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Abstract. When n satisfies an inequality which is almost best possible, we
prove that the k-plane sections of every smooth, degree d, complex hypersur-
face in Pn dominate the moduli space of degree d hypersurfaces in Pk. As a
corollary we prove that, for n sufficiently large, every smooth, degree d hyper-
surface in Pn satisfies a version of “rational simple connectedness”.

1. Statement of results

In their article [2], Harris, Mazur and Pandharipande prove that for fixed integers
d and k, there exists an integer n0 = n0(d, k) such that for every n ≥ n0, every
smooth degree d hypersurface X in Pn

C has a number of good properties:
(i) The hypersurface is unirational.
(ii) The Fano variety of k-planes in X has the expected dimension.
(iii) The k-plane sections of the hypersurface dominate the moduli space of

degree d hypersurfaces in Pk.
It is this last property which we consider. To be precise, the statement is that the
following rational transformation

Φ : G(k, n) 99K PNd//PGLk+1

is dominant. Here G(k, n) is the Grassmannian parametrizing linear Pks in Pn, PNd

is the parameter space for degree d hypersurface in Pk, PNd//PGLk+1 is the moduli
space of semistable degree k hypersurface in Pk, and Φ is the rational transformation
sending a k-plane Λ to the moduli point of the hypersurface Λ ∩X ⊂ Λ (assuming
Λ ∩X is a semistable degree k hypersurface in Pk).

The bound n0(d, k) is very large, roughly a d-fold iterated exponential. Our
result is the following.

Theorem 1.1. Let X be a smooth degree d hypersurface in Pn. The map Φ is
dominant if

n ≥
(

d + k − 1
k

)
+ k − 1.

Question 1.2. For fixed d and k, what is the smallest integer n0 = n0(d, k) such
that for every n ≥ n0 and every smooth, degree d hypersurface in Pn, the associated
rational transformation Φ is dominant?

Theorem 1.1 is equvialent to the inequality

n0(d, k) ≤
(

d + k − 1
k

)
+ k − 1.
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If Φ is dominant, then the dimension of the domain is at least the dimension of the
target, i.e.,

(k + 1)(n− k) = dimG(k, n) ≥ dim(PNd//PGLk+1) =
(

d + k

k

)
− (k + 1)2.

This is equivalent to the condition

n0(d, k) ≥ 1
k + 1

(
d + k

k

)
− 1.

As far as we know, this is the correct bound. The bound from Theorem 1.1 differs
from this optimal bound by roughly a factor of k.

The main step in the proof is a result of some independent interest.

Proposition 1.3. Let X be a smooth degree d hypersurface in Pn. Let Fk(X)
be the Fano variety of k-planes in X. There exists an irreducible component I of
Fk(X) of the expected dimension if

n ≥
(

d + k − 1
k

)
+ k.

Moreover, if

n =
(

d + k − 1
k

)
+ k − 1

then there is a nonempty open subset Uk−1 ⊂ Fk−1(X) such that for every [Λk−1] ∈
Uk−1, there exists no k-plane in X containing Λk−1.

Theorem 1.1 implies a result about rational curves on every smooth hypersurface
of sufficiently small degree. The Kontsevich moduli space M0,r(X, e) parametrizes
isomorphism classes of data (C, q1, . . . , qr, f) of a proper, connected, at-worst-nodal,
arithmetic genus 0 curve C, an ordered collection q1, . . . , qr of distinct smooth
points of C and a morphism f : C → X satisfying a stability condition. The space
M0,r(X, e) is projective. There is an evaluation map

ev : M0,r(X, e) → Xr

sending a datum (C, q1, . . . , qr, f) to the ordered collection (f(q1), . . . , f(qr)).

Corollary 1.4. Let X be a smooth degree d hypersurface in Pn. If

n ≥
(

d2 + d− 1
d− 1

)
+ d2 − 1

then for every integer e ≥ 2 there exists a canonically defined irreducible component
M⊂ M0,2(X, e) such that the evaluation morphism

ev : M→ X ×X

is dominant with rationally connected generic fiber, i.e., X satisfies a version of
rational simple connectedness. Moreover X has a very twisting family of pointed
lines, cf. [4, Def. 3.7].

This is proved in [4] assuming n satisfies a much weaker hypothesis

n ≥ d2

but only for general hypersurfaces, not for every smooth hypersurface. The goal
here is to find a stronger hypothesis on n that guarantees the theorem for every
smooth hypersurface.
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2. Flag Fano varieties

Naturally enough, the proof of Proposition 1.3 uses an induction on k. To set
up the induction it is useful to consider not just k-planes in X, but flags of linear
spaces

P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ Pk ⊂ X.

The variety parametrizing such flags is the flag Fano variety of X. Also, although
we are ultimately interested only in the case of a hypersurface in projective space,
for the induction it is useful to allow a more general projective subvariety.

Let S be a scheme such that H0(S,OS) contains Q. Let E be a locally free OS-
module of rank n+1, and let X ⊂ PE be a closed subscheme such that the projection
π : X → S is smooth and surjective of constant relative dimension dim(X/S). In
other words, X is a family of smooth, dim(X/S)-dimensional subvarieties of Pn

parametrized by S.
Let 0 ≤ k ≤ n be an integer. Denote by Flk(E) the partial flag manifold

representing the functor on S-schemes

T 7→ {(E1 ⊂ E2 ⊂ · · · ⊂ Ek+1 ⊂ ET )|Ei locally free of rank i, i = 1, . . . , k + 1}.

For every 0 ≤ j ≤ k ≤ n, denote by ρj
k : Flk(E) → Flj(E) the obvious projection.

The flag Fano variety is the locally closed subscheme Flk(X) ⊂ Flk(E) parametriz-
ing flags such that P(Ek+1) is contained in X. In particular, Fl0(X) = X. Denote
by ρj

k : Flk(X) → Flj(X) the restriction of ρj
k.

2.1. Smoothness. There are two elementary observations about the schemes Flk(X).

Lemma 2.1. [3, 1.1] There exists an open dense subset U ⊂ X such that U ×X

Fl1(X) is smooth over U .

Lemma 2.2. Set Snew = U , the open subset from Lemma 2.1. Set Enew to be the
universal rank n quotient bundle of π∗E|U so that P(Enew) = U ×P(E) Fl1(E) and
set Xnew = Fl1(U). Then for every 0 ≤ k ≤ n− 1, Flk(Xnew) = U ×X Flk+1(X).

Proof. This is obvious. �

Proposition 2.3. There exists a sequence of open subschemes (Uk ⊂ Flk(X))0≤k≤n

satisfying the following conditions.
(i) The open subset U0 is dense in Fl0(X), and for every 1 ≤ k ≤ n, Uk is

dense in (ρk−1
k )−1(Uk−1).

(ii) For every 1 ≤ k ≤ n, ρk−1
k : (ρk−1

k )−1(Uk−1) → Uk−1 is smooth.

Proof. Let U0 be the open subscheme from Lemma 2.1. By way of induction, assume
k > 0 and the open subscheme Uk−1 has been constructed. As in Lemma 2.2,
replace S by Uk−1, replace E by the universal quotient bundle, and replace X by
(ρk−1

k )−1(Uk−1). Now define Uk ⊂ (ρk−1
k )−1(Uk−1) to be the open subscheme from

Lemma 2.1. �

2.2. Dimension. Using the Grothendieck-Riemann-Roch formula, it is possible
to express the Chern classes of U ×X F1(X) in terms of the Chern classes of U .
Iterating this leads, in particular, to a formula for the dimension of Uk. Denote by
G1, resp. G2, the restriction to Fl1(U) of E1, resp. E2. Denote by L the invertible
sheaf

L := (G2/G1)∨.
3



Denote by
π : PG2 → Fl1(U),

σ : Fl1(U) = PG1 → PG2,

and
f : PG2 → X

the obvious morphisms. In other words, PG2 is a family of P1s over Fl1(U), σ is a
marked point on each P1, and f is an embedding of each P1 as a line in X. The
formula for the Chern character of the vertical tangent bundle of ρ0

1 is,

ch(TFl1(U)/U ) = π∗f
∗[(ch(TX/S)− dim(X/S))Todd(OPE(1)|X)]− ch(L)− 1.

Given a flag P = (P1 ⊂ P2 ⊂ · · · ⊂ Pk ⊂ Pn) in Uk, the formula for the fiber
dimension of ρk−1

k at P is

dim(Uk/Uk−1) =
k∑

m=1

bk,m〈chm(TX/S), Pm〉 − k − 1

where chm(E) is the mth graded piece of the Chern character of E, and where the
coefficients bk,m are the unique rational numbers such that(

x + k − 1
k

)
=

k∑
m=1

bk,m

m!
xm.

Now define the numbers ak,m to be

ak,m =
k∑

l=m

bl,m,

in other words,
k∑

m=1

ak,m

m!
xm =

k∑
l=1

(
x + l − 1

l

)
.

Then it follows from the previous formula that the dimension of Uk at P equals

dim(Uk) =
k∑

m=1

ak,m〈chm(TX/S), Pm〉+ dim(X)− k2.

In a related direction, there is a class of complex projective varieties that is
stable under the operation of replacing X by a general fiber of Fl1(X) → X. Call
a subvariety X of Pn a quasi-complete-intersection of type

d = (d1, . . . , dc)

if there is a sequence

X = Xc ⊂ Xc−1 ⊂ · · · ⊂ X1 ⊂ X0 = Pn

such that each Xk is a Cartier divisor in Xk−1 in the linear equivalence class of
OPn(dk)|Xk−1 . If X is a quasi-complete-intersection, then every fiber of U ×X

Fl1(X) → U is also a quasi-complete-intersection in Pn−1 of type

(1, 2, . . . , d1, 1, 2, . . . , d2, . . . , 1, 2, . . . , dc).
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Iterating this, every (non-empty) fiber of (ρk−1
k )−1(Uk−1) → Uk−1 is a quasi-

complete-intersection in Pn−k of dimension

Nk(n, d) = n− k −
c∑

i=1

(
di + k − 1

k

)
.

Since the mth graded piece of the Chern character of TX equals

chm(TX) = (n + 1−
c∑

i=1

dm
i )c1(O(1))m/m!

this agrees with the previous formula for the fiber dimension.

Corollary 2.4. Let X be a smooth quasi-complete-intersection of type d. If the
integer Nk(n, d) is nonnegative, there exists an irreducible component I of Flk(X)
having the expected dimension

dim(I) =
k∑

m=0

Nm(n, d).

Proof. Of course we define I to be the closure of any connected component of Uk.
The issue is whether or not Uk is empty. By construction Uk is not empty if for
every m = 1, . . . , k the morphism ρm−1

m is surjective. By the argument above every
fiber of ρm−1

m is an iterated intersection in Pn−m of pseudo-divisors (in the sense of
[1, Def. 2.2.1]) in the linear equivalence class of an ample divisor. Thus the fiber
is nonempty if the number of pseudo-divisors is ≤ n − m. This follows from the
hypothesis that Nk(n, d) ≥ 0. �

3. Proofs

Proof of Proposition 1.3. The first part follows from Corollary 2.4. For the second
part, observe that if Nk(n, d) = −1, then Nk−1(n, d) is nonnegative. Therefore,
by the first part, the open subset Uk−1 from Proposition 2.3 is nonempty. Since
(ρk−1

k )−1(Uk−1) → Uk−1 is smooth of the expected dimension, and since the ex-
pected dimension is negative, (ρk−1

k )−1(Uk−1) is empty. In other words, for every
[Λk−1] ∈ Uk−1, there exists no k-plane in X containing Λk−1. �

Proof of Theorem 1.1. Let (Hk,n, e) be the universal pair of a scheme Hk,n and a
closed immersion of Hk,n-schemes

(prH , e) : Hk,n × Pk → Hk,n × Pn

whose restriction to each fiber {h} × Pk is a linear embedding. In other words,
Hk,n is the open subset of PHom(Ck+1, Cn+1) parametrizing injective matrices.
Of course there is a natural action of PGLk+1 on Hk,n, and the quotient is the
Grassmannian G(k, n). Denote by F̃k(X) the inverse image of Fk(X) in Hk,n, i.e.,
F̃k(X) parametrizes linear embeddings of Pk into X.

Let F be a defining equation for the hypersurface X. Then e∗F is a global
section of e∗OPn(d). By definition, this is canonically isomorphic to pr∗PkOPk(d).
Therefore e∗F determines a regular morphism

Φ̃ : Hk,n → H0(Pk,OPk(d)).
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Denote by V the open subset of Hk,n of points whose fiber dimension equals

dimHk,n − dimH0(Pk,OPk(d)).

The rational transformation Φ is dominant if and only if Φ̃ is dominant. And the
morphism Φ̃ is dominant if and only if V is nonempty.

The scheme F̃k(X) is the fiber Φ̃−1(0). If

n ≥
(

d + k − 1
k

)
+ k

then Proposition 1.3 implies there exists an irreducible component I of Fk(X)
of the expected dimension. Thus the inverse image Ĩ in Hk,n is an irreducible
component of F̃k(X) of the expected dimension, or what is equivalent, the expected
codimension. But the expected codimension is precisely

h0(Pk,OPk(d)) =
(

d + k

k

)
.

Thus, the generic point of Ĩ is contained in V , i.e., V is not empty.
This only leaves the case when

n =
(

d + k − 1
k

)
+ k − 1.

The argument is very similar. Let y be a linear coordinate on Pk, and let G̃k(X)
be the closed subscheme of Hk,d where e∗F is a multiple of yd. In other words,
G̃k(X) parametrizes linear embeddings of Pk into Pn whose intersection with X

contains dV(y). There is a projection morphism G̃k(X) → Fk−1(X) associating to
the linear embedding the (k − 1)-plane

Λk−1 = Image(V(y)).

Denote by Gk(X) the image of G̃k(X) under the obvious morphism

G̃k(X) → Fk−1(Pn)× Fk(Pn).

Recall that for a quasi-complete-intersection X, the fiber of F1(X) → X is
an interated intersection of ample pseudo-divisors in projective space. By a very
similar argument, every fiber of Gk(X) → Fk−1(X) is an iterated intersection of
ample pseudo-divisors in the projective space Pn/Λk−1

∼= Pn−k. Moreover, the
fiber of Flk(X) → Flk−1(X) (for any extension of Λk−1 to a flag in Flk−1(X)) is an
ample pseudo-divisor in Gk(X). By the second part of Proposition 1.3, there exists
a nonempty open subset Uk−1 ⊂ Λk−1 such that for every Λk−1 ∈ Uk−1 this ample
pseudo-divisor is empty. Therefore the fiber in Gk(X) is finite or empty. But the
equation

n =
(

d + k − 1
k

)
+ k − 1

implies the expected dimension of the fiber is 0. Since an intersection of ample
pseudo-divisors is nonempty if the expected dimension is nonnegative, the fiber of
Gk(X) → Fk−1(X) is not empty and has the expected dimension 0. Since Uk−1

has the expected dimension, the open set Uk−1 ×Fk−1(X) G̃k(X) is nonempty and
has the expected dimension. Thus it has the expected codimension. Therefore a
generic point of this nonempty open set is in V , i.e., V is not empty. �
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Proof of Corollary 1.4. Let Me be an irreducible component of M0,0(X, e) not en-
tirely contained in the boundary ∆. Then for every integer r ≥ 0 there exists a
unique irreducible component Me,r of M0,r(X, e) whose image in M0,0(X, e) equals
Me. Before defining the irreducible component M of M0,2(X, e), we will first in-
ductively define an irreducible component Me of M0,0(X, e) which is not entirely
contained in the boundary ∆ and such that the evaluation morphism

ev : Me,1 → X

is surjective. Then we define M to be Me,2.
Let U denote the open subset of M0,1(X, 1) where the evaluation morphism

ev : M0,1(X, 1) → X

is smooth, i.e., U parametrizes free pointed lines. By [3, 1.1], U contains every
general fiber of ev. By the argument in Subsection 2.2 (or any number of other
references), a general fiber of ev is connected if d ≤ n − 2. Therefore U ×X U is
irreducible. There is an obvious morphism U ×X U → M0,0(X, 2). By elementary
deformation theory, the morphism is unramified and M0,0(X, 2) is smooth at every
point of the image. Therefore there is a unique irreducible component M2 of
M0,0(X, 2) containing the image of U×X U . Because U → X is dominant, M2 → X
is also dominant.

By way of induction assume e ≥ 3 and Me−1 is given. Form the fiber product
Me−1,1 ×X U . As above this is irreducible, and there is an unramified morphism

Me−1,1 ×X U → M0,0(X, e)

whose image is in the smooth locus. Therefore there exists a unique irreducible
component Me of M0,0(X, e) containing the image of Me−1,1 ×X U . Because
Me−1,1 → X is dominant, Me,1 → X is also dominant. This finishes the inductive
construction of the irreducible components Me, and thus also of Me,2.

It remains to prove that

ev : Me,2 → X ×X

is dominant with rationally connected generic fiber. The article [4] gives an induc-
tive argument for proving this. To carry out the induction, one needs two results:
the base of the induction and an important component of the induction argument.
Set k to be d2. For a general degree d hypersurface Y in Pk, [4, Prop. 4.6, Prop.
10.1] prove the two results for Y . By Theorem 1.1, since

n ≥
(

d + k − 1
k

)
+ k − 1,

for a general Pk ⊂ Pn the intersection Y = Pk∩X is a general degree d hypersurface
in Pk. Thus the two results hold for Y . As is clear from the proofs of [4, Prop. 4.6,
Prop. 10.1], the results for Y imply the corresponding results for X. �
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