Final Exam. Solutions

1. A function $y=f(x)$ is given by its graph below. Determine the domain and the range of f, intervals of increasing and intervals of decreasing, indicate all asymptotes. Is f even or odd or nether even nor odd? Explain! Is f invertible? Explain!

Solution: The domain is $(-\infty,-1) \cup(-1,1) \cup(1, \infty)=\mathbb{R} \backslash\{ \pm 1\}$. The range in \mathbb{R}. Function f increases on $(-\infty,-1) \cup(-1,1) \cup(1, \infty)$, that is on the whole domain. There are no intervals of decreasing. The x-axis is a horizontal asymptote, the lines $x=-1$ and $x=1$ are vertical asymptotes. Function f is odd since its graph is symmetric about the origin. Function f is not invertible since it fails a horizontal line test.
2. Find the point where the function $f(x)=-\frac{1}{2} x^{2}+x+1$ attains its maximum. What is the maximal value of the function?
Solution: The graph of this quadratic function is a parabola with horns turned down. So the point where the function attains its maximum is the vertex of the parabola. To find the vertex, we use the formula $x=-\frac{b}{2 a}=-\frac{1}{2 \cdot\left(-\frac{1}{2}\right)}=1, y(1)=-\frac{1}{2} \cdot 1^{2}+1+1=\frac{3}{2}$. Therefore, the vertex is located at $(1,3 / 2)$.
Alternatively, we can complete the square:

$$
-\frac{1}{2} x^{2}+x+1=-\frac{1}{2}\left(x^{2}-2 x-2\right)=-\frac{1}{2}\left((x-1)^{2}-3\right)=-\frac{1}{2}(x-1)^{2}+\frac{3}{2} .
$$

So the maximum of the function is $3 / 2$, it is attained at $x=1$.
3. Draw the graphs of the following functions. On your pictures, indicate asymptotes (if there are any), and x - and y-intercepts.

c) $y=x^{2}+1$

e) $y=\ln (x-2)$

4. Explain why the graph of the function $y=x^{2}+\cos x$ is symmetric about the y-axis. (There is no need to draw the graph.)

Solution: The function is even since $y(-x)=(-x)^{2}+\cos (-x)=x^{2}+\cos x=y(x)$ for any x. The graph of an even function is symmetric about the y-axis. Therefore, the graph of the function $y=x^{2}+\cos x$ is symmetric about the y-axis.
5. Let $f(x)=e^{\sin (3 x)}$. a) Present f as a composition of two functions. b) Present f as a composition of three functions. (None of the function is allowed to be the identity function.)

Solution: a) Let $g(x)=\sin (3 x)$ and $h(x)=e^{x}$. Then $f(x)=(h \circ g)(x)$.
b) Let $k(x)=3 x, g(x)=\sin (x)$ and $h(x)=e^{x}$. Then $f(x)=(h \circ g \circ k)(x)$.
6. Let $f(x)=x^{3}-1$. Find a formula for the inverse function $f^{-1}(x)$. Determine the domain and the range of f and f^{-1}. On the same coordinate system, draw the graphs of $y=f(x)$ and $y=f^{-1}(x)$.
Solution: Let $y=x^{3}-1$. Then $y+1=x^{3}$ and $\sqrt[3]{y+1}=x$. Therefore, $f^{-1}(x)=\sqrt[3]{x+1}$. The domain of f and the range of f^{-1} is \mathbb{R}, the range of f and the domain of f^{-1} is \mathbb{R}.

7. The line $x+2 y=4$ cuts the region inside the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ into two parts. Find the area of the smallest part.

Solution: Let us draw a picture:

The area we are interested in is equal to one-quater of the area inside the ellipse minus the area of the triangle with sides of length 4 and 2.
The area of the region inside the ellipse $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{2^{2}}=1$ is 8π, the area of the triangle is 4 , so the area of the shaded region is $2 \pi-4$.
8. Find the minimal annual interest rate compounded continuously which will guarantee the doubling of invested amount after 50 years. (You may use an approximation $\ln 2 \approx 0.69$.)

Solution: The model for an interest rate compounded continuously is $P(t)=P e^{r t}$, where P is the principal (original amount), r is the annual interest rate, and $P(t)$ is the amount after t years.

According to the problem, $t=50$ years and $P(50)=2 P$. We plug in these values into the equation:
$P(50)=P e^{50 r}$, that is $2 P=P e^{50 r}$, which gives $2=e^{50 r}$ and, after taking natural logarithm from both sides, $\ln 2=50 r$. From here, $r=\frac{\ln 2}{50} \approx \frac{0.69}{50}=0.0138$. So the minimal interest rate is 1.38%.
9. Solve the following equations:
a) $\sin \theta=\frac{1}{2}$
b) $\cos \theta=\frac{\pi}{2}$

Solution.

a) $\sin \theta=1 / 2$
b) $\cos \theta=\pi / 2$
$\theta=\pi / 6+2 \pi n$ or
$\theta=5 \pi / 6+2 \pi n$,

Since $\pi / 2>1$,
the equation has no solutions.
10. For the function $y=-3 \sin (2 x)$, find the period and the amplitude. (Your graph should contain at least three periods.) Draw the graph. Indicate x-intercepts on the graph.

Solution: The period is $2 \pi / 2=\pi$, the amplitude is $|-3|=3$. x-intercepts are at $\pi / 2+\pi n$, where n is an integer.

11. Draw the graph of the function $y=\tan \left(x-\frac{\pi}{4}\right.$). (Your graph should contain at least three periods.) Indicate asymptotes and x-intercepts on your picture.

Solution: Asymptotes are $x=-\pi / 4+\pi n, x$-intercepts are at $\pi / 4+\pi n$, where n is an integer.

12. The graph below shows the level of water (in feet) in tides on Long Island Sound today, December 12th 2012, starting at 9:47 am. Assuming that the level of water is described by a function $h(t)=A \cos (B t)+C$ (where t is the time measured in hours and h is the level of water measured in feet), find the coefficients A, B and C. When the level of water is minimal during this day?

Solution: Let A be the amplitude. Then $2 A=8-(-1)=9$, so $A=4.5$ (feet). Let T be the period. Then $T=9: 47 \mathrm{pm}-9: 47 \mathrm{am}=12$ (hours). Period T and coefficient B (circular frequency) are related by the formula $T=2 \pi / B$, so $B=2 \pi / T=2 \pi / 12=\pi / 6$.
Therefore, $h(t)=4.5 \cos \left(\frac{\pi t}{6}\right)+C$. To find coefficient C, we have a look on the first point of maximum on the picture: $h(0)=8$, from which $8=h(0)=4.5 \cos \left(\frac{\pi \cdot 0}{6}\right)+C=4.5+C$ and $C=8-4.5=3.5$.
Finally, $h(t)=4.5 \cos \left(\frac{\pi t}{6}\right)+3.5$.
The water level is minimal at $t=T / 2=6$, that is at $9: 47 \mathrm{am}+6$ hours $=3: 47 \mathrm{pm}$.

Bonus problems

1. Explain for a little brother what "sin 1" is.

Solution: Imagine a slice of pizza (a circular sector) with all three sides of the same length of 1 feet. Cut this slice along the dashed line as shown:

The length of the cut is called in mathematics "sin 1" (feet).
2. Solve the equation $\sin \left(e^{x}\right)=0$.

Solution: $\sin \left(e^{x}\right)=0 \Longrightarrow e^{x}=\pi n$, where n is a positive integer (since $e^{x}>0$). Therefore, the solution is $x=\ln (\pi n)$, where n is a positive integer.
3. Show that $1+\tan ^{2} \theta=\sec ^{2} \theta$ for any θ.

Solution: $1+\tan ^{2} \theta=1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{\cos ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta$.
4. Prove that the area of the region under the hyperbola $y=1 / x$, above the x-axis, and between the lines $x=a$ and $x=b$ (where $1<a<b$) is equal to $\ln \frac{b}{a}$.
Solution: This area is the difference between the area of the region under the hyperbola $y=1 / x$, above the x-axis and between the lines $x=1$ and $x=b$ and the area of the region under the hyperbola $y=1 / x$, above the x-axis and between the lines $x=1$ and $x=a$, that is $\ln b-\ln a=\ln \frac{b}{a}$.
5. Show that $f(x)=e^{\cos x}$ is a periodic function. Find its domain and the range and sketch the graph.

Solution: $f(x+2 \pi n)=e^{\cos (x+2 \pi n)}=e^{\cos x}=f(x)$ for any x and for any integer n. Therefore, f is periodic with period $2 \pi n$.
The domain is \mathbb{R}. To find the range, we observe that the exponential function $y=e^{x}$ is increasing, therefore $-1 \leq \cos x \leq 1 \Longrightarrow e^{-1} \leq e^{\cos x} \leq e^{1}$. So the range is $[1 / e, e]$.

Based on the information above, we may conclude that the graph of f oscillates periodically between $1 / e$ and e. Take a couple of support points: $f(0)=e, f(\pm \pi)=1 / e$ and sketch the graph:

