
QUOT FUNCTORS FOR DELIGNE-MUMFORD STACKS

MARTIN OLSSON AND JASON STARR

Abstract. Given a separated and locally finitely-presented Deligne-Mumford stack X over
an algebraic space S, and a locally finitely-presented OX -module F , we prove that the Quot
functor Quot(F/X/S) is represented by a separated and locally finitely-presented algebraic
space over S. Under additional hypotheses, we prove that the connected components of
Quot(F/X/S) are quasi-projective over S.

Contents

1. Statement of Results 1
2. Representability by an algebraic space 2
3. Flattening stratifications 8
4. Hilbert Polynomials 11
5. Generating sheaves 12
6. Natural Transformation of Quot Functors 17
References 20

1. Statement of Results

Let p : X → S be a separated, locally finitely-presented 1-morphism from a Deligne-
Mumford stack X to an algebraic space S. Let F be a quasi-coherent OX -module (on the
étale site of X ) such that F is locally finitely-presented. Define a contravariant functor

Q = Q(F/X /S) : S − schemes → Sets (1)

as follows. For each S-scheme f : Z → S, define XZ to be X ×S Z, and define FZ to be the
pullback of F to XZ . We define Q(Z) to be the set of OXZ

-module quotients FZ → G which
satisfy

(1) G is a quasi-coherent OXZ
-module which is locally finitely-presented,

(2) G is flat over Z,
(3) the support of G is proper over Z.

All of these properties are preserved by base-change on Z, and therefore pullback makes Q
into a contravariant functor.
Theorem 1.1. Q is represented by an algebraic space which is separated and locally finitely-
presented over S. If F has proper support over S, then Q→ S satisfies the valuative criterion
for properness.
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Remark: Under the hypothesis that F has proper support over S, we are not claiming
that Q → S is proper, because we do not show that Q → S is quasi-compact (in general it
need not be).

We give a better description of Q under additional hypotheses on X . Our first hypothesis
is that X is a global quotient.
Definition 1.2. Let S be an algebraic space. A global quotient stack over S is an (Artin)
algebraic stack X over S which is isomorphic to a stack of the form [Z/G], where Z is an
algebraic space which is finitely-presented over S, and G is a flat, finitely-presented group
scheme over S which is a subgroup scheme of the general linear group scheme GLn,S for some
n.

This is essentially [4, definition 2.9] (with the Noetherian hypotheses replaced by a finite-
presentation hypothesis). We remind the reader of the following characterization in [4, remark
2.11].
Lemma 1.3. Suppose that X is a global quotient stack over S which is isomorphic to [Z/G]
as above. Then the diagonal action of G on Z ×S GLn,S is free and the quotient Z ′ = [Z ×S

GLn,S/G] is an algebraic space with a right action of GLn,S. The quotient stack [Z ′/GLn,S]
is isomorphic to the original stack [Z/G].

So every quotient stack is isomorphic to a stack of the form [Z ′/GLn,S].

Our second hypothesis is that X is a tame Deligne-Mumford stack.
Definition 1.4. A Deligne-Mumford stack X is tame if for any algebraically closed field k
and any 1-morphism ζ : Spec k → X , the stabilizer group Aut(ζ)(Spec k) has order prime to
char(k), where Aut(ζ) is the finite k-group scheme defined to be the Cartesian product of the
diagram

Spec ky(ζ,ζ)

X
∆
−−−→ X × X .

(2)

Here ∆ : X → X × X is the diagonal morphism.
Theorem 1.5. Suppose that S is an affine scheme, and let f : X → S be a separated 1-
morphism from a tame Deligne-Mumford stack to S such that X is a global quotient over S
and such that the coarse moduli space X of X is a quasi-projective S-scheme (resp. projec-
tive S-scheme). Then the connected components of Q are quasi-projective S-schemes (resp.
projective S-schemes).

Remark: The existence of the coarse moduli space for X follows from [7].

Remark: The condition that S be an affine scheme is required because the property of
being quasi-projective is not Zariski local on the base.

2. Representability by an algebraic space

In this section we prove theorem 1.1.
Note first that Q is a sheaf for the fppf-topology by descent theory, and is limit pre-

serving. In addition, for each open substack U ⊂ X there is a natural open immersion
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Q(F|U/U/S) ⊂ Q. Moreover, Q is the union over finitely presented open substacks U ⊂ X of
the Q(F|U/U/S). We may therefore assume that X is of finite presentation over S. Since the
question of representability of Q is étale local on S we may assume that S is an affine scheme,
and by a standard limit argument we may assume that S is of finite type over Spec(Z).

Under these assumptions we prove the theorem by verifying the conditions of theorem 5.3
of [2].

Commutation with inverse limits. We need the Grothendieck existence theorem for Deligne-
Mumford stacks:

Proposition 2.1. Let A be a complete noetherian local ring, X /A a Deligne-Mumford stack,
and let An = A/mn+1

A , Xn = X ⊗A An. Then the natural functor

(coherent sheaves on X with support proper over A)y
(compatible families of coherent sheaves on the Xn with proper support)

is an equivalence of categories.

Proof. This proposition is perhaps best viewed in a context of formal algebraic stacks, but
since we do not want to develop such a theory here we take a more ad-hoc approach.

Let X̂ be the ringed topos (X0,et,O �

X
), where O �

X
is the sheaf of rings which to any étale

X0-scheme U0 → X0 associates
lim
←−

Γ(Un,OUn
).

Here Un denotes the unique lifting of U0 to an étale Xn-scheme. There is a natural morphism
of ringed topoi

j : X̂ → Xet.

If F is a sheaf of OX -modules, then we denote by F̂ the sheaf j∗F . Note that the functor

F 7→ F̂ is an exact functor.

Lemma 2.2. If F and G are coherent sheaves on X with proper support over A, then for
every integer n the natural map

ExtnOX
(F ,G) −→ ExtnO �

X
(F̂ , Ĝ)

is an isomorphism.

Proof. Observe first that the natural map

Ext1OX
(F ,G)∧ → Ext1O �

X
(F̂ , Ĝ)

is an isomorphism. Indeed this can be verified locally and so follows from the theory of formal
schemes. From this and the local-to-global spectral sequence for Ext it follows that it suffices
to show that for any coherent sheaf F with proper support, the natural map

Hn(X ,F) −→ Hn(X̂ , F̂) (3)

is an isomorphism for every n. We prove this by induction on the dimension of X .
The key observation is that if a : U → X is a finite morphism from a scheme to X , then

the map 3 is known to be an isomorphism for all n in the case when F is equal to a∗F
′ for

some coherent sheaf F ′ on U (since a is finite and [5]. III.5).
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If the dimension of X is zero, then we can by ([9], 16.6) find a finite étale cover a : U → X
of X by a scheme U . If b : U ×X U → X denotes the canonical map, then the sequences

F → a∗a
∗F ⇒ b∗b

∗F

F̂ → a∗a
∗F̂ ⇒ b∗b

∗F̂

are exact so the result is true for n = 0.
To prove the result for general n, assume the result is true for n− 1 and let G = a∗a

∗F/F
so that we have an exact sequence of coherent sheaves

0→ F → a∗a
∗F → G → 0.

Then the commutative diagram

Hn−1(X , a∗a
∗F) → Hn−1(X ,G) → Hn(X ,F) → Hn(X , a∗a

∗F)
↓ ↓ ↓ ↓

Hn−1(X̂ , a∗a
∗F̂) → Hn−1(X̂ , Ĝ) → Hn(X̂ , F̂) → Hn(X̂ , a∗a

∗F̂)

shows that the map Hn(X ,F) → Hn(X̂ , F̂) is injective. But then the map Hn(X ,G) →

Hn(X̂ , Ĝ) is also injective, and an analysis of the diagram

Hn−1(X ,G) → Hn(X ,F) → Hn(X , a∗a
∗F) → Hn(X ,G)

↓ ↓ ↓ ↓

Hn−1(X̂ , Ĝ) → Hn(X̂ , F̂) → Hn(X̂ , a∗a
∗F̂) → Hn(X̂ , Ĝ)

reveals that the map Hn(X ,F)→ Hn(X̂ , F̂) is an isomorphism. This completes the proof of
the case when dim(X ) = 0.

To prove the result for general X we assume the result is true for dim(X )− 1 and proceed
by induction on n. By ([9], 16.6) there exists a finite surjective morphism a : U → X which
is generically étale. Let b : U ×X U → X be the natural map and let K be the kernel of
a∗a

∗F → b∗b
∗F . Note that the map 3 for K is an isomorphism when n = 0. There is a

natural map F → K which is generically an isomorphism. Let F ′ be the kernel of this map
and let F ′′ be the cokernel. Then F ′ and F ′′ have lower-dimensional support and so the map
3 is an isomorphism for these sheaves. If G denotes the image of F → K, then the map

H0(X ,G)→ H0(X̂ , Ĝ) is an isomorphism by the corresponding result for K and F ′′ and the
exact sequence

0→ G → K → F ′′ → 0.

Then from the exact sequence
0→ F ′ → F → G → 0

we deduce that the map H0(X ,F)→ H0(X̂ , F̂) is an isomorphism.
To prove the result for n assuming the result for n− 1, note that a similar argument to the

one above shows that if the map Hn(X , K)→ Hn(X̂ , K̂) is injective (resp. an isomorphism)
then the map 3 is injective (resp. an isomorphism). Therefore the proof is completed by
using the argument of the case dim(X ) = 0 with K replacing F . �

Now observe that the category of compatible families of coherent sheaves on the Xn with
proper support is naturally viewed as a full subcategory of the category of sheaves of O �

X
-

modules on X̂ using the functor which sends a family {Fn} to the sheaf F̂ associated to the
presheaf

U0 7→ lim←−Γ(U0,Fn).
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The functor {Fn} 7→ F̂ is fully faithful and identifies the category of compatible systems of
coherent sheaves on the Xn with proper support with a subcategory of the category of sheaves
of O �

X
-modules which is closed under the formation of kernels, cokernels, and extensions.

Indeed, these assertions can be verified locally on X and hence follow from the corresponding
statements for formal schemes. From this it and the lemma it follows that the functor in 2.1
is fully faithful.

Now the functor from coherent sheaves on X with proper support to sheaves of O �

X
-modules

on X̂ identifies the category of such sheaves with a full subcategory of the category of sheaves
of O �

X
-modules which is stable under the formation of kernels, cokernels, and extensions (by

lemma 2.2). Thus the following two lemmas prove proposition 2.1.

Lemma 2.3. Let A be an abelian category and let A′ ⊂ A be a full subcategory which is
stable under the formation of kernels, cokernels, and extensions. Then any object of A which
admits a morphism to an object of A′ such that the kernel and cokernel are in A′ is in A′.

Proof. By assumption such an object F ∈ A sits in an exact sequence

0→ K → F → F ′ → Q→ 0

where K,F ′, Q ∈ A′. Let K ′ = Ker(F ′ → Q). Then K ′ ∈ A′, and we have an exact sequence

0→ K → F → K ′ → 0.

Therefore F ∈ A′. �

Lemma 2.4. For every compatible family of coherent sheaves {Fn} with proper support and

associated sheaf F̂ on X̂ , there exists a morphism F̂ → j∗G for some coherent sheaf G on
X with proper support such that the kernel and cokernel are isomorphic to the pullbacks of
coherent sheaves on X with proper support.

Proof. We proceed by induction on the dimension of the support of F̂ .

If the support of F̂ has dimension zero, then for any étale cover a : U → X the inverse

image of the support of F̂ in Û is a closed subscheme which is of dimension zero, hence is

proper. Therefore, there exists a unique sheaf on U inducing the restriction of F̂ to Û (by
[5] III.5). Moreover, by the uniqueness this sheaf comes with descent datum relative to a.

Hence F̂ is induced from a coherent sheaf on X with proper support.
As for the general case, choose a morphism a : U → X which is finite and generically étale

(such a morphism exists by [9], 16.6), and let b : U ×X U → X be the natural map. Then

a∗a
∗F̂ and b∗b

∗F̂ are obtained from coherent sheaves on X , and hence so is

K := Ker(a∗a
∗F̂ → b∗b

∗F̂).

Moreover, there is a natural map F̂ → K which is generically an isomorphism. Hence the
kernels and cokernels have lower dimensional support and by induction are obtained from
coherent sheaves on X . �

�

Separation Conditions. These follow by the same reasoning as in ([2], page 64).

Deformation theory.
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Suppose given a deformation situation (in the sense of [2])

A′ → A→ A0

and a quotient FA → GA over XA = X ×S Spec(A) giving an element of Q(A). Suppose
further that a map B → A is given. Then it is well-known (see for example [11], 3.4) that
the map

Q(A′ ×B A) −→ Q(A′)×Q(A) Q(B) (4)

is a bijection.
If M = Ker(A′ → A), then it follows from the bijectivity of 4 that a deformation theory

in the sense of ([2]) is provided by the module QG0(A0[M ]) (see for example loc. cit. page
47). Here A0[M ] denotes the ring with underlying module A0 ⊕M and multiplication

(a,m) · (a′, m′) = (aa′, am′ + a′m),

and QG0(A0[M ]) denotes the set of elements in Q(A0[M ]) whose image in Q(A0) is the re-
duction G0 of G. The conditions on the deformation theory of ([2], theorem 5.3) are therefore
satisfied by the following lemma and standard properties of cohomology.

Lemma 2.5. Let H0 = Ker(F0 → G0) (where F0 denotes the reduction of F to XA0). Then
there is a natural A0-module isomorphism

QG0(A0[M ]) ' Ext0(H0,G0 ⊗M).

Proof. Let

0 −−−→ G0 ⊗M −−−→ G0 ⊗M ⊕ F0 −−−→ F0 −−−→ 0

be the sequence obtained by pushing out the sequence

0 −−−→ F0 ⊗M −−−→ F0 ⊕ F0 ⊗M −−−→ G0 −−−→ 0

via the given map F0 → G0. Then to give a lifting of G0 is equivalent to giving a sub-OXA0
-

module H ⊂ F0⊕G0⊗M such that the induced map to F0 induces an isomorphism H ' H0.
Note that such a sub-module is automatically a sub-OXA0[M]

-module. In other words, the set
of liftings of G0 is in natural bijection with the set of maps H0 → F0 ⊕ G0 ⊗M lifting the
inclusion H0 ⊂ F0. But to give such a map is precisely equivalent to giving a morphism
H0 → G0 ⊗M . The verification that this bijection is a module homomorphism is left to the
reader.

�

Conditions on the obstructions.
Our understanding of the obstruction theory of Q will be in a 2-step approach (correcting

a mistake in [2]). Let A′ → A → A0 be a deformation situation as above and FA → GA an
object in Q(A). For any quotient ε : M → Mε, let Aε be the quotient of A′ by the kernel of
ε. For such an ε, the first obstruction to lifting GA to Aε is that the map

M ⊗ FA0 −→Mε ⊗ GA0

factors through MFA′ . If we let T be the kernel of M ⊗ FA0 → FA′, then we want that the
map

T −→Mε ⊗ GA0 (5)
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is zero. If this is the case, then there is a canonical map MFA′ →Mε⊗GA0 and the condition
that there exists an element in Q(Aε) inducing G is equivalent to the statement that the
resulting extension

0→Mε ⊗ GA0 → E → FA → 0

is obtained from an extension of GA by Mε ⊗ GA0 . In other words, if the map 5 is zero, then
if we let H = Ker(FA → GA) there exists a canonical obstruction in

Ext1
XA′

(H,Mε ⊗ GA0)

whose vanishing is necessary and sufficient for the existence of a lifting.
Now the only condition on the obstructions in ([2], 5.3) which does not follow immediately

from the bijectivity of 4, is condition (5.3, [5′].c).
Thus suppose given a deformation situation as before, ξ ∈ Q(A), and suppose further that

M is free of rank n. Let K be the field of fractions of A0, and denote by a subscript K
the locations at the generic point of Spec(A0). We suppose that for every one-dimensional
quotient MK → M∗

K there is a non-trivial obstruction to lifting ξK to Q(A∗
K), where A∗

K

denotes the extension defined by M ∗
K. Then we have to show that there exists a non-empty

open subset U ⊂ Spec(A0) such that for every quotient ε of M of length one with support in
U , ξ does not lift to Aε (the extension obtained from ε).

Let

φ ∈ Ext0(T ,M ⊗ GA0) ' Ext0(T ,GA0)⊗M

be the class defined by 5 in the case when ε is the identity. We reduce to the case when φ = 0.
Once this reduction is made the argument of ([2], page 66) will finish the proof.

To make the reduction, we can by shrinking on Spec(A0) assume that

Ext0(T ,GA0)

is a free module; say of rank r. In addition, by the argument of ([2], page 66), we can after
shrinking Spec(A0) assume that for each point s ∈ Spec(A0), the natural map

Ext0(T ,GA0)⊗ k(s) −→ Ext0(T ,GA0 ⊗ k(s)) (6)

is an isomorphism.
Choosing a basis for Ext0(T ,GA0) we can think of φ as an element

φ = (φ1, . . . , φr) ∈M
r.

Let N ⊂ M be the submodule of M generated by the φi, and let M ′ = M/N . After further
shrinking Spec(A0) we can assume that M ′ is a free module. Now note that any length-one
quotient M → Mε for which the obstruction to lifting ξ goes to zero factors through M ′ by
6. Moreover, any such quotient which does not factor through M ′ is obstructed. Therefore,
we may replace M by M ′ and hence are reduced to the case when φ = 0.
Valuative criteria for properness when F has proper support

Let R be a discrete valuation ring with field of fractions K, and let i : XK ↪→ X be the
inclusion of the generic fiber. We suppose that we have a flat quotient FK → GK over the
generic fiber which we wish to extend to X . For this we take G to be the image of the map
F → i∗GK. The image is evidently a coherent sheaf, and has proper support since F has
proper support. It is flat because it is a subsheaf of a torsion free sheaf, and by definition G
induces GK on the generic fiber.

This completes the proof of theorem 1.1. �
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3. Flattening stratifications

As a corollary of the representability result in the last section, when the locally finitely-
presented sheaf F has proper support over S, we can construct the flattening stratification
of F as an algebraic space. But in fact this algebraic space is representable and quasi-affine
over S. This is a crucial step in the proof of theorem 1.5. Therefore we include a proof of the
following fact:
Proposition 3.1. Suppose f : Y → X is a finite-type, separated, quasi-finite morphism of
algebraic spaces. Then f is quasi-affine, in particular f is representable by schemes.

Proof. We need to prove that the natural morphism of X-schemes,

ι : Y → Spec Xf∗OY (7)

is an open immersion. By [8, proposition II.4.18], f∗OY commutes with flat base change on
X, so the formation of ι commutes with flat base change on X. Moreover one may check that
a morphism of X-schemes is an open immersion after fpqc base change. Thus, without loss
of generality, we may suppose that X is an affine scheme.

To prove ι is an open immersion, it suffices to check that for each point p ∈ Y , the following
two conditions hold:

(1) ι is étale at p, and
(2) there is an open set p ∈ U ⊂ Y which is disjoint from the image of Y ×ι,ι Y −∆(Y )

under the projection pr1 : Y ×ι,ι Y → Y .

Here Y ×ι,ι Y is the fiber product of Y with itself over Spec Xf∗OY and ∆ : Y → Y ×ι,ι Y is
the diagonal morphism. It is clear that if both (1) and (2) hold for each point p ∈ Y , then ι
is an étale monomorphism, and therefore ι is an open immersion.

The claim is that for given p ∈ Y , we may check (1) and (2) after passing to an étale
neighborhood of q = f(p) ∈ X, i.e. if X ′ → X is an étale morphism, q′ ∈ X ′ is a point lying
over q, and if p′ ∈ Y ′ := X ′×X Y is the point lying over q′ and p, then it suffices to check (1)
and (2) for p′. We have mentioned that the natural morphism of X ′-schemes

ι′ : Y ′ → Spec X′(f ′)∗OY ′ (8)

is the base-change of ι. The property of being étale at a point can be checked after étale (and
even flat) base-change, so if (1) holds for p′ then (1) holds for (p). Suppose (2) holds for p′

and let U ′ be an open set p′ ∈ U ′ ⊂ Y ′ as in (2). Let p ∈ U ⊂ Y be the open image of U ′

under g : Y ′ → Y . We have the equality

g(U ′) ∩ pr1 (Y ×ι,ι Y −∆(Y )) = g
(
U ′ ∩ g−1pr1 (Y ×ι,ι Y −∆(Y ))

)
= (9)

g (U ′ ∩ pr′1 (Y ′ ×ι′,ι′ Y
′ −∆′(Y ′))) . (10)

But U ′ ∩ pr′1 (Y ′ ×ι′,ι′ Y
′ −∆′(Y ′)) = ∅ by assumption. Thus U = g(U ′) satisfies condition

(2) for p ∈ Y . So it suffices to check (1) and (2) for p′ ∈ Y ′.

Now let Z → Y be an étale morphism of a scheme Z to Y and r ∈ Z a point mapping to
p. Then Z → X is finite-type, separated and quasi-finite. By [3, proposition 2.3.8(a)], we
may find an étale morphism X ′ → X with X ′ an affine scheme, and a point q′ ∈ X ′ mapping
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to q = f(p) such that if r′ ∈ Z ′ is the point lying over q′ and r, and if Z ′
0 is the connected

component of Z ′ containing r′, then Z ′
0 → X ′ is a finite morphism of affine schemes. Let

Y ′
0 ⊂ Y ′ be the connected component of Y ′ containing the image of Z ′

0. Then Z ′
0 → Y ′

0 is
étale with dense image, but it is also proper. Therefore Z ′

0 → Y ′
0 is finite,étale and surjective.

So, by Knudsen’s version of Chevalley’s theorem [8, theorem III.4.1], Y ′
0 is an affine scheme.

Let Y ′
r denote the union of connected components Y ′−Y ′

0 . Then we have a decomposition
of Spec X′(f ′)∗OY ′ into connected components, Spec X′(f ′

0)∗OY ′
0

union Spec X′(f ′
r)∗OY ′

r
and

a decomposition of ι′ as the “disjoint union” of the two morphisms:

ι′0 : Y ′
0 → Spec X′(f ′

0)∗OY ′
0
, (11)

ι′r : Y ′
r → Spec X′(f ′

r)∗OY ′
r
. (12)

And ι′ is an isomorphism. Thus ι′ is étale at p′. And defining U ′ = Y ′
0 , we see that U ′ satisfies

the condition (2) for p′ ∈ Y ′. So (1) and (2) hold for p′ and thus (1) and (2) hold for p ∈ Y .
Since this holds for every p ∈ Y , we conclude that ι is an open immersion, i.e. f : Y → X is
quasi-affine. �

Remark: We could not find precisely this statement in [8], although it follows easily from
results proved there. If one further assumes that f is finitely-presented, then this result also
follows easily from [9, théorème 16.5].

Now suppose S is an algebraic space, f : X → S is a 1-morphism from a Deligne-Mumford
stack to S which is separated and locally finitely-presented. Let F be a locally finitely-
presented OX -module. Consider the functor

Σ : (S − schemes)opp → Sets, (13)

which to any morphism g : T → S associates {∗} if the pullback of F to T ×S X is flat
over T , and which associates ∅ otherwise. Given a morphism of S-schemes, h : T1 → T2, the
morphism Σ(h) is defined to be the unique map Σ(T2)→ Σ(T1). For this to make sense, we
must check that if Σ(T2) is nonempty, then so is Σ(T1). But this is clear, if the pullback of F
to T2 ×S X is flat over T2, then the pullback of this sheaf over T1 ×T2 (T2 ×S X ) is flat over
T1. And this pullback is isomorphic to the pullback of F to T1 ×S X . So Σ(T1) is nonempty.

Theorem 3.2. Let f : X → S, F , and Σ be as above.

(1) Σ is an fpqc sheaf which is limit preserving and Σ→ S is a monomorphism.
(2) If F has proper support over S, then Σ is an algebraic space and Σ→ S is a surjective,

finitely-presented monomorphism. In particular, Σ→ S is quasi-affine.

Proof. It is immediate that Σ → S is a monomorphism. Since one may check that a quasi-
coherent sheaf on T ×S X is flat over T after performing an fpqc base change of T , it fol-
lows that Σ is an fpqc sheaf. The fact that Σ is limit-preserving follows from [5, théorème
IV.11.2.6]. So (1) is proved.

To prove (2), first notice that we may use (1) to reduce to the case that S = Spec A is
a Noetherian affine scheme, and X is the support of F which is a proper, finitely-presented
Deligne-Mumford stack over S. By theorem 1.1 we know the Quot functor of F is represented
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by an algebraic space Q→ S which is separated and locally finitely-presented. Denote by

0 −−−→ K −−−→ pr∗2F −−−→ G −−−→ 0 (14)

the universal short exact sequence on Q×S X . Since pr∗2F has proper support over Q, K also
has proper support over Q. Define U to be the complement in Q of the image of the support
of K. The restriction of the universal short exact sequence over U is simply the identity
morphism of pr∗2F to itself, i.e. the pullback of F to U is flat over U . So we have an induced
morphism U → Σ. Conversely there is an obvious morphism Σ → Q which factors through
U , and we see that U → Σ is a natural isomorphism of algebraic spaces. So Σ is an algebraic
space and Σ→ S is a locally finitely-presented monomorphism.

Any module over a field is flat over that field, therefore for each field K and each morphism
Spec K → S, this morphism factors through Σ → S. So Σ → S is surjective. The claim is
that for any surjective, locally finitely-presented monomorphism h : Y → S of an algebraic
space to a Noetherian affine scheme, Y is quasi-compact.

We will prove this claim by induction on the dimension of S. If S = Spec K for some field
K, it is obvious. If Y red is quasi-compact, the same is true of Y , so we may reduce to the case
that S is reduced. A finite union of quasi-compact sets is quasi-compact, so we may reduce to
the case that S is integral. Now suppose the result is proved for all schemes S of dimension
at most n and suppose S is an integral scheme of dimension n+1. Let Spec K be the generic
point of S and let U ⊂ Y be the open set where U → S is étale. Then Spec K factors through
Y , and in fact it is contained in U . Thus U → S is an étale monomorphism, i.e. an open
immersion which has dense image. Let the complement of U in S be C (with reduced scheme
structure) and let the preimage of C be Z. Then Z → C is again a surjective, locally finitely-
presented monomorphism, and C has dimension at most n. So by the induction assumption,
Z is quasi-compact. Since U is an open subset of a Noetherian scheme, it is quasi-compact.
Thus Y = U ∪ Z is quasi-compact and the claim is proved by induction.

By the last paragraph, we conclude that Σ→ S is a surjective, finitely-presented monomor-
phism of algebraic spaces. So by proposition 3.1, we conclude that Σ→ S is quasi-affine. �

Remarks: (1) If the support of F is a scheme and the morphism to S is projective, then it
follows from [10, theorem, p.55] that Σ→ S is a disjoint union of locally closed immersions.
While one can find examples of surjective, finitely-presented monomorphisms Y → S not a
disjoint union of locally closed immersions, we conjecture that Σ → S is a disjoint union of
locally closed immersions whenever F has proper support over S.

(2) Again in the case that the support of F is projective over S, the methods in [10,
section 8] provide a global construction of the flattening stratification Σ → S along with
a partition labelled by the Hilbert polynomial of the fibers of F . In the case that X is a
tame, global quotient with projective coarse moduli space, we believe that there is again a
global construction of the flattening stratification Σ → S along with a partition labelled by
the Hilbert polynomial (as defined in section 4). However we don’t know what this global
construction is, and the proof of the existence of Σ → S given above is the one truly non-
constructive step in the proof of theorm 1.5.
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4. Hilbert Polynomials

Suppose k is a field and X is a separated, locally finitely-presented Deligne-Mumford stack
over Spec k. Suppose that F is a coherent OX -module with proper support. Then the sum

χ(X ,F) =

∞∑

i=0

(−1)idimkH
i
ét(X ,F) (15)

is finite (by [9, Théorème 15.6]). For each locally free sheaf E of finite rank on X , we also
have that E ⊗OX

F is again coherent with proper support. Since E 7→ χ(X , E ⊗OX
F) is

additive in short exact sequences, we have a well-defined group homomorphism

PF : K0(X )→ Z, [E] 7→ χ(X , E ⊗OX
F). (16)

Definition 4.1. Given a homomorphism of Abelian groups i : A → K0(X ), define the
A-Hilbert polynomial of F , PA,F , to be the function PA,F = PF ◦ i.

Remarks: (1) If L is an invertible sheaf on X , A = Z[x, x−1] and i : A → K0(X ) is the
group homomorphism such that i(xd) = [Ld], then the A-Hilbert polynomial of F , PA,F is
the usual Hilbert polynomial of F with respect to L. We will need to consider cases where
i : A→ K0(F) cannot be reduced to this form, which is why our notion of Hilbert polynomial
is so general.

(2) The most instructive example, from our point of view, is when X = BG for some finite,
étale k-group scheme G. Then K0(BG) is naturally isomorphic to the Grothendieck group
of the category of finite k[G]-modules, i.e. the representation ring of k[G]. And the Hilbert
polynomial PF determines the image [F ] of F in K0(BG).

Recall that a Deligne-Mumford stack X is tame if for each algebraically-closed field k and
each 1-morphism ζ : Spec k → X , the k-valued points of

Gζ := Spec k ×(ζ,ζ),X×X ,∆ X (17)

form a group of order prime to char(k). We remind the reader of some facts about tame
Deligne-Mumford stacks.
Lemma 4.2. Let X be a tame Deligne-Mumford stack, π : X → X its coarse moduli space.

(1) The additive functor π∗ from the category of OX -modules to the category of OX-
modules maps quasi-coherent sheaves to quasi-coherent sheaves and maps locally finitely-
presented sheaves to locally finitely-presented sheaves.

(2) The additive functor π∗ is exact, in particular Riπ∗F = 0 for i > 0 and F any
quasi-coherent OX -module.

(3) Suppose g : X → S is a morphism of algebraic spaces and suppose F is a quasi-
coherent sheaf on X which is flat over S. Then also π∗F is flat over S.

Proof. (1) and (2) form [1, lemma 2.3.4]. And (3) follows by the same local analysis in the
proof of [1, lemma 2.3.4] since the invariant submodule MΓ (in the notation of [1]) of an
S-flat module M is a direct summand, and so it is also S-flat. �

Now suppose that f : X → S is a 1-morphism from a tame Deligne-Mumford stack to
a connected algebraic space such that f is separated and locally finitely-presented, Define
A = K0(X ) and for each field k and each morphism g : Spec k → S, define ig : A →
K0(Spec k ×S X ) to be the pullback map K0(pr2).
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Lemma 4.3. Suppose that F is a locally finitely-presented quasi-coherent sheaf on X which
is flat over S and which has proper support over S. Then there exists a function P : A→ Z

such that for all g : Spec k → S, PA,g∗F = P .

Proof. We need to show that for each locally free sheaf E on X , the function

(g : Spec k → S) 7→ χ (g∗ (E ⊗OX
F)) (18)

is constant. Since Riπ∗ vanishes on all quasi-coherent modules for i > 0, we have

χ (g∗ (E ⊗OX
F)) = χ (g∗π∗ (E ⊗OX

F)) . (19)

And by lemma 4.2 (3), we know that π∗(E ⊗OX
F) is an S-flat, locally finitely-presented sheaf

with proper support over S. So by [10, corollary, p. 50], we conclude that there is some
P ([E ]) ∈ Z such that for all g : Spec k → S, we have

χ (g∗π∗ (E ⊗OX
F)) = P ([E ]). (20)

�

Fix an additive homomorphism P : K0(X ) → Z and define QP = QP (F/X /S) to be the
subfunctor of Q(F/X /S) such that for each S-scheme, g : Z → S we have QP (g : Z → S) is
the set of quotients [g∗F → G] ∈ Q(g : Z → S] such that for each field k and each morphism
h : Spec k → Z, we have PA,h∗G = P . By lemma 4.3, we see that QP is an open and closed
subfunctor (possibly empty) of Q and that Q is the disjoint union of QP as P ranges over all
P .

Observe that theorem 1.5 is implied by the following refinement.

Theorem 4.4. Suppose that S is an affine scheme. Suppose that X is a tame Deligne-
Mumford stack which is separated and finitely-presented over S, whose coarse moduli space
is a quasi-projective S-scheme (resp. projective S-scheme), and which is a global quotient
over S. Then for each locally finitely-presented quasi-coherent sheaf F on X and for each
homomorphism P : K0(X ) → Z, the functor QP (F/X /S) is represented by an algebraic
space QP which admits a factorization QP → Q′ → S where Q′ is projective over S and
QP → Q′ is a finitely-presented, quasi-finite monomorphism. If F has proper support over
S, then QP → Q′ is a finitely-presented closed immersion.

Remark: In particular, if S is affine, then QP (F/X /S) is represented by a quasi-projective
S-scheme (which is projective if the support of F is proper over S).

We will prove theorem 4.4 in sections 5 and 6.

5. Generating sheaves

Let X be a tame Deligne-Mumford stack with coarse moduli space π : X → X. For each
locally free sheaf E on X , define additive functors

FE : Quasi-coherentX → Quasi-coherentX , (21)

GE : Quasi-coherentX → Quasi-coherentX (22)

by the formulas
FE(F) = π∗HomOX

(E ,F), GE = π∗ (FE(F))⊗OX
E (23)
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where F is a quasi-coherent sheaf on X .

By lemma 4.2, FE is an exact functor which preserves flatness and preserves the property of
being locally finitely-presented. And GE is a right-exact functor which preserves the property
of being locally finitely-presented. Moreover there is a natural transformation θE : GE ⇒ Id
where Id is the identity functor on the category of quasi-coherent sheaves on X and for a
quasi-coherent sheaf F on X , the morphism

θE(F) : π∗ (π∗HomOX
(E ,F))⊗OX

E → F (24)

is the left adjoint to the natural morphism

π∗π∗HomOX
(E ,F)→ HomOX

(E ,F), (25)

which is itself the left adjoint of the identity morphism

π∗HomOX
(E ,F)→ π∗HomOX

(E ,F). (26)
Definition 5.1. With notation as above, E is a generator for F if θE(F) is surjective.

Example: Suppose that G is a finite group and X = BG×Spec
� Spec k. Then the quasi-

coherent OX -modules correspond to (left-)modules over k[G]. Let E be the locally free sheaf
corresponding to the left regular representation of G on k[G]. Then for every quasi-coherent
sheaf F , E is a generator for F . For that matter, if M is any k[G]-module which contains
every irreducible representation of G as a submodule, then the locally free sheaf corresponding
to M is a generator for every F .

The goal of this section is to prove that the previous example is typical for separated, tame,
Deligne-Mumford stacks which are global quotients.
Proposition 5.2. Suppose that X is a tame, separated Deligne-Mumford stack of the form
X = [Y/G], where Y is a scheme and G is a finite group which acts on Y . Let f : X → BG
be the canonical 1-morphism, let E be the locally free sheaf on BG corresponding to the left
regular representation, and let E = f ∗E. Then E is a generator for every quasi-coherent
OX -module F .

Proof. Let g : Y → X denote the quotient 1-morphism, and let p : X → X denote the
map to the coarse moduli space of X . Observe that E is simply g∗OY . The composition
p ◦ g : Y → X is a finite, surjective morphism of algebraic spaces. In particular, it is affine
and for each quasi-coherent OY -module G, the induced morphism

α : (p ◦ g)∗(p ◦ g)∗G → G, (27)

is surjective. By adjointness of p∗ and p∗, there is an induced morphism

p∗(p ◦ g)∗G → g∗G, (28)

in fact this is precisely θOX
(g∗G). Since g∗G is a module over g∗OY , we get an induced

morphism of OX -modules

φ : g∗OY ⊗OX
p∗(p ◦ g)∗G → g∗G. (29)

The claim is that φ is surjective; let us assume this for a moment. The canonical injection
g# : OX → g∗OY induces a morphism of OX -modules

ψ : g∗OY ⊗OX
p∗p∗HomOX

(g∗OY , g∗G)→ g∗OY ⊗OX
p∗p∗HomOX

(OX , g∗G). (30)
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Since g is representable, finite and flat, there is a surjective trace map

t : g∗OY → OX , (31)

which splits the injection g#. Therefore ψ is surjective. And θE(g∗G) is the composite φ ◦ ψ.
Since ψ and φ are both surjective, we conclude that θE(g∗G) is surjective. So to prove that
θE(g∗G) is surjective, it suffice to prove the claim that φ is surjective.

To see that φ is surjective, we apply g∗; since g is faithfully flat, we may check surjectivity
after base-change by g. Since g is affine, the canonical morphism

(g∗g∗OY )⊗OY
G → g∗g∗G (32)

is an isomorphism. Similarly, the canonical morphism

(g∗g∗OY )⊗OY
(p ◦ g)∗(p ◦ g)∗G → g∗ (g∗OY ⊗OX

p∗(p ◦ g)∗G) (33)

is also an isomorphism. And we have a commutative diagram

(g∗g∗OY )⊗OY
(p ◦ g)∗(p ◦ g)∗G

1⊗α
−−−→ (g∗g∗OY )⊗OY

Gy
y

g∗ (g∗OY ⊗OX
p∗(p ◦ g)∗G)

g∗φ
−−−→ g∗g∗G

(34)

Since α is surjective, so is 1⊗α. Therefore g∗φ is surjective, and it follows that φ is surjective.
This proves the claim, and we conclude that E is a generator for all sheaves of the form g∗G
with G a quasi-coherent OY -module.

Let F be a quasi-coherent OX -module. Since g is affine, the canonical morphism of OX -
modules

g∗OY ⊗OX
F → g∗g

∗F , (35)

is an isomorphism. Therefore E is a generator for g∗OY ⊗OX
F . And we have a surjective

morphism of OX -modules,
t⊗ 1 : g∗OY ⊗OX

F → F . (36)

Since GE is a right-exact functor, we conclude that E is also a generator for F . �

Corollary 5.3. Suppose that X , E are as in proposition 5.2. If E ′ is a locally free sheaf on
X which generates E , then E ′ generates F for every quasi-coherent OX -module F .

Proof. Since p∗ is exact, for any quasi-coherent OX -module G and any quasi-coherent OX -
module F , we have that

p∗(p
∗G ⊗OX

F) = G ⊗OX
p∗F . (37)

To see this, it suffices to work locally over affine opens in X, so we may suppose that G is a
colimit of finitely-presented OX -modules. Since p∗ commutes with colimits, we are reduced
to the case that G is finitely-presented. Since p∗ is right-exact and since p∗ is exact, we are
reduced to the case that G = OX , which is trivial.

Similarly, we conclude that θE ′(p∗G⊗OX
F) is just 1p∗G⊗θE ′(F). In particular, if E ′ generates

F , then E ′ generates p∗G⊗OX
F . Therefore, E ′ generates all sheaf of the form p∗G⊗OX

E . But
by proposition 5.2, we conclude that every quasi-coherent sheaf F is a surjective image of a
sheaf of the form p∗G ⊗OX

E . Since GE ′ is right-exact, we conclude that E ′ generates F . �
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Suppose that X is a quotient stack of the form [Y/GLn]. Let f : X → BGLn be the natural
1-morphism. Associated to each representation V of GLn (over Z), we have an associated
quasi-coherent sheaf on BGLn. Let EV denote the pullback of this sheaf by f . We will use the
previous corollary to prove that there is a GLn representation V which is a finitely-generated
free Z-module and which generates F for every quasi-coherent OX -sheaf.
Lemma 5.4. Suppose that X is a tame, global quotient [Y/GLn,k] which is equivalent to a
stack BGk for G a finite group, where k is an algebraically-closed field, Y is a k-scheme and
we are given an action m : GLn,k×Spec kY → Y by k-morphisms. Then GLn,k acts transitively
on Y , G is isomorphic to the stabilizer of a suitable k-valued point of Y , and there is a GLn

representation V which is a finitely-generated free Z-module and which generates F for every
quasi-coherent OX -sheaf.

Proof. Let g : BGk → [Y/GLn,k] be a 1-morphism which gives an equivalence of categories.
The composition of g with Spec k → BGk is a 1-morphism which is finite, surjective and
étale. By the definition of [Y/GLn,k], there is a (left) principal GLn-bundle π : P → Spec k
and a GLn-equivariant morphism h : P → Y such that h is finite, surjective and étale. Since
k is algebraically-closed and π is smooth, there is a section of π. Thus we may identify P
with the trivial GLn bundle, P = GLn,k. Let y ∈ Y be the image under h of the identity
section of GLn,k. The 1-morphism g gives us an homomorphism of the stabilizer group of
Spec k → BGk to the stabilizer group of Spec k → [Y/GLn,k], i.e. a homomorphism of G
to the stabilizer of y in Y . Since g is an equivalence of categories, this homomorphism is
an isomorphism of groups. Since h is surjective, Y equals the orbit of y under GLn,k. Thus
we have an identification of [Y/GLn,k] with [Spec κ(y)/G] = BGk. Of course this is the
identification g given above.

To see the existence of V , note that the coordinate ring OG = Γ(Gk,OGk
) is the surjective

image of the coordinate ring of GLn,k. Now the coordinate ring of GLn,k is the base change
of the coordinate ring of GLn,

� which is

Γ(GLn,
� ,OGLn, � ) = S =

⊕

m∈
�

Sm, (38)

where S is a graded Z-algebra whose homogeneous parts Sm are finite free Z-modules which
are representations of GLn,Z, namely

S = Sym·� (V ∨)[D−1] (39)

here V ∨ is the dual Hom � (V,Z) where V = Z
n is the standard representation of GLn,

� , and
D ∈ Symn� (V ∨) is the determinant function on V . As OG is a finite k-algebra, there is an

integer N such that OG is the image of
⊕N

m=−N Sm ⊗ k. Moreover, notice that G acts on
both OG and on S ⊗ k, and the surjection S ⊗ k → OG is G-equivariant. In other words,
if V =

⊕N
m=−N Sm, then there is a surjection from g∗EV to the locally free sheaf on BGk

corresponding to the (left) regular representation of G. So by corollary 5.3, we conclude that
g∗EV is a generator for every quasi-coherent OBGk

-module F . �

Corollary 5.5. Suppose that k is an algebraically closed field, X = [Y/GLn,k] is a separated,
tame Deligne-Mumford stack which is a global quotient over Spec k which is isomorphic to
[Z/Gk] where Z is a local Artin k-scheme and G is a finite group. Then there is a GLn,

�

representation V which is a finite free Z-module and such that EV generates every quasi-
coherent OX -module F .
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Proof. The reduced stack of X is a stack which satisfies the hypotheses of the last lemma.
Thus we know that we may find V such that EV generates F for each quasi-coherent OX -
module which is isomorphic to the push-forward of a quasi-coherent sheaf on X red. Denoting
by n the length of Z, every quasi-coherent OX -module F admits a finite decreasing filtration
by OX -modules

F = F0 ⊃ · · · ⊃ Fn = 0 (40)

such that each associated graded Fm/Fm+1 is isomorphic to the push-forward of a quasi-
coherent sheaf on X red. We will prove by induction on m that each quasi-coherent sheaf
Fn−m is generated by EV . For m = 0 this is obvious. Suppose we have proved the result
for m < n and consider the case m + 1. We have a short exact sequence of quasi-coherent
sheaves:

0 −−−→ Fn−m −−−→ Fn−m−1 −−−→ Fn−m−1/Fn−m −−−→ 0. (41)

By assumption, Fn−m is generated by EV . And by construction of V and lemma 5.4, EV

generates Fn−m−1/Fn−m. Since GEV
is right-exact, we have a commutative diagram of exact

sequences:

GEV
(Fn−m) −−−→ GEV

(Fn−m−1) −−−→ GEV
(Fn−m−1/Fn−m) −−−→ 0

θ1

y θ2

y θ3

y
0 −−−→ Fn−m −−−→ Fn−m−1 −−−→ Fn−m−1/Fn−m −−−→ 0

(42)

Since θ1 and θ3 are surjective, it follows from the snake lemma that also θ2 is surjective. Thus
EV generates Fn−m−1 and we conclude by induction that EV generates F . �

Now we come to the main lemma which shows that we can find a generator for a single
locally finitely-presented sheaf.
Lemma 5.6. Suppose S is an affine scheme, f : X → S is a finitely-presented, separated 1-
morphism of a tame Deligne-Mumford stack to S such that X is a global quotient over S, say
X is equivalent to [Y/GLn,S]. If F is a locally finitely-presented quasi-coherent OX -module,
then there exists a GLn representation V which is a finite free Z-module and such that EV is
a generator for F .

Proof. By standard limit arguments, we may find a finite-type, affine Z-scheme, S ′, a 1-
morphism of stacks f ′ : X ′ → S ′, a locally finitely-presented quasi-coherent OX ′-module F ′,
and a morphism of schemes S → S ′ such that S ′, f ′, F ′ satisfy the same hypotheses as the
lemma, and such that X , F is isomorphic to the base-change of X ′, F ′ by S → S ′. Clearly
it suffices to prove the result for F ′. Thus, without loss of generality, we may suppose that S
is a finite-type, affine Z-scheme.

For each GLn,
� representation V which is a finite free Z-module, the cokernel of θEV

(F) is a
coherent sheaf, and so has finite-dimensional support. Define d(V ) to be the dimension of the
support (the maximum of the dimensions of the irreducible components), and define n(V ) to
be the number of irreducible components of the support which have dimension equal to d(V ).
We will prove that for some V d(V ) = −∞, i.e. EV generates F . By way of contradiction,
suppose this is false. Then there is a V such that d(V ) is minimum. And among all V for
which d(V ) is minimum, there is a V such that n(V ) is minimum.
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We have an exact sequence of OX -modules

GEV
(F) −−−→

θ
F −−−→ G −−−→ 0 (43)

where G is a coherent OX -module. Let Z ⊂ X be an irreducible component of the support of
G. Let p : X → X denote the coarse moduli space of X , and let z ∈ p(Z) be a closed point.
Let k denote the algebraic closure of κ(z) and consider Xk = X ×X Spec k. Denote by Gk the
pullback of G to Xk. Now Xk is a stack which satisfies the hypotheses of corollary 5.5. Thus we
can find W such that EW generates Gk. By flat base-change, we conclude that EW generates
Gz. Since GEW

is right-exact, this means that z is not in the support of the cokernel of θEW
(G).

So the support of θEV ⊕W
(G) is contained in the support of G and does not contain Z. Since

GEV ⊕W
is right-exact, we conclude that the cokernel of θEV ⊕W

(F) is contained in the support
of G and does not contain Z. But then either d(V ⊕W ) < d(V ) or else d(V ⊕W ) = d(V )
and n(V ⊕W ) < n(V ). This contradicts the choice of V , so we conclude by contradiction
that there exists a V such that θEV

(F) is surjective. �

Now we come to the main theorem of this section:
Theorem 5.7. Suppose S is a quasi-compact algebraic space, f : X → S is a separated,
finitely-presented 1-morphism of a tame Deligne-Mumford stack to S such that X is a global
quotient over S, say X = [Y/GLn,S]. Let p : X → X denote the coarse moduli space of X .
There exists a GLn,

� representation V which is a finite free Z-module such that for every
morphism of algebraic spaces X ′ → X and for each quasi-coherent sheaf F on X ′ ×X X , EV

is a generator for F .

Proof. Since S is quasi-compact, we may find a finite étale covering {Si → S} such that each
Si is an affine scheme. For each i, Xi is a separated, tame, Deligne-Mumford stack. Let
pi : Xi → Xi denote the coarse moduli space of Xi. By [1, lemma 2.2.3], there is a finite étale
covering {Xi,α → Xi} such that each Xi ×Xi

Xi,α is of the form [Yi,α/Gi,α] where Yi,α is a
finitely-presented Si-scheme and Gi,α is a finite group acting on Yi,α by Si-morphisms.

Let Ei,α denote the locally free sheaf on Xi,α which corresponds to the (left) regular repre-
sentation of Gi,α as in proposition 5.2. By lemma 5.6, there is GLn,

� representation Vi,α which
is a finite free Z-module and such that EVi,α

generates Ei,α. By corollary 5.3, we conclude
that EVi,α

generates all quasi-coherent OXi,α
-modules. Define V to be the direct sum of the

finitely many GLn,
� -representation Vi,α. Then for each i, each α, and each quasi-coherent

OXi,α
-module F , we see that EV generates F .

Now suppose that X ′ → X is a morphism of algebraic spaces and F is a quasi-coherent
sheaf on X ′ ×X X . The claim is that EV generates F . This may be checked étale locally
on the coarse moduli space of X ′ ×X X . Combining [1, lemma 2.3.3] with the arguments in
the last paragraph, we see that this is true étale locally on the coarse moduli space of XU :
Each of the X ′ ×X Xi,α is of the form [X ′ ×X Yi,α/Gi,α]. By the same argument in the last
paragraph, EV generates all quasi-coherent sheaves on X ′ ×X Xi,α. Therefore EV generates
F . �

6. Natural Transformation of Quot Functors

Suppose that S is a quasi-compact algebraic space, f : X → S is a separated, finitely-
presented 1-morphism of a tame Deligne-Mumford stack to S such that X is a global quotient
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over S, say X = [Y/GLn,X ]. By theorem 5.7, there is a GLn,
� representation V which is a

finite free Z-module and such that for every morphism of algebraic spaces T → S and every
quasi-coherent sheaf G on T ×S X , EV generates G.

Suppose that F is a locally finitely-presented OX -module. Suppose that P : K0(X ) → Z

is a given Hilbert polynomial. Let p : X → X denote the coarse moduli scheme of X and let
PV : K0(X)→ Z denote the map

PV ([E]) = P ([HomOX
(EV , p

∗E)]). (44)

Suppose T → S is a morphism of a scheme to S and suppose that FT → G is an element
of QP (F/X /S)(T ). Consider FEV

(FT ) → FEV
(G). Since FEV

is exact, this is still surjective.
By lemma 4.2, FEV

(G) is locally finitely-presented, has proper support over T and is flat over
T . Moreover every geometric fiber has Hilbert polynomial PV , i.e. FEV

(FT )→ FEV
(G) is an

element of QPV (FEV
/X/S)(T ). This defines a natural transformation

FEV
: QP (F/X /S)⇒ QPV (FEV

(F)/X/S). (45)
Lemma 6.1. The natural transformation FEV

is a monomorphism, i.e. for each T → S the
morphism of sets

FEV
(T ) : QP (F/X /S)(T )→ QPV (FEV

(F)/X/S)(T ), (46)

is an injection of sets.

Proof. Given any morphism T → S of a scheme to S and given any element α : FEV
(F)T → G

in QPV (FEV
(F)/X/S)(T ), define β : K → FEV

(F)T to be the kernel of α and define ηT (α) :
F → G to be the cokernel of the composition:

p∗K ⊗OX
EV

p∗β⊗1
−−−→ GEV

(FT )
θEV

(FT )
−−−−−→ FT . (47)

Now suppose given ν : FT → G in QP (F/X /S)(T ) and let µ : K → FT denote the kernel
of ν. Then we have a short exact sequence:

0 −−−→ FEV
(K)

FEV
(µ)

−−−−→ FEV
(F)T

FEV
(ν)

−−−−→ FEV
(G) −−−→ 0. (48)

Notice that if α = FEV
(ν), then β = FEF

(µ). Since p∗ is right-exact, we have a commutative
diagram of exact sequences:

GEV
(K)

p∗β⊗1
−−−→ GEV

(FT )
p∗α⊗1
−−−−→ GEV

(G) −−−→ 0

θEV
(K)

y θEV
(FT )

y θEV
(G)

y

0 −−−→ K
µ

−−−→ ET
ν

−−−→ K −−−→ 0

(49)

It follows by the snake lemma that we have the formula:

ηT (FEV
(µ)) = µ. (50)

Therefore FEV
is injective. �

Remark: Notice that the association T 7→ ηT is functorial for arbitrary S-morphisms
T1 → T2. This might seem odd since the formation of the kernel K is not compatible
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arbitrary base-change. But one could define ηT equivalently to be the coequalizer of the
diagram:

GEV
(FT )

p∗α⊗1
−−−−→ p∗G⊗OX

EV

θEV
(FT )

y
FT

(51)

Since coequalizers are compatible with arbitrary base-change, we see that η is compatible
with arbitrary S-morphisms T1 → T2.

Proposition 6.2. The monomorphism FEV
of functors is relatively representable by schemes.

In fact FEV
is a finitely-presented, quasi-finite, monomorphism. If F has proper support over

S, then FEV
is a finitely-presented, finite, monomorphism, i.e. a finitely-presented closed

immersion.

Proof. Suppose T → S is a morphism of a scheme to S and suppose that α : FEV
(FT ) → G

is an element of QPV (FEV
(F)/X/S). Now form ηT (α) : FT → G. By theorem 3.2, there is a

flattening stratification g : Σ → T for G and g is a surjective, finitely-presented, quasi-finite
monomorphism. By lemma 4.3, for each connected component Σi of Σ, the restriction of
G to Σi has constant Hilbert polynomial Pi. In particular, there is a connected component
(possibly empty) Σi of Σ on which the restriction of G has Hilbert polynomial P . Of course
we have an induced natural transformation of functors

Σi → T ×α,QPV (FEV
(F)/X/S) Q

P (F/X /S). (52)

By equation 50, we have an inverse natural transformation. Thus we conclude that the fiber
functor T×α,QPV (FEV

(F)/X/S)Q
P (F/X /S) is represented by the morphism gi : Σi → T . Notice

that this is a finitely-presented, quasi-finite monomorphism of schemes.

In case F has proper support over S, we know from theorem 1.1 that QP → S satisfies
the valuative criterion of properness. Therefore gi : Σi → T satisfies the valuative criterion
of properness, i.e. gi is finite. But a finite monomorphism is precisely a closed immersion,
therefore gi is a finitely-presented closed immersion. �

Now we are in a position to prove theorem 4.4. By proposition 6.2, we know that

QP (F/X /S)→ QPV (FEV
(F)/X/S) (53)

is relatively representable by a finitely-presented, quasi-finite monomorphism (resp. finitely-
presented closed immersion).

Now the proof that QPV (FEV
(F)/X/S) → S is represented by a scheme which is quasi-

projective over S is essetially [6, théorème 3.2, part IV]. In his proof, Grothendieck makes
some Noetherian hypotheses which are eliminated in a standard way, cf. [5, section IV.8.9].
For the sake of completeness, we include the proof here.

We have a locally closed immersion X ↪→ P
N
S for some N . By [5, proposition IV.8.9.1],

we can find a finite-type affine Z-scheme, S ′, a quasi-projective (resp. projective) S ′-scheme,
X ′, and a coherent sheaf F ′ on X ′ along with a morphism S → S ′ such that X is isomorphic
to S ×S′ X ′, and under this isomorphism FEV

(F) is isomorphic to the pullback of F ′. Let
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p : Z[t, t−1] → Z be the polynomial p(tn) = PV ([OX(n)]) where OX(n) is the pullback
to X of the invertible sheaf O � N

S
(n) on P

N
S . polynomial, and consider the Quot functor

Qp(F ′/X ′/S ′) which is the connected component of Q(F ′/X ′/S ′) parametrizing families of
quotients F ′

T → G such that for each closed point t ∈ T , we have χ(Gt ⊗ O(n)) = p(tn).
By lemma 4.3, it follows that QPV (FEV

(F)/X/S) is isomorphic to a connected component of
the fiber product S ×S′ Qp(F ′/X ′/S ′). So to prove that QPV (FEV

(F)/X/S) → S is quasi-
projective, it suffices to show that Qp(F ′/X ′/S ′)→ S ′ is quasi-projective.

By [6, théorème 3.2, part IV], we know that the restriction of Qp(F ′/X ′/S ′) to the cate-
gory of locally Noetherian S ′-schemes is represented by a quasi-projective S ′-scheme. Using [5,
proposition IV.8.9.1] and [5, théorème IV.11.2.6], it follows that in fact this quasi-projective
S ′-scheme represents Qp(F ′/X ′/S ′) on the category of all S ′-schemes. ThusQPV (FEV

(F)/X/S)→
S is represented by a quasi-projective scheme. This completes the proof of theorem 4.4.
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