}} \cdot T_{S t} \cdot S_{\mathcal{B} \rightarrow S t}=S^{-1} T_{\mathcal{B}} S
$$

where $S=S_{\mathcal{B} \rightarrow S t}$ is the transition matrix from basis \mathcal{B} to the standard basis and $T_{S t}=$ $\left(\begin{array}{cc}-1 & 2 \\ 3 & -1\end{array}\right)$ is the standard matrix of T. So

$$
T_{\mathcal{B}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)^{-1} \cdot\left(\begin{array}{cc}
-1 & 2 \\
3 & -1
\end{array}\right) \cdot\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-5 & -1 \\
10 & 3
\end{array}\right)
$$

T is an isomorphism since $\operatorname{det} T=-5 \neq 0$.

Answer: $\left(\begin{array}{cc}-5 & -1 \\ 10 & 3\end{array}\right), T$ is an isomorphism.

Problem 2. Show that the set of traceless 2×2 matices $U=\left\{A \in M_{2} \mid \operatorname{tr} A=0\right\}$ is a subspace of the space of 2×2 matices M_{2}. Find a basis of U.

Solution. Let A and B be two arbitrary matrices from U and k be a real number. Then $\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B=0+0=0$ and $\operatorname{tr}(k A)=k \operatorname{tr} A=0 \cdot 0=0$. This shows that U is closed under matrix addition and multiplication by a scalar. Hence U is a subspace of M_{2}.

Any traceless matrix A can be written (in a unique way) as

$$
A=\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)
$$

where a, b and c are arbitrary real numbers. So

$$
A=\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)=a\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and a basis of U is

$$
\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right\}
$$

Answer: $\left\{\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right\}$

Problem 3. Let \mathcal{P}_{2} be the vector space of polynomials of degree ≤ 2 equipped with the inner product

$$
<p, q>=\int_{-1}^{1} p(x) q(x) d x
$$

Let W be a subspace of \mathcal{P}_{2} generated by the polynomial $x-1$. Find an orthogonal basis of the orthogonal complement of W.

Solution. Let $W=\operatorname{span}\{x-1\}$. Tnen $W^{\perp}=\left\{p(x)=a+b x+c x^{2} \in \mathcal{P}_{2} \mid<p(x), x-1>=0\right\}$. Since

$$
<p(x), x-1>=\int_{-1}^{1}\left(a+b x+c x^{2}\right)(x-1) d x=2 \int_{0}^{1}-a+(b-c) x^{2} d x=2\left(-a+\frac{b-c}{3}\right),
$$

the condition $<p(x), x-1>=0$ implies $a=\frac{b-c}{3}$ and the orthogonal complement W^{\perp} consists of polynomials of form

$$
p(x)=\frac{b-c}{3}+b x+c x^{2}=b\left(\frac{1}{3}+x\right)+c\left(-\frac{1}{3}+x^{2}\right) .
$$

So $W^{\perp}=\operatorname{span}\left\{\frac{1}{3}+x,-\frac{1}{3}+x^{2}\right\}=\operatorname{span}\left\{1+3 x,-1+3 x^{2}\right\}$. Since

$$
<1+3 x,-1+3 x^{2}>=\int_{-1}^{1}(1+3 x)\left(-1+3 x^{2}\right)=2 \int_{0}^{1}-1+3 x^{2}=0
$$

the polynomials $1+3 x$ and $-1+3 x^{2}$ are orthogonal, and an orthogonal basis of W^{\perp} is $\left\{1+3 x,-1+3 x^{2}\right\}$.

Answer: $\left\{1+3 x,-1+3 x^{2}\right\}$

Problem 4.

The former secret agent is now a contractor. His company works in the Euclidean space \mathbb{R}^{3}. He has got a tool called the Gram-Schmidt orthogonalization and a basis $\{(-1,0,1),(1,1,3),(1,3,-1)\}$ of \mathbb{R}^{3}. Help him to construct an orthonormal basis of \mathbb{R}^{3} out of the given basis!

We use Gram-Schmidt orthogonalization to make an orthogonal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$. Here are formulae:

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{v}_{1} \\
& \mathbf{u}_{2}=\mathbf{v}_{2}-\operatorname{pr}_{\mathbf{u}_{1}} \mathbf{v}_{2}=\mathbf{v}_{2}-\frac{<\mathbf{u}_{1}, \mathbf{v}_{2}>}{<\mathbf{u}_{1}, \mathbf{u}_{1}>} \mathbf{u}_{1} \\
& \mathbf{u}_{3}=\mathbf{v}_{3}-\operatorname{pr}_{\mathbf{u}_{1}} \mathbf{v}_{3}-\operatorname{pr}_{\mathbf{u}_{2}} \mathbf{v}_{3}=\mathbf{v}_{3}-\frac{<\mathbf{u}_{1}, \mathbf{v}_{3}>}{<\mathbf{u}_{1}, \mathbf{u}_{1}>} \mathbf{u}_{1}-\frac{<\mathbf{u}_{2}, \mathbf{v}_{3}>}{<\mathbf{u}_{2}, \mathbf{u}_{2}>} \mathbf{u}_{2} .
\end{aligned}
$$

In our case, $\mathbf{v}_{1}=(-1,0,1), \mathbf{v}_{2}=(1,1,3), \mathbf{v}_{3}=(1,3,-1)$. We substitute the given data:

$$
\begin{aligned}
\mathbf{u}_{1} & =(-1,0,1) \\
\mathbf{u}_{2} & =(1,1,3)-\frac{(-1,0,1) \cdot(1,1,3)}{(-1,0,1) \cdot(-1,0,1)}(-1,0,1)=(1,1,3)-\frac{2}{2}(-1,0,1)=(2,1,2) \\
\mathbf{u}_{3} & =(1,3,-1)-\frac{(-1,0,1) \cdot(1,3,-1)}{(-1,0,1) \cdot(-1,0,1)}(-1,0,1)-\frac{(2,1,2) \cdot(1,3,-1)}{(2,1,2) \cdot(2,1,2)}(2,1,2) \\
& =(1,3,-1)+(-1,0,1)-\frac{1}{3}(2,1,2)=\left(-\frac{2}{3}, \frac{8}{3},-\frac{2}{3}\right)=-\frac{2}{3}(1,-4,1) .
\end{aligned}
$$

The constructed basis $\left\{\mathbf{u}_{1}=(-1,0,1), \mathbf{u}_{2}=(2,1,2), \mathbf{u}_{3}=-\frac{2}{3}(1,-4,1)\right\}$ is orthogonal. Let us normalize it.

$$
\begin{aligned}
& \mathbf{e}_{1}=\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}=\frac{\mathbf{u}_{1}}{\sqrt{<\mathbf{u}_{1}, \mathbf{u}_{1}>}}=\frac{(-1,0,1)}{\sqrt{(-1,0,1) \cdot(-1,0,1)}}=\frac{1}{\sqrt{2}}(-1,0,1) \\
& \mathbf{e}_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|}=\frac{\mathbf{u}_{2}}{\sqrt{<\mathbf{u}_{2}, \mathbf{u}_{2}>}}=\frac{(2,1,2)}{\sqrt{(2,1,2) \cdot(2,1,2)}}=\frac{1}{3}(2,1,2) \\
& \mathbf{e}_{3}=\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|}=\frac{\mathbf{u}_{3}}{\sqrt{<\mathbf{u}_{3}, \mathbf{u}_{3}>}}=\frac{-\frac{2}{3}(1,-4,1)}{\sqrt{-\frac{2}{3}(1,-4,1) \cdot\left(-\frac{2}{3}\right)(1,-4,1)}}=-\frac{1}{3 \sqrt{2}}(1,-4,1) .
\end{aligned}
$$

Finally, the basis $\left\{\mathbf{e}_{1}=\frac{1}{\sqrt{2}}(-1,0,1), \mathbf{e}_{2}=\frac{1}{3}(2,1,2), \mathbf{e}_{3}=-\frac{1}{3 \sqrt{2}}(1,-4,1)\right\}$ is orthonormal.
Answer: $\left\{\frac{1}{\sqrt{2}}(-1,0,1), \frac{1}{3}(2,1,2),-\frac{1}{3 \sqrt{2}}(1,-4,1)\right\}$

